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Abstract. Image super-resolution is a process of obtaining one or more high-resolution image from single or multiple 

samples of low-resolution images. Due to its wide applications, a number of different techniques have been devel-

oped recently, including interpolation-based, reconstruction-based and learning-based. The learning-based methods 

have recently attracted increasing great attention due to their capability in predicting the high-frequency details lost 

in low resolution image. This survey mainly provides an overview on most of published work for single image 

reconstruction using Convolutional Neural Network. Furthermore, common issues in super-resolution algorithms, 

such as imaging models, improvement factor and assessment criteria are also discussed. 

Keywords: Image super resolution, convolutional neural network, high-resolution image 

1 Introduction 

      Single image super-resolution (SISR) aims to obtain the visually high-resolution (HR) image from one low-resolu-

tion (LR) image. It has found practical applications in real-world problems, from remote sensing where restriction of 

certain bandwidth and pixel size are present, security surveillance imaging where most information regarding particular 

scene details, and in medical imaging where reducing irradiation is preferred. Since SISR problem usually assumes the 

observed LR image is to be a non-invertible low-pass filtering, down-sampled and noisy version of HR image, it is a 

highly ill-posed problem. There are a variety of methods has been developed recently, which can be classified into 

interpolation-based, reconstruction-based, and example-based methods. Interpolation-based methods typically adopt 

fixed-function kernels to estimate the unknown pixels in HR image. Although the interpolation-based methods are very 

simple and effective ways, they are produce overly smooth edges and blurring details. Reconstruction-based methods 

usually introduce certain image priors or constraints between the down-sampling of the reconstructed HR image and 

the original LR images to tackle the ill-posed problem of image super-resolution. Example-based methods, which re-

cently achieved convincing performance, recovered missing high-frequency based on learning the map between LR 

patches and its HR counterparts. Example-based methods can be categorized into 5 groups: early research [1, 2, 3], 

sparsity methods [4, 5, 6], self-exemplar methods [7, 8], locally linear regression methods [9-15] and deep architectures 

[16-36], in which the CNN-based methods have drawn considerable attention due to its simple structure and excellent 

reconstruction quality. 

In this paper, we attempt to provide a brief survey of the research on example-based methods, then focus mainly on 

CNN-based methods in the context of single image super-resolution. The rest of the paper is arranged as follows. 

Section 2 give brief review of background, followed by early approaches for super-resolution. Section 3 surveys the 

contemporary CNN-based approaches, mostly on the-state-of-the-art algorithm and the performance comparison 

among them is given in section 4. Section 5 will discuss further on multi-resolution, among them fusion methods are 

widely used. Section 5, 6 give an overall discussion and a conclusion, respectively. 

2 Background 

      Learning-based algorithm aims to hallucinate missing information of the super-resolved images using relationship 

between LR and HR images. These algorithms contain training step in which the relationship is learn, then the learned 
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knowledge is then applied to unseen LR images. Although the more training database give more information to apply 

on unseen data, it is paradox that using larger database does not guarantee better results due to irrelevant examples 

misleading model to learn more information from noises. Learning-based algorithm for SISR were first introduced in 

[1-3] in which neighbor embedding [3] was use with idea that low-resolution patches corresponding high-resolution 

patches share similar local geometries highly influences the subsequent coding-based or dictionary-based methods.  

2.1 Sparsity-based method 

    The sparse representation theory each atom unit is a basic unit that can be used to reconstruct larger units. Also, 

image patches can be well-represent as a sparse linear combination of elements from appropriately chosen over-com-

plete dictionary. By exploiting sparse representation for each patch of low-resolution inputs, the coefficients of this 

representation can be applied to generate the high-resolution outputs. Let say, if dimensionality of the input image is 

64 x 64 (equal 4096), the dimensionality of dictionary is N x 4096, where N is very large (N > 4096, in this case we 

have over-complete representation). 

D x α = X (1) 

D is basic vector, X is input data and α is unknown. D >> dim(X) in case for super-resolution, where we want to 

build dictionary for most scenarios of input. To solve over-complete system, assumption that X is composed of no more 

than a fix number (k) of bases from D, then find the set of k bases that best fit the data point X. The observed low-

resolution image Y is blurred and down-sampled version of the high-resolution X: 

Y = S.H.X (2) 

    Here, H represents a blurring filter and S the down-sampling operation. This is ill-posed problem, since for given 

low-resolution input, infinitely many high-resolution satisfy the constraint. Yang et al. [4] used joint dictionary training 

to find α coefficient. Given the sampled training patch pairs P = {𝑋ℎ, 𝑌𝑙}, where 𝑋ℎ = {𝑥1, 𝑥2, … 𝑥𝑛} are the set of

sampled high-resolution image patches and 𝑌𝑙  = {𝑦1, 𝑦2, … 𝑦𝑛} are the corresponding low-resolution image patches.

Both dictionaries are trained, so sparse representation of high-resolution patch is the same as the sparse representation 

of the corresponding low-resolution patch. However, limitation appears that two dictionaries are not connected by linear 

transform also mentioned by authors in this paper. Other works [5-6] proposed to solve two equations but still have 

many limitations of extracted features and mapping function, which are not adaptive or optimal for generate HR images. 

2.2 Self-exemplar methods or Internal database based algorithm 

   Based on the observation that natural image has self-similarity property, which tends to recur many times inside the 

image, Glasner et al. [7] proposed a scale space pyramid of LR to match LR and HR pairs. Through the training, patches 

contained in internal data are more relevant than that of external data. Since internal dictionary are constructed only on 

given limited LR-HR patch pairs, Huang et al. [8] extended search space to both planar perspective and affine transform 

of patches to achieve lower errors and more accurate prediction. The complexity of computation makes this method 

not suitable for real time problem. 

2.3 Locally linear Regression methods 

   An external database based super resolution methods, use external images to try and find mapping between the high-

resolution and low-resolution images. The algorithms use different supervised machine learning techniques such as 

ridge regression [10], anchored neighborhood regression [10, 12], random forest [13], manifold embedding [15]. The 

database is categorized separately into clustering using k-mean, random forest dictionary to find linear regression.  

3 Deep Architecture Methods 

3.1 CNNs-based models 

The CNNs have been developed rapidly in the last two decades. However, its application to solve SISR problem is 

first introduced by Dong et al. [16, 17], who described a three-layer CNN for super-resolution as Super-Resolution 
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Convolutional Neural Network (SRCNN). In this method, CNN has been used to learn the non-linear mapping between 

the LR and HR images and it significantly outperforms previous non-deep learning methods. The training objective is 

to find optimal model, given training set {𝑥𝑖, 𝑦𝑖}i = 1...N . The best mode f then will use to accurately predicts value Y  =

f(X), where X is unobserved examples. The SRCNN [16, 17] consists of following operation, as show in Fig. 1 [16]: 

1) Preprocessing: Upscale LR image to desired HR image using bicubic interpolation.

2) Feature extraction: Extracts a set of feature map from the upscale LR image.

3) Non-linear mapping: Maps the feature maps between LR and HR patch.

4) Reconstruction: Produce the HR image from HR patches.

Fig. 1. SRCNN structure [16] 

These networks contain only 3 convolutional layers and is improved later with 8 layers [18] impressively outperform 

conventional non-deep learning methods. However, this model has been mostly restricted to limited training and testing 

on single scale factor, do not achieve better performance due to the difficulty of deepening networks. This led to ob-

servation that whether ‘the deeper the better’ is or not the case in SR. Inspired of success of very deep networks includ-

ing Res-Net, Kim et al. [19, 20] proposed two models named Very Deep Convolutional Networks (VDSR) [19] as 

show in Fig. 2 [19] and Deeply Recursive Convolutional Network [20] (DRCN), both stacking 20 convolutional layers. 

To speed up training in deep network, the VDSR [19] is trained with very high learning rate (10−1 instead of

10−4 in SRCNN) in order to accelerate the convergence speed and introduced gradient clipping to control explosion

problem. Residual learning is used instead of predict the whole image has several advantages such as fast convergence 

and better accuracy to compare with SRCNN. In addition, data argumentation allows network adapt well with multiple 

scale factors (2x, 3x, 4x) without degrading performance. The zero padding also is introduced to avoid the size of 

feature map reduces quickly through layers of convolution, which appears in deep networks.  

Fig. 2. VDSR model [19] contains 20 convolutional layers, global residual learning represented by skip-connection. 

   Similar to DRCN [20], Tai et al. [21] proposed Deeply Recursive Residual Network (DRRN), which using both 

global residual learning and introduces new concept of local residual learning. The global residual learning is used in 

the identity branch and recursive learning in local residual branch. Mao et al. [22] proposed a 30-layer convolutional 

auto-encoder network named very deep Residual Encoder-Decoder Network (RED30), as given in Fig.3 [22], which 

used multiple symmetric connection to boost training convergence. The convolutional layers work as feature extractor, 

encode image content, while the de-convolutional layers decode and recover image details. This single model has been 

testing for several tasks of image restoration such as image de-noising, JPEG de-blocking, non-blind de-blurring and 

image in-painting. [22] 

  Recent advances in CNN design such as Dense-Net, Network in Network, Residual Network enable numbers of SISR 

approaches [23, 24, 25] to produce better performances compare to pioneer SRCNN model. Among them, Enhance 

Deep Residual Networks (EDSR) [26], mostly based on Res-Net model, is convinced to be the-state-of-the-art, as 

shown in Table 2. 
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Fig. 3. RED30 structure [22] contain 30 layers. Symmetric skip connection between convolutional and de-convolutional layers  

    Instead of using interpolation or deconvolution [18] as up-scale method for pre-processing, Lai et al. [27] proposed 

Laplacian Pyramid Super-Resolution Network (Lap-SRN) to present images as a series of high-pass bands and low-

pass bands. This structure enables the residuals (high-pass bands) learn in progressive ways. As shown in Fig.4 [27], 

at each step, numbers of convolutional layer learn the residual and one transposed convolutional layer to up-sample 

feature extraction.  

Fig. 4. Lap-SRN structure [27] 

One of the drawback with most SISR approaches is that they have been restricted to limit up-scale factors to 2x, 3x, 

4x. Otherwise, features available in the LR space have not sufficient to exactly reconstruct the image. To achieve higher 

scale factor, Wang et al. [28] proposed a fully Progressive Asymmetric Pyramidal Structure to adapt with multiple up-

scale factors and up to 8x. Also, a Deep Back Projection Network [29] using mutually connected up- and down-sam-

pling stages has been claimed for reaching such high up-scale factor. To facilitate network training, most CNN-based 

methods assume that low-resolution image is down-sampled from high-resolution image, they ignored the true degra-

dation in real world application such as noises. Kai Zhang et al. [30] proposed Super-Resolution Multiple Degradation 

(SRMD) structure with dimensionality stretching strategy scheme to handle blur, noise, and down-sampled image. 

Shocher et al. [31] inspired by the observation that the natural image has strong internal data repetition, then the infor-

mation for tiny object is better to be found elsewhere inside the image, other than in any external database of example. 

Therefore, a ‘Zero Shot’ SR (ZSSR) is proposed without relying on any prior images example or prior training. It 

exploits cross-scale internal recurrent of image-specific information, then the test image itself is trained before feed 

again to resulting trained network.  

Although these approaches attempt to higher scale factor and deal with more degradation form of input, they still 

need to research further to produce persuaded results. 

3.2 RNN-CNN-based models 

On the view of Recurrent Neural Network (RNN), a Dual-State Recurrent Network (DSRN) [32] allows LR path 

and HR path captions information at different spaces and connected at every step in order to contribute jointly to learn-

ing process. At each stage, LR image are sequence inputs of HR image and vice versa, so called dual state, as given in 

Fig. 5 [32]. Inspired by concept of Long Short Term Memory (LSTM) block in RNN, Tai et al. [33] proposed Memory 

Network (MemNet), which uses recursive layers follow by memory unit to allow combination short and long-term 

memory for image reconstruction, as shown in Fig. 6 [33]. 
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Fig. 5. DSRN structure [32]. The top branch operates on HR space, where bottom branch works on LR space. A connection from 

LR to HR using de-convolution operation; a delay feedback mechanism to connect previous predicted HR to LR at next stage. 

Fig. 6. Memory block in MemNet [33] includes multiple Recursive units and a Gate Unit 

3.3 GAN-based model 

Basically, Generative Adversarial Network (GAN) contains two models, a generative model and a discriminative 

model. The discriminative model has the task of determining whether a given image looks natural or looks like it has 

been artificial created. The task of generative model is created images so that the discriminator gets trained to produce 

a correct output. The interesting point is during the training, the discriminator is aware of the internal represent of data 

because it has been trained to understand the differences between real image and artificial created.   

   One major issue in measurement metric is that a performance of algorithm is commonly measured using pixel-wise 

such as MSE (as in equation [4]) in favor of maximizing the peak signal-to-noise ratio (PSNR). This will show poorly 

visual to human perception even with high PSNR due to the mean of many possible solutions. Ledig et al. [34] proposed 

Super-Resolution Generative Adversarial Network (SRGAN) in favor of perceptual similarity, has delivered great per-

formance for human perception. The extension GAN model is further used in [35, 36], which improved SRGAN with 

fusion of pixel-wise loss, perceptual loss, texture matching loss. It is shown in Fig. 7 [34], where the optimization desire 

to human perception, bring reconstruction image look realistic. One of major advantage of GANs-based SR model is 

that GANs use a largely unsupervised training process on the real images, so it does not require label or prior condition 

between LR and HR image. 

Fig. 7. [34] From left to right, image is reconstructed by bicubic interpolation, deep residual network (SRResNet) measured by MSE, 

SRGAN optimize more sensitive to human perception, original image. Corresponding PSNR and SSIM are provided on top. 
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     Using MSE-based measurement can have poorly performance even the reconstructed image achieves high 

PSNR. To support that idea on the side of SRGAN, we also add two of reluctant reconstructed images during implement 

on SR field. Our model focus on global contextual and get result with low PSNR lower than that of bicubic, as given 

in Fig 8. It can be explained that errors on pixel at background deteriorate overall result while the pixel value is not 

equally important. The bicubic interpolated images has better score, though they are all blur. 

Bicubic image PSNR = 36.377 Our test image PSNR = 36.270 Original Image 

Bicubic image PSNR  = 35.153 Our test image PSNR = 32.368 Original Image 

Fig. 8. From left to right, images reconstructed by bicubic interpolation, ours model and original image. PSNR at bottom of each 

image. 

4 Comparison 

There are two measures has been mostly used to compare the performance, a Peak Signal-to-Noise Ratio (PSNR) and a Structural 

SIMlarity (SSIM) index [37]. The higher the PSNR, the better of reconstructed image. 

PSNR = 10*log10 
R2

MSE
(3) 

where R is maximum fluctuate in the input image datatype, MSE is Mean Squared Error between two images, has 

expressed as: 

MSE = 
∑ [I1(m,n)−[I2(m,n)] 2M,N

M∗N
(4) 

Here, M and N are the number of rows and columns in the input images, respectively, and SSIM is quantitative 

measure used to quantify the similarities of structure between two image. 

We compare CNN based SR models including SRCNN [17], FSRCNN [18], VDSR [19], DRCN [20], DRRN [21], 

RED30 [22], MemNet [33], EDSR [26], LapSRN [27], Zeo Shot [31], Dual State [32], SRGAN [34] on algorithm in 

Table 1 and performance in Table 2. In Table 2, the benchmark datasets are used including SET5, SET14, B100, 

URBAN 100 which mostly used for comparison in SR algorithms. Scale factor used include 2x, 3x, 4x, and information 

that were not provided by the authors is marked by [-]. All quantitative results are duplicated from the original papers. 
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Table 1. Comparison of CNN based SR algorithm. Methods with direct reconstruction perform one-step up-sampling (with bicubic 

interpolation of transpose convolution) from LR to HR images, while progressive predict HR images in multiple step. Multiple scale 

factor mean training and testing image down-scaling with multiple factor at the same process, not perform on single factor separately. 

Models Input 

Multiple-

scale factor 

Type of Net-

work 

Number 

of layers 

Reconstruction 

method Residual 

Loss Fun-

tion 

Training 

time 

SRCNN  LR + Interpolation No Supervised  3 Direct No L2 (MSE) a week 

FSRCNN  LR Yes Supervised  8 Direct No L2 (MSE) few hours 

VDSR  LR + Interpolation Yes Supervised  20 Direct Yes L2 (MSE) 4 hours 

DRCN  LR + Interpolation No Supervised  20 Direct Yes L2 (MSE) 6 days 

DRRN  LR + Interpolation Yes Supervised  52 Direct Yes L2 (MSE) 4 days 

RED30  LR + Interpolation Yes Supervised  30 Direct Yes  L2 (MSE) Not given 

MemNet  LR + Interpolation Not given Supervised  80 Direct Yes L2 (MSE) 5 days 

EDSR  LR + Interpolation Yes Supervised 32 Direct Yes L1 8 days 

LapSRN  LR Not given Supervised  27 Progressive Yes Charbonnier 3 days 

Zero Shot  LR + Interpolation Yes Unsupervised  8 Direct Yes L1 

days or 

weeks 

Dual Sate  LR + Interpolation Not given Supervised  18 Progressive Yes L2 (MSE) Not given 

SRGAN  

LR through 

generator network Yes 

Unsupervised 

+ Supervised 54 Direct Yes 

Perceptual 

loss Not given 

In Table 2, we observe that EDSR outperformed other algorithms with large margin, reached to the-state-of-the-art 

model recently. Meanwhile, MemNet, achieved in most case the second best performance on SET5 and SET14. The 

application of residual learning brings benefits to SR image reconstruction, therefor it has been successfully applied in 

several network models. 

5 Multi-resolution related approaches 

Image fusion has emerged as a promising research area that aim to combine information from different sources into 

a single composite for interpretation. It requires the first extraction of the features contained in the various input sources, 

then characteristics those feature as size, shape, color, contrast, and texture. The fusion is thus enable to detect useful 

features with higher confidence based on those extracted features. The data fusion has been applied for broad applica-

tions in image processing such as in image detection, image registration, image reconstruction. The actual fusion can 

take place at different types or levels of information representation, from combinations of color and spatial features 

[38, 39], thermal and visible features [40], spatial and frequency features, spatial and temporal features [41]. When 

most proposed algorithm processed images in separate colored channel, Yan et al. [38, 39] proposed the fusion of color 

and spatial features, which is particularly important in retrieval of logo/trademark images. In this method, dominant 

colors are first extracted via color quantization and k-means clustering, then a component-based spatial descriptor is 

derived as local features. For detection, Yan et al. [40] proposed the combination of thermal and visible imagery for 

detection and tracking of pedestrians achieved better distinguishability in human visual perception and less sensitive to 

these noise effects such as illumination noise and shadows. The fusion of intensity and inter-component chromatic 

difference has been proposed by Ren et al. [42] for effective and robust color edge detection. Ren et al. also proposed 

multiresolution decomposition scheme, which decomposes the signal into several components. The 2-D translation is 

decomposed into two 1-D Fourier transform, which provides improved accuracy in sub-pixel motion estimation [43]. 

Also, another method [44] based on phase correlation uses linear weighting of the height of the main peak accompany 

with the difference between two neighboring side peak on the other. This method [44] and gradient-based method [45] 

effectively deals with noisy image to achieve high accuracy sub-pixel motion estimation. Chai et al. [46] use shape 

characteristic of a walking object, trajectory-based joint kinematics characteristic motion characteristic of body parts 

for effective gait recognition.  

Last but not least, hyperspectral imagery provides spatial 2-D image in hundreds of different wavelengths, and as 

the result, gives better capability to see unseen because of its high spectral resolution. However, it requires effective 

method for dimensionality reduction and feature extraction [47] to reduce level of complexity. 
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Table 2. Quantitative evaluation of the-state-of-the-art SR algorithm. Average PSNR/SSIM for scale factor 2x, 3, 4x. Red text 

indicates that the best and blue text indicates the second best performance. 

Scale 

Set5 Set 14 B100 Urban100 

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM 

SRCNN 

2 36.66/0.9542 32.45/0.9067 - - 

3 32.75/0.9090 29.30/0.8215 - - 

4 30.49/0.8628 27.50/0.7513 - - 

FSRCNN 

2 37.00/0.9558 32.63/0.9088 - - 

3 33.16/0.9140 29.43/0.8242 - - 

4 30.71/0.8657 27.59/0.7535 - - 

VDSR 

2 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140 

3 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279 

4 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 

DRCN 

2 37.63/0.9588 33.04/0.9118 31.85/0.8942 30.75/0.9133 

3 33.82/0.9226 29.76/0.8311 28.80/0.7963 27.15/0.8276 

4 31.53/0.8854 28.02/0.7670 27.23/0.7233 25.14/0.7510 

DRRN 

2 37.74/0.9591 33.23/0.9136 - 31.23/0.9188 

3 34.03/0.9244 29.96/0.8349 - 27.53/0.8378 

4 31.68/0.888 28.21/0.7720 - 25.44/0.7638 

RED30 

2 37.66/0.9599 32.94/0.9144 - - 

3 33.82/0.9230 29.61/0.8341 - - 

4 31.51/0.8869 27.86/0.7718 - - 

MemNet 

2 37.78/0.9597 33.28/0.9142 - 31.31/0.9195 

3 34.09/0.9248 30.00/0.8350 - 27.56/0.8376 

4 31.74/0.8893 28.26/0.7723 - 25.50/0.7630 

LapSRN 

2 37.52 / 0.959 33.08 / 0.913 - 30.41 / 0.910 

4 31.54 / 0.885 28.19 / 0.772 - 25.21 / 0.756 

8 26.14 / 0.738 24.44 / 0.623 - 21.81 / 0.581 

EDSR 

2 38.20 / 0.9606 34.02 / 0.9204 32.37 / 0.9018 33.10 / 0.9363 

3 34.77/0.9290 30.66/0.8481 29.32/0.8104 29.02/0.8685 

4 32.62 / 0.8984 28.94 / 0.7901 27.79 / 0.7437 26.86 / 0.8080 

Zero Shot 

2 37.37 / 0.9570 33.00 / 0.9108 - - 

3 33.42/0.9188 29.800.8304 - - 

4 31.13 / 0.8796 28.01 / 0.7651 - - 

Dual Sate 

2 37.66 / 0.959 33.15 / 0.913 - 30.97 / 0.916 

3 33.88/0.922 30.26/0.837 - 27.16/0.828 

4 31.40 / 0.883 28.07 / 0.770 - 25.08 / 0.747 

SRGAN 

2 - - - - 

3 - - - - 

4 29.40/0.8472 26.02/0.7397 - - 
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6 Discussion 

One possible contribution to SR field is to propose effective models for image reconstruction. However, it is less 

likely adding more parameters as solutions since super-resolution aims to recover at pixel-level, which requires much 

more comparison than in classification. The ways to improve image resolution is how to make the neural networks to 

learn more about the relationship between LR and HR images. While the regular supervised CNN networks attempt to 

learn directly the mapping and highly depend on predetermined assumptions, GANs based networks are much more 

flexible with promising performance due to incorporated unsupervised training. Also, traditional measurements expose 

several constraints to human perception, and the integrated perceptual assessment produces better results. The fusion 

of unsupervised/supervised models and multi-resolution can reconstruct image with more accuracy and flexibility, yet 

it still requires further investigation.  

7 Conclusion 

This paper contains a survey on recent super-resolution techniques that underlie on learning based methods. Among 

them, we noticed that convolutional neural network based methods have recently achieved the best performance. There 

are remain challenges to bring them into real time applications since they are only applied on standard benchmark 

dataset and require to adapt well with differently structured images. 

   Although LR image is assumed to be a down-sampled version of the HR image, most CNN-based super resolution 

models fail to work on large scaling down-sampled factors with the exception of noise. The evaluation metrics also 

have to consider in different perspective of applications. These will also form the base for our future work.  
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