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Abstract: One approach for solving the problem of antibiotic resistance and bacterial persistence
in biofilms is treatment with metals, including silver in the form of silver nanoparticles (AgNPs).
Green synthesis is an environmentally friendly method to synthesize nanoparticles with a broad
spectrum of unique properties that depend on the plant extracts used. AgNPs with antibacterial and
antibiofilm effects were obtained using green synthesis from plant extracts of Lagerstroemia indica (Ag-
NPs_LI), Alstonia scholaris (AgNPs_AS), and Aglaonema multifolium (AgNPs_AM). Nanoparticles were
characterized by transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy
(EDX) analysis. The ability to quench free radicals and total phenolic content in solution were also
evaluated. The antibacterial activity of AgNPs was studied by growth curves as well as using a
diffusion test on agar medium plates to determine minimal inhibitory concentrations (MICs). The
effect of AgNPs on bacterial biofilms was evaluated by crystal violet (CV) staining. Average minimum
inhibitory concentrations of AgNPs_LI, AgNPs_AS, AgNPs_AM were 15 ± 5, 20 + 5, 20 + 5 µg/mL
and 20 ± 5, 15 + 5, 15 + 5 µg/mL against Gram-positive (Staphylococcus aureus) and Gram-negative
(Escherichia coli) bacteria, respectively. The E. coli strain formed biofilms in the presence of AgNPs, a
less dense biofilm than the S. aureus strain. The highest inhibitory and destructive effect on biofilms
was exhibited by AgNPs prepared using an extract from L. indica.
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1. Introduction

Bacterial infections with antibiotic resistance (mainly nosocomial) (Figure 1) continue
to be a major problem in the early 21st century [1–3] due to the misuse of antibiotics,
disinfection in hospitals, and poorly understood mechanisms to avoid treatment [4]. The
rapid increase in bacterial resistance requires the search for new strategies. The use of
nanomaterials could be one of them. Recently, combinations of antimicrobial polymers
with nanomaterials and bioactive substances have also been tested to improve biocidal
therapy [5].
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[6–8]. Mohanta et al. demonstrated strong antibacterial and antibiofilm activity of phy-
to-synthesized AgNPs against different clinically important human pathogens [5]. Due to 
their antibacterial properties, AgNPs possess a range of biomedical applications. For 
example, creams and ointments can incorporate AgNPs for wound healing applications. 
Silver-doped self-assembling di-phenylalanine hydrogels have been demonstrated to be 
clinically effective as wound dressing biomaterials. Bandages, gauzes, sutures, and plas-
ters can be functionalized with AgNPs. The efficacy of silver nanocoatings applied to 
textile materials for wound dressing in preventing bacterial adhesion and biofilm for-
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Figure 1. The simplified cycle of nosocomial bacterial infection and the crucial role of biofilms in
the spreading and resistance process. The biofilms formed may be related to bacterial resistance
depending on environmental conditions, in particular cleaning procedures, disinfection, and antibac-
terial agents. Increased persistence and avoidance of treatment with antibacterial substances lead
to the preservation of bacteria on medical devices, surfaces, and tissues. This increases the risk of
reinfection, contributes to the selection of resistant strains and their spread in the hospitals.

Silver nanoparticles (AgNPs) exhibit antimicrobial, antiviral, and antifungal effects [6–8].
Mohanta et al. demonstrated strong antibacterial and antibiofilm activity of phyto-synthesized
AgNPs against different clinically important human pathogens [5]. Due to their antibacte-
rial properties, AgNPs possess a range of biomedical applications. For example, creams
and ointments can incorporate AgNPs for wound healing applications. Silver-doped
self-assembling di-phenylalanine hydrogels have been demonstrated to be clinically ef-
fective as wound dressing biomaterials. Bandages, gauzes, sutures, and plasters can be
functionalized with AgNPs. The efficacy of silver nanocoatings applied to textile ma-
terials for wound dressing in preventing bacterial adhesion and biofilm formation has
been demonstrated. AgNPs incorporated into wound dressing fabrics showed significant
antibacterial effect against both Gram-positive and Gram-negative bacteria and inhibited
biofilm formation [9–14]. Biofilm is a complex of surface-bound microbial cells that are
surrounded by a matrix of extracellular polymers [15].
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The biofilm formation by microorganisms (Figure 1) is a mechanism for colonization,
virulence, and resistance in the form of cell communities on various surfaces [5]. Biofilm
is characterized by a three-dimensional structure (microcolonies or mature biofilm fields)
where the cells are placed in the extracellular matrix, which consists mainly of polysac-
charides, proteins, and DNA [16]. It has been estimated that biofilm cells can be up to
10,000 times more resistant to antibiotics than planktonic cells [17]. Dispersion as the final
step of the biofilm life cycle is considered a promising way to control biofilm [18].

The effects of nanoparticles on biofilms can be divided into two categories: (a) pre-
vention of biofilm formation (when nanoparticles are present in media during cultivation)
and (b) biofilm destruction [19,20]. Silver has a dose-dependent effect on bacterial cells and
biofilms, but its efficiency is lower for biofilms than for planktonic (non-adhered) cultures.
However, sublethal doses of AgNPs can increase the production of both biofilm matrix
polysaccharides and proteins compared to the control, which significantly changes the
biofilm structure [21]. On biofilms, nanoparticles decrease bacterial metabolic activity due
to the disruption of intracellular processes. Changes due to this occur in the formation of
microcolonies and the maturation of biofilms [22]. Particle size, synthesis method, and
exposure time are crucial for the effect of nanoparticles on biofilms [23,24]. Additionally,
nanoparticles can accumulate in a biofilm and change its physical properties (mechanical
stability), including an impact on the total density [25]. The general scheme of the action of
nanoparticles on biofilms is presented in Figure 2.
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Figure 2. The presumed effect of silver nanoparticles (AgNPs) on prokaryotic cells (A) and biofilms
(B). Silver ions can be released from silver nanoparticles in the environment. These ions can react
with chlorides to form AgCl, with sulfur to form Ag2S, with the SH groups of glutathione or
metallothionein. Silver nanoparticles act on the cell, disrupting the processes of regulation, protein
synthesis, ATP depletion, and damaging the cell wall. Additionally, an increased level of free radicals
and a disruption of the integrity of DNA, division, blockage, apoptosis-like death and/or autolysis
are observed. All this results in a violation of the structure and the synthesis of the components
of biofilms. Additionally, it leads to disrupt intercellular signaling and direct cell death in the
biofilm [26,27].
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Antibacterial action of AgNPs is mediated by the following mechanisms: direct con-
tact with the bacteria components, release of bioactive ions, disruption of some metabolic
pathways, formation of reactive oxygen species (ROS), genotoxicity, inhibition of bacterial
DNA replication, alteration in the wall and cytoplasm of the cell, alteration in membrane
permeability of bacteria and ionic change [28–35]. These mechanisms are primarily medi-
ated by the action of the AgNPs. The main antibacterial effect is based on the release of
Ag+ ions from AgNPs [36]. The antibacterial mechanisms of AgNPs utilize targeting many
bacterial cell components [37] such as bacterial wall (disruption and/or the membrane
permeability increase), tRNA, the inactivation the respiratory chain (ATP depletion), en-
zyme and protein synthesis as well as DNA-binding (inhibition of replication) [32–34]. The
overall bactericidal efficacy of AgNPs depends not only on the rate of Ag+ ions generation
but also on the size, shape and total surface area of AgNPs and type of coating/corona [28].

It is supposed that the difference in the efficiency of AgNPs against different types
of bacteria (Gram-positive, Gram-negative, acid-fast bacteria) primarily depends on the
structure and thickness of bacterial cell walls [38–41].

Silver nanoparticles generate free radicals, disrupt the integrity of the cell membrane
and bind to proteins and DNA. The growth of the cell population can slow down, and cells
can die from the action of silver [23]. Meanwhile, interest in studying the action of AgNPs
on bacteria under various conditions is due to a growing number of reports of an increase
in resistance to heavy metals and various antibacterial substances based on metal ions or
nanoparticles. This also applies to selective mechanisms, various cellular and pleiotropic
effects in the population associated with the action of metals [42]. In this regard, it is
also important to look for new approaches to the development of nanoparticles with new
physical and antibacterial properties as potential antibiotic agents. For example, different
ways of how to prepare various AgNPs-based nanotransporters for targeted therapy of
tumors or bacterial diseases are being sought. The antibacterial properties of AgNPs are
the most studied and discussed [43,44]. However, their biological effect is still not very
clear and must be carefully studied [45,46]. Indeed, AgNPs are characterized not only by
antibacterial but also antiviral, antifungal [47], and antitumor effects [48].

In addition to bacteria and animals, green synthesis also uses plants. Plant extracts
replace chemical reducing agents in the reaction, such as NaBH4 or LiAlH4. Many tropical
and subtropical plant species contain a lot of biologically important molecules (including
peptides, proteins, and nucleic acids). Phenolic compounds are especially important for
antibacterial activity. Crape myrtle (Lagerstroemia indica) is an ornamental woody plant
used in medicine. Its extract contains many different alkaloids and flavonoids and has
anti-inflammatory and antimicrobial effects [49–52]. Blackboard tree (Alstonia scholaris)
has been used in traditional medicine primarily for the treatment of respiratory and in-
flammatory diseases, malaria, jaundice, and gastrointestinal disorders. Evidence-based
medicine has confirmed the protective effect of its extract on respiratory tract tissue during
inflammation; four main alkaloids (scholaricine, 19-epischolaricine, vallesamine, picri-
nine) from the extracts reduced post-infection cough in mice [53–55]. Pentacyclic triter-
penoids from extracts of A. scholaris have antitumor [50] and synergistic antibacterial [56],
antiallergic [55,57] and antihypertensive effects [58]. Aglaonema multifolium is an evergreen
ornamental plant, common in the Asian region. In some species, e.g., Aglaonema spp.,
however, the content of compounds that have significant toxic effects on eukaryotic cells
has been demonstrated [59,60].

This work aims to present a green synthesis method for AgNPs with a modified surface
to increase their antibacterial ability while evaluating their effect on biofilms and testing
their activity. The use of plant extracts replaces chemical reducing agents in the reaction,
such as NaBH4. In addition, tropical and subtropical plants contain a lot of biologically
important molecules, especially phenolic substances, important in antibacterial activity.
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2. Materials and Methods
2.1. Chemicals

Silver nitrate, methanol, NaCl, and other chemicals (KCl, NaCl, AgNO3, boritan,
NaHPO4, NaH2PO4, etc.) used were purchased from Merck (Darmstadt, Germany) with a
purity of 99%. For LB media preparation, 10 g/L tryptone, 5 g/L yeast extract (Duchefa
Biochemie B.V., Haarlem, The Netherlands), and 10 g/L NaCl (Merck, Darmstadt, Germany)
were used.

2.2. Instruments
2.2.1. Spectrophotometric Analysis

Spectrophotometry: a UV-Vis UV-3100PC, VWR (Radnor, PA, USA) single-beam spec-
trophotometer was used to record the UV-Vis spectra. The Vis spectrum was measured
every 2 nm in the range of 400–800 nm in plastic cuvettes with an optical path of 1 cm. An
Infinite F50 (Tecan, Männedorf, Switzerland) was used for measurement on a polystyrene
microtiter plate (Gama Group a.s., Ceske Budejovice, Czech Republic). Automated spectro-
metric measurements: BS-300 chemical analyzer from Mindray (Shenzhen, China), cuvettes
5 mm × 6 mm × 30 mm, optical path 5 mm, and a volume of the reaction mixture in the
cuvette 180–500 µL were used. Reagents and samples were placed on the cooled sample
holder (4 ◦C) and automatically pipetted directly into plastic cuvettes. Incubation pro-
ceeded at 37 ◦C. The mixture was consequently stirred. The washing steps by ultrapure
water (18 mΩ) were carried out in the middle of the pipetting.

2.2.2. Other Devices

Deionized water was prepared using reverse osmosis equipment Aqual 25 (AQUAL
s.r.o., Brno, Czech Republic) and subsequently treated to an 18 MΩ purity by an ELGA
deionizer from Purlab Flex (London, UK). Conductivity and pH were measured with an MU
6100L multimeter from VWR (Radnor, PA, USA). The pH-electrode (662-1161 Phenomenex
pH electrode pH 0–14/3M KCl, VWR, Torrance, CA, USA) was regularly calibrated with
two-point calibration (VWR buffers, at 22 ◦C).

2.3. Preparation of Silver Nanoparticles by Green Synthesis

Biological material collection sites have been selected in cooperation with CeMM (The
Center for Molecular Medicine) researchers. Plant samples were collected in the university
campus of the VNU University of Science, Thong Nhat and Tuoi Tre part, Hoan Kiem Lake,
and Hanoi Botanical Garden, Hanoi Night Market, Tu Dung Homestay Botanic Garden
in Can Tho and Cat Tien National Park in Vietnam. All activities were handled in direct
collaboration with workplaces at Vietnamese universities. Plants used in experiments
were chosen as follows: L. indica, A. scholaris, and A. multifolium. Individual plant species
were classified into families and genera primarily by the appearance of their leaves, stems,
and overall plant appearance. Alternatively, flowers or fruits were used to identify plants.
Plant identification was provided by the Department of Pharmacognosy of the Faculty of
Pharmacology at Tra Vinh University. Plants were dried at 60 ◦C for 48 h, homogenized
by grinding to a particle size of 1–2 mm. Preparation of extract: the mixture was stirred
in water (80 ◦C) for 60 min in a ratio (5 DW g/100 mL, v/w). Then, extracts were filtered.
Subsequently, centrifugation (15 min, 4000× g) was performed. The leachate was mixed
with 0.1 M AgNO3 (1:1). Silver nitrate and extracts were stirred at room temperature for
24 h at 150 rpm. The formed particles were purified with methanol (1:1). After precipitation,
samples were centrifuged and the methanol was pipetted away; synthesized AgNPs were
dried (24 h, 60 ◦C, VWR dryer, Radnor, PA, USA).

2.4. HRTEM and Energy-Dispersive X-ray Spectroscopy (EDX)

The nanostructure and surface morphology of the prepared AgNPs was characterized
by high-resolution transmission electron microscopy (HRTEM) conducted on a JEOL 2100
HRTEM instrument (JEOL, Tokyo, Japan). The nanomaterials were mixed with absolute
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ethanol (1:1) in vials and sonicated for 10 min. Carbon grids of 10 µm mesh size were then
immersed in the solution containing the nanomaterials, dried, and applied for the analysis.
The determination of the individual elemental components of AgNPs was performed using
the energy-dispersive X-ray spectroscopy (EDX).

2.5. Zetasizer Analysis of Silver Nanoparticles

The size distribution (i.e., the hydrodynamic diameter, DH) was determined by dy-
namic light scattering (DLS) using the Zetasizer Nano ZS ZEN3600 (Malvern Instruments,
Malvern, Worcestershire, UK) with a detection angle of 173◦ in optically homogeneous
square polystyrene cells (Malvern, catalogue no. DTS0012). The samples were diluted a
hundredfold with deionized water. All measurements were performed at 25 ◦C. Each value
was obtained as an average of 3 runs with at least 10 measurements. The particle charge
(ζ-potential) was measured by the microelectrophoretic method using the same device as
the size distribution. All the measurements were performed at 25 ◦C in polycarbonate
cuvettes (Malvern, catalogue no. DTS1070). Each value was obtained as an average of
3 subsequent runs of the instrument with at least 20 measurements.

2.6. Electrochemical Measurement

Electrochemical measurements were performed with an AUTOLAB Analyser (Metrohm,
Herisau, Switzerland) connected to VA-Stand 663 (Metrohm, Herisau, Switzerland), using
a standard cell with three electrodes. The working electrode was a hanging mercury
drop electrode (HMDE) with a drop area of 0.4 mm2. The reference electrode was an
Ag/AgCl/3 M KCl electrode, and the auxiliary electrode was a graphite electrode. The
supporting electrolyte was prepared by mixing buffer components. The samples analyzed
by differential pulse voltammetry (DPV) were deoxygenated prior to measurements by
purging with argon (99.999%) saturated with water for 20 s. In our studies, the Brdicka
supporting electrolyte contained 1 mM Co(NH3)6Cl3, 1 M NH3(aq), and 1 M NH4Cl,
pH = 9.6; a surface-active agent was not added. The DPV Brdicka reaction parameters were
as follows: an initial potential of –0.6 V, an end potential –1.85 V, a modulation time 0.057 s,
an interval of 0.2 s, a step potential of 1.05 mV/s, modulation amplitude of 250 mV, and
accumulation time of 240 s [61].

2.7. Measurement of Antioxidant Activity of Silver Nanoparticles

Characterization of surface modifications of nanoparticles was performed by methods
that were previously optimized [14,52,62–66]. The determination of the antioxidant activity
of nanoparticles was performed by methods previously optimized using a BS-300 Chemical
analyzer from Mindray (Shenzhen, China). Ferric-reducing antioxidant power (FRAP) is
based on the reduction of 2,4,6-tripyridyl-s-triazine (TPTZ) with FeCl3·6H2O. The reagent
was prepared from several solutions: solution 1 was prepared from 1:10 mmol/L solution
of TPTZ was dissolved in 40 mmol/L of hydrochloric acid. Solution 2 of 2:20 mmol/L
of ferric chloride hexahydrate was prepared in ACS water. Solutions 3 was 3:20 mmol/L
acetate buffer, pH 3.6. These three solutions (TPTZ, FeCl3, acetate buffer) were mixed in
a 1:1:10 ratio. A 200 µL volume of reagent was injected into a plastic cuvette with the
subsequent addition of a 4 µL sample. Absorbance was measured at 605 nm for 12 min.
The radical of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)—(ABTS, 7 mM) and
potassium peroxodisulfate (5 mM) were mixed in water. The solutions were then prepared
by diluting with water in a ratio of 1:9 v/v, stored for 12 h in the dark at 4 ◦C before
use. A 200 µL volume of reagent (7 mM ABTS• 2,2′-azino-bis(3-ethylbenzothiazoline-
6-sulfonic acid (and 4.95 mM potassium peroxodisulfate) were mixed with 4 µL of the
sample. Absorbance was measured at 660 nm for 12 min. The 2,2-diphenyl-1-picrylhydrazyl
(DPPH) method is based on quenching the color of the radical. A 200 µL volume of reagent
(0.095 mM 2,2-diphenyl-1-picrylhydrazyl—DPPH•) was incubated with 20 µL of the sample.
Absorbance was measured at 505 nm for 12 min. The output ratio of the three mentioned
antioxidant methods was achieved by a difference in absorbance at the last (12th) minute
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and second minute of the assay procedure. Calibration curves were prepared using different
concentrations of gallic acid [65].

2.7.1. Total Phenolic Content Determination

Total phenolic content in AgNPs was determined according to Zoufan et al. [66], with
minor modifications using a BS-300 Chemical analyzer from Mindray (Shenzhen, China).
First, 316 µL of R1 reagent (3.75% Folin-Ciocalteau reagent in ultrapure water) was pipetted
into the plastic cuvettes, followed by 4 µL of the measured sample. The reaction was
started by adding 80 µL of R2 reagent (10% Na2CO3 in ultrapure water). Absorbance was
measured for 12 min at 670 nm. The output ratio was achieved by a difference in absorbance
at the last (12th) minute and second minute of the assay procedure. A calibration curve was
prepared using different concentrations of gallic acid. Total phenolic content was expressed
as µg of gallic acid equivalent/mL (µg GAE/mL) [67].

2.7.2. Total Protein Amount

Total protein was determined by the biuret method using a BS-300 Chemical analyzer
from Mindray (Shenzhen, China). The biuret method is a test used for detecting the
presence of peptide bonds. In the presence of peptides, a copper (II) ion forms a violet-
colored complex in an alkaline solution. A 200 µL volume of biuret reagent (100 mM
potassium sodium tartrate, 100 mM sodium hydroxide, 15 mM potassium iodide and 6 mM
copper sulfate) was pipetted into a plastic cuvette with the subsequent addition of 4 µL
of the sample. Absorbance was measured at λ = 546 nm after 10 min of incubation. The
resulting value was calculated from the absorbance value of the pure biuret reagent and
from the absorbance value after 10 min of incubation with the sample.

2.8. Antibacterial Activity of Silver Nanoparticles

Escherichia coli and Staphylococcus aureus were obtained from the Collection of Microor-
ganisms of Masaryk University (Brno, Czech Republic). Cultivation of microorganisms
was carried out in LB medium at 37 ◦C; for experiments overnight (18–24 h) culture was
used. Growth curves were determined for 24 h at 25 ◦C in a sterile microtiter plate (0.25 mL,
shaking 5 s, 150 rpm). The measurement was performed at Infinite 50 (Tecan, Männedorf,
Switzerland) at 620 nm. Absorbances were recorded every 15 min. The curve area was
determined for each concentration in the tested range (5, 10, 15, 20, 25, and 30 µg/mL); the
effect was calculated relative to the negative control (well without antibacterial substance).
A standard diffusion test was performed on an agarized LB medium based on EUCAST
rules with slight modifications [68]. Ten microliters of a solution of nanoparticles with
a concentration of 5, 2.5, 1.25, 6.25 mg/mL were placed on the surface of a Petri dish
with agar (3%) and incubated at 25 ◦C. Incubation was carried out for 18 h, plates were
photographed, and the area of inhibition zones were measured using the Qinslab color-test.
As a control, sterile ultrapure water was used.

2.9. Experiments with Biofilms
2.9.1. Biofilm Growth in Liquid Medium and Incubation with Silver Nanoparticles

Biofilms were obtained using a polystyrene sterile 96-well plate. A sterile LB medium
and overnight culture of bacterial cells in a final concentration OD600 = 8 × 10−5 were
added into the well in a volume of 0.25 mL. During optimization steps of biofilm growth,
classic biofilm protocol [69] was modified to achiEve 0.5 McFarland cell concentration
diluted close to EUCAST protocol for MIC detection [70].

In control samples without the presence of bacteria and without the presence of
nanoparticles in bacteria, various nanoparticles were added to the well before inoculation
of the bacterial suspension. The range of tested concentrations was obtained by double
dilutions of the nanoparticles in the medium. As a negative control, biofilm without
nanoparticles was used. After incubation for 48 h to test the ability of AgNPs to destroy
biofilms, mature biofilms were poured with a solution of nanoparticles in Milli-Q water.
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Biofilms were incubated at 37 ◦C. As a negative control, a well with Milli-Q water was
used. For data processing, values of negative controls were also used for a well with
nanoparticle solution and a well with a solution of nanoparticles, bacteria, and 96% ethanol.
As an additional negative control, a well with nanoparticles and 96% ethanol was used. To
take into account the negative control, the control value was subtracted from the absolute
values; the results were presented as a positive value in percentage. A biofilm without
nanoparticles was taken for 100%.

2.9.2. Crystal Violet Assay

Crystal violet (CV, Merck, Darmstadt, Germany) staining was used according to
O’Toole [69] with some changes to determine the total density of the biofilm. The biofilms
on the plate were washed with a stream of 200 mL of sterile tap water and dried for 5 min.
Then, 200 µL of crystal violet at a concentration of 0.5% was added to the well. Staining was
carried out at room temperature for 30 min. Unbound dye was removed using non-sterile
tap water in a volume of 400 mL. After, the plates were dried until the water was removed
entirely. The dye was extracted for 30 min, with 200 µL of 96% ethanol. The optical density
of the CV solution was measured at 540 nm.

2.10. Statistical Data Analysis

Available experimental data were processed and evaluated mathematically and sta-
tistically directly in the Qinslab database. The exclusion of extreme values for data sets
was performed by calculation in the Grubbs test. Experimental work was performed in at
least three independent experiments (n1). Each sample in the experiments was analyzed
at least five times (n2). The data are presented as average values. LOD (limit of detection)
values were determined according to the work of Hubaux and Vos [71] at a significance
level of 95%. Half-inhibition of growth (IC50) was determined by logit analysis using the
HelpersMG (R) package. Cell growth intensity was calculated from the growth curve
integrals. Lowering of growth intensity concentration compared to control was defined
as inhibition described in percentages. The logit regression model was built using data
obtained by growth curve analysis from all experiments. IC50 was calculated from the
model as a theoretical value. Data visualization was performed using the Qinslab database.
The number of asterisks (*) in graphs show the significance level in the following way:
(*) p < 0.05, (**); p < 0.01 and (***); p < 0.001 and (x) p > 0.05.

3. Results
3.1. Characterization of Silver Nanoparticles (AgNPs)

Using green synthesis, AgNPs were synthesized from three plant extracts: L. indica
(AgNPs_LI), A. scholaris (AgNPs_AS), and A. multifolium (AgNPs_AM) and characterized by
transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX)
analysis (Table 1). Mostly spherical nanoparticles were obtained with sizes ranging from 10
to 40 nm, with an average diameter of 12, 15 nm, and 25 nm, respectively. Spherical AgNPs
showed only one peak. An absorption maximum was detected at wavelength 450 nm
for all nanoparticles (Figure 3). The more the absorption maximum was shifted to higher
wavelengths, the larger the AgNPs were. The appearance of peaks with a smaller area under
the curve at lower wavelengths confirmed the presence of monodisperse nanoparticles. On
the other hand, peaks with a larger area under the curve at higher wavelengths confirmed
the presence of polydispersion [72].
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Table 1. Energy-dispersive X-ray spectroscopy (EDX) analysis of AgNPs from L. indica (LI), A. scholaris
(AS), A. multifolium (AM). All measurements were performed in no less than five replicates.

wt% AgNPs_LI AgNPs_AS AgNPs_AM

C 8.95 ± 0.90 9.78 ± 0.25 22.90 ± 0.37
O 17.22 ± 1.16 5.35 ± 0.33 6.09 ± 0.30
Cl 2.79 ± 0.18 0.92 ± 0.05 8.31 ± 0.08
Ag 70.13 ± 1.24 83.95 ± 0.38 62.70 ± 0.37
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Figure 3. Characterization of AgNPs prepared using extracts from L. indica (LI), A. scholaris (AS), and
A. multifolium (AM): Typical absorption spectra of each AgNPs. Other experimental details are in the
section Material and Methods and Table 1.

According to the results of the chemical analysis, AgNPs_LI had at least 70% silver;
unlike other types of nanoparticles, they contained a relatively large amount of oxygen
in the composition (Table 1). AgNPs_AS had the smallest amount of chlorine in the
composition and contained at least 83% silver. AgNPs_AM had the highest carbon and
chlorine content but the lowest silver concentration (at least 62%).

In further experiments, AgNPs were characterized in terms of secondary metabolites
bound to their surface (Table 2). Silver nanoparticles were dispersed in ultrapure water, with
40 W ultrasound (ultrasonic cleaner USC-TH, VWR (Radnor, PA, USA), 30 ◦C) for 60 min,
and then analyzed. Chemical analysis (total phenolic content, ABTS (2,2′-azino-bis(3-
ethylbenzothiazoline-6-sulfonic acid)), DPPH(2,2-diphenyl-1-picrylhydrazyl) and FRAP
(ferric reducing antioxidant power)) showed the presence of phenolic groups on the AgNPs
surface. The total concentrations of phenolic compounds and the ability of AgNPs to quench
free oxygen radicals are summarized in Table 2. Silver nanoparticles from L. indica extract
(AgNPs_LI) had the least antioxidant activity in ABTS, FRAP, and DPPH tests. AgNPs_LI
showed the largest number of phenolic compounds on the surface of nanoparticles; the
lowest content of phenolic components was found in the AgNPs_AM sample. These data
do not correlate with the amount of carbon in the nanoparticle composition; most likely,
AgNPs_AM are modified by organic compounds without a phenolic ring, which also may
have an influence on AgNPs antioxidant activity. Presumably, this role can be played
by polysaccharides, the high content of which is noted for A. spp.; it is also noted that
polysaccharides of plant extracts have significant antioxidant activity [73,74].
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Table 2. Biochemical characterization of AgNPs prepared using extracts from L. indica (AgNPs_LI), A.
scholaris (AgNPs_AS), and A. multifolium (AgNPs_AM). (a) Concentrations of total phenolic content
on the surface of AgNPs. The ability of AgNPs to quench free oxygen radicals—(b) ABTS, (c) DPPH,
and (d) FRAP methods. GAE—gallic acid equivalent. All measurements were performed in no less
than five replicates.

Total Phenol Content DPPH ABTS FRAP

AgNPs (mg/mL, GAE)

LI 380 ± 20 0.12 ± 0.05 0.15 ± 0.10 1.40 ± 0.15
AS 300 ± 15 0.15 ± 0.05 0.90 ± 0.15 2.00 ± 0.20
AM 270 ± 10 0.32 ± 0.10 0.4 ± 0.10 1.95 ± 0.15

3.2. Antibacterial Effect of Silver Nanoparticles (AgNPs)

The antibacterial effect of AgNPs was tested using a diffusion test on agar medium
plates and in a liquid medium. The growth of bacterial culture in the presence of different
concentrations of nanoparticles was detected by growth curves (OD620). S. aureus strain was
used as a Gram-positive model; E. coli strain was chosen for an experimental Gram-negative
model. The results are presented in Figure 4.
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concentrations (B,E) S. aureus and E. coli cells. Control in the diffusion test was marked as 0. (C,F)
represent summary data from all performed integrals of inhibition surfaces. All measurements
and experiments were performed in no less than five replicates. For further details, see the chapter
Material and Methods.

For MIC determination (Table 3), a dilution test was used; the logit model was per-
formed using the HelpersMG package from growth curves integrals data. In the case of S.
aureus, the best effect was shown for nanoparticles from L. indica (AgNPs_LI); a comparable
effect, especially in agar diffuse tests, was also shown for AgNPs_AM. The best antibac-
terial effect on E. coli cells is shown for nanoparticles from A. multifolium (AgNPs_AM).
AgNPs_LI and AgNPs_AS, according to the inhibition curve and diffusion test results on
E. coli cells, have a similar effect on cells; however, the minimum inhibitory concentration
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(MIC) and theoretical values obtained from the models determine the lowest antibacterial
effect of AgNPs_LI.

Table 3. Minimal inhibitory concentrations (MICs), Logit LC50 (lethal concentration) model values,
and LOD (limit of detection model) from a diffusion test as antimicrobial characteristics of AgNPs
prepared using extracts from L. indica (AgNPs_LI), A. scholaris (AgNPs_AS), and A. multifolium
(AgNPs_AM).

Strain S. aureus E. coli

Nanoparticles AgNPs_LI AgNPs_AS AgNPs_AM AgNPs_LI AgNPs_AS AgNPs_AM

MIC, µg/mL 15.0 ± 5.0 20.0 ± 5.0 20.0 ± 5.0 20.0 ± 5.0 15.0 ± 5.0 15.0 ± 5.0
Logit LC50,
µg/mL 7.0 ± 0.4 12.0 ± 0.6 12.0 ± 0.6 15.0 ± 0.8 9.0 ± 0.5 5.0 ± 0.3

LOD, µg 25.0 ± 1.3 37.0 ± 2.0 19.0 ± 1.0 34.0 ± 2.0 30.0 ± 2.0 16.0 ± 1.5

3.3. Antibiofilm Effect of Silver Nanoparticles (AgNPs)

The effect of AgNPs on the formation of biofilms was studied. The density of biofilms
was evaluated using crystal violet (CV) staining (Figure 5). In the case of S. aureus biofilms,
the effect for different nanoparticles at a concentration of 5 µg/mL with an incubation time
of 24 h did not have significant differences (p > 0.05), while the inhibition of biofilm growth
was not more than 20%. The lowest effect was shown for AgNPs_AM; at the maximum
concentration in the experiment (20 µg/mL), the effect did not exceed 70%, while AgNPs_LI
and AgNPs_AS inhibited biofilm formation by more than 90%. An increase in cultivation
time up to 48 h reduced the efficiency of AgNPs_AS and AgNPs_AM to inhibit the growth
of biofilms by more than 50% at 20 µg/mL concentration; at 10 µg/mL concentration
the effect did not significantly differ (p > 0.05) from the effect of maximum concentration.
AgNPs_LI at the concentration of 20 µg/mL prevented the formation of S. aureus biofilm
after 24 and 48 h of cultivation. All nanoparticles had a significant effect on the formation
of E. coli biofilms after 24 h of biofilm growth in medium with AgNPs; at the highest
concentration (20 µg/mL), the growth of biofilms decreased by more than 85%. The most
significant effect at the concentration of 5 µg/mL was exerted by nanoparticles from A.
scholaris (AgNPs_AS) and A. multifolium (AgNPs_AM); biofilm growth was inhibited by
50%. As in the case of S. aureus biofilm growth, after cultivation time increased from
24 h to 48 h, the effect of nanoparticles on E. coli biofilm growth was halved, except for
nanoparticles from L. indica (AgNPs_LI) at the concentration of 20 µg/mL, the effect of
which decreased by only 10%.

The ability of AgNPs to destroy the formed biofilm of bacteria was investigated
(Figure 6). Biofilms were grown for 48 h on polystyrene plates, and the medium was
removed after incubation. Then, a solution of nanoparticles at a concentration of 20 µg/mL
was placed in the well. After this, the biofilm with AgNPs was incubated for 24 h. The
effect was calculated relative to the control sample without nanoparticles. The calculations
also considered the intrinsic density of the nanoparticles adsorbed on the surface of the
plate wells.



Nanomaterials 2022, 12, 2183 12 of 20Nanomaterials 2022, 12, x FOR PEER REVIEW 12 of 21 
 

 

 
Figure 5. The antibiofilm potential of AgNPs prepared using extracts from L. indica (LI), A. scholaris 
(AS), and A. multifolium (AM) on S. aureus (A–C) and E. coli (D–F) cells after exposure 24 and 48 h. 
The effect was calculated relative to the control without nanoparticles (0%); calculations also con-
sidered the intrinsic density of nanoparticles adsorbed on the surface of the plate wells. A boxplot 
reflects the cumulative effect of all concentrations of one type of particle in an experiment. LB me-
dium, incubation at 37 °C, staining with crystal violet. All measurements were performed in no less 
than five replicates. For further details, see the chapter Materials and Methods. 

The ability of AgNPs to destroy the formed biofilm of bacteria was investigated 
(Figure 6). Biofilms were grown for 48 h on polystyrene plates, and the medium was 
removed after incubation. Then, a solution of nanoparticles at a concentration of 20 
μg/mL was placed in the well. After this, the biofilm with AgNPs was incubated for 24 h. 
The effect was calculated relative to the control sample without nanoparticles. The cal-
culations also considered the intrinsic density of the nanoparticles adsorbed on the sur-
face of the plate wells. 

Figure 5. The antibiofilm potential of AgNPs prepared using extracts from L. indica (LI), A. scholaris
(AS), and A. multifolium (AM) on S. aureus (A–C) and E. coli (D–F) cells after exposure 24 and 48 h. The
effect was calculated relative to the control without nanoparticles (0%); calculations also considered
the intrinsic density of nanoparticles adsorbed on the surface of the plate wells. A boxplot reflects
the cumulative effect of all concentrations of one type of particle in an experiment. LB medium,
incubation at 37 ◦C, staining with crystal violet. All measurements were performed in no less than
five replicates. For further details, see the chapter Materials and Methods.
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Figure 6. The ability of AgNPs prepared using extracts from L. indica (LI), A. scholaris (AS), and A.
multifolium (AM) to disperse 48 h biofilms of S. aureus (A) and E. coli (B). Biofilm formation from
all AgNPs analyzes in SA and EC (C). Absolute values for S. aureus OD600 = 0.40 ± 0.05 for E.
coli OD600 = 0.70 ± 0.05. The effect was calculated relative to the negative control sample without
nanoparticles (0%); calculations also considered the intrinsic density of nanoparticles adsorbed on
the surface of the plate wells. LB medium, incubation at 37 ◦C. The staining was performed with
crystal violet. All measurements were performed in no less than five replicates. For further details,
see the section of Material and Methods.
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AgNPs_LI destroyed S. aureus biofilms by 60% and the effect on E. coli biofilms was
also destroyed by 42%. AgNPs_AS reduced the density of S. aureus and E. coli biofilms by
42 and 25%, AgNPs_AM by 63, and 33%, respectively. Thus, S. aureus biofilms were more
susceptible to the treatment with AgNPs. However, we associate this with a total density
of biofilms (when staining with CV, E. coli biofilms were 70% denser). The most destructive
effect on biofilms was shown for AgNPs_LI. By measuring the total protein suspension of a
dispersed biofilm, the effect of nanoparticles was studied. As a validation of the method,
the dependence of the protein concentration in suspension on the starting cell concentration
during biofilm growth and the background signal value (negative biofilm control) are
shown. Using pyrogallol, reaction proteins were measured in a suspension of a dispersed
biofilm, which was grown in the presence of silver nanoparticles at a concentration of
20 µg/mL (Figure 7). Biofilms were grown in polystyrene Petri dishes, so the adhesion
area was significantly increased. The greatest effect was shown for AgNPs_LI, which
amounted to 23 and 19% (for 24 h growth), 37 and 25% (for 48 h growth) for S. aureus and
E. coli biofilms, respectively, compared to the control (nontreated biofilm). On average, an
incubation effect of 48 h caused less biofilm growth, relative to incubation of 24 h, which
also corresponds to the results of CV staining. The effect of AgNPs_AS and AgNPs_AM on
bacterial biofilms was 10–15%.
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Figure 7. Spectrophotometric study of biofilm formation—Pyrogallol red method. Comparison of
protein content in biofilm in 24 and 48 h against bacterial medium for E. coli (A). There are significant
differences between protein content in media and biofilms and between 24 h and 48 h-biofilm. (B)
Dependence of biofilm formation on CFU after 48 h. The protein content is increasing with a growing
number of CFU. (C) Forest plot comparing the effect of using 20 µg/mL of AgNPs from L. indica
(LI), A. scholaris (AS), and A. multifolium (AM) on biofilms of S. aureus (SA) and E. coli (EC) against
non-treated biofilms in 24 h and (D) 48 h. (E) Boxplots comparing the overall area of non-treated
biofilms and biofilms treated with 20 µg/mL AgNPs from LI, AS, and AM during 24 h and (F) 48 h.
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Additionally, the measurement of protein in a suspension of a dispersed biofilm was
studied using the Brdicka electrochemical method (Figure 8). The method was also vali-
dated by measuring biofilm growth at 24 and 48 h. The effect of AgNPs at a concentration
of 20 mg/mL was studied in relation to the control (untreated biofilm); the greatest effect
was shown for AgNPs_LI nanoparticles and the effect for S. aureus and E. coli was 16 and
13% (for 24 h incubation), 33 and 6% (for 48 h incubation), respectively. AgNPs_AM had
no significant effect on E. coli biofilms (p < 0.05) for 48 h; in general, the effect of the tested
AgNPs on E. coli biofilms was less than on S. aureus biofilms.
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4. Discussion 
This study demonstrated the antibacterial activity of green-synthesized AgNPs 

against both Gram-positive and Gram-negative strains. The antibacterial effect of AgNPs 
investigated using a diffusion test and growth curves (Figure 4, Table 3) was found in 
AgNPs_LI and AgNPs_AM against S. aureus and E. coli, respectively. Gupta et al. [75] 
phyto-synthesized AgNPs that showed broad-spectrum anti-microbial activity against 
Gram-positive, Gram-negative pathogenic bacteria, and fungi such as Candida albicans. In 
the study by Bharathi et al. [76] based on the agar well diffusion method, AgNPs exhib-
ited significant antibacterial activity against S. aureus and E. coli. In the study by Singh et 
al. [77], AgNPs biosynthesized using Penicillium sp. isolated from healthy leaves of Cur-
cuma longa exhibited antibacterial activity against multidrug-resistant pathogens E. coli 
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Figure 8. Electrochemical study of biofilm formation—the Brdicka reaction. A range of measurement:
−0.7 V to −1.95 V; voltage amplitude: −25 mV; time amplitude: 0.8 s; measurement time: 10 ms;
pulse time: 30 ms; voltage step: 4 mV; sweep rate: 5 mV/s; sample volume: 10 µL; Brdicka buffer
volume: 3 mL. Dependence of electrical current (nA) on potential (V). Mutual curve comparison
between water and biofilm formation in the first and the second day for E. coli (EC) and S. aureus
(SA) (A). Comparison between absolute area signals among medium and biofilm (B). Forest plot
comparing effect of using 20 µg/mL of AgNPs from L. indica (LI), A. scholaris (AS), and A. multifolium
(AM) on biofilms of S. aureus and E. coli against non-treated biofilms in 24 h (C) and 48 h (D). Box-plots
comparing the overall area of non-treated biofilms and biofilms treated with 20 µg/mL AgNPs from
LI, AS, and AM during 24 h (E) and 48 h (F).

4. Discussion

This study demonstrated the antibacterial activity of green-synthesized AgNPs against
both Gram-positive and Gram-negative strains. The antibacterial effect of AgNPs in-
vestigated using a diffusion test and growth curves (Figure 4, Table 3) was found in
AgNPs_LI and AgNPs_AM against S. aureus and E. coli, respectively. Gupta et al. [75]
phyto-synthesized AgNPs that showed broad-spectrum anti-microbial activity against
Gram-positive, Gram-negative pathogenic bacteria, and fungi such as Candida albicans. In
the study by Bharathi et al. [76] based on the agar well diffusion method, AgNPs exhibited
significant antibacterial activity against S. aureus and E. coli. In the study by Singh et al. [77],
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AgNPs biosynthesized using Penicillium sp. isolated from healthy leaves of Curcuma longa
exhibited antibacterial activity against multidrug-resistant pathogens E. coli and S. aureus,
based on the diffusion assay method. The maximum zone of inhibition was of 17 mm and
16 mm, respectively, at 80 µL of AgNPs used. Similar effects on E. coli and S. aureus were
reported by Kim et al. [38] in AgNPs prepared by using the chemical method, as well as by
Ninganagouda et al. [78], who used AgNPs synthesized by Aspergillus flavus.

Minimum inhibitory concentrations (MICs) of tested AgNPs (Table 3) ranged between
15 and 20 µg/mL for both monitored bacteria. In a study by Qayyum et al. [79], AgNPs syn-
thesized using Mangifera indica inflorescence aqueous extract exhibited MICs of 8 µg/mL
and 16 µg/mL for E. coli and S. aureus strains, respectively, which was relatively quite low
compared to chemically synthesized AgNPs.

The AgNPs prepared by utilizing an aqueous extract of Cannabis sativa stem inhibited E.
coli biofilm. They showed MIC value of 5 µg/mL and minimum bactericidal concentration
value of 25 µg/mL against this bacterium [19].

The effect of AgNPs on the inhibition of biofilm formation was determined using
the density of biofilms evaluated using crystal violet assay (Figure 5). The S. aureus
biofilm formation was inhibited by more than 90% when AgNPs_LI or AgNPs_AS at
the concentration 20 µg/mL were added. In the case of E. coli, all tested AgNPs had a
significant inhibition effect on the formation of biofilm after 24 h; the AgNPs concentration
of 20 µg/mL reduced the biofilm growth by more than 85%. In the study by Singh
et al., AgNPs inhibited 80% biofilm of E. coli, based on quantitative observation by crystal
violet assay [19]. In the study by Gupta et al. [75], phyto-synthesized AgNPs exhibited
extraordinary ability to inhibit the biofilms formed by S. aureus and E. coli determined
by crystal violet assay. Bharathi and Bhuvaneshwari [76] observed the antibacterial and
anti-biofilm activity of AgNPs synthesized using Cordia dichotoma fruits. Phyto-synthesized
AgNPs showed more than 90% inhibition of biofilm activity formed by S. aureus and E. coli.

Barabadi et al. [80] evaluated the antibacterial activity and biofilm inhibitory activity of
AgNPs prepared by biosynthesis using the aqueous extract of Zataria multiflora compared
to commercial AgNPs. The plant mediated fabricated AgNPs and commercial AgNPs
exhibited significant antibacterial activity with MIC of 4 and 8 µg/mL against S. aureus,
respectively. Both types of AgNPs at the concentrations of 4*MIC resulted in the complete
avoidance of biofilm formation. Significant biofilm inhibitory activity was observed at the
concentrations of≥8 µg/mL in both types of AgNPs. However, at the lower concentrations,
the green-synthesized AgNPs exhibited greater biofilm inhibition formed by S. aureus.

Staphylococcus aureus is considered by the World Health Organization to be a high pri-
ority pathogen for which new therapeutic options need to be developed. This is especially
important for biofilm implant-associated infections if the only treatment option available is
surgery combined with antibiotic therapy [81]. Silver nanoparticles (as a composite with
graphene oxide) could be a promising material to control nosocomial infections caused
by bacteria strains, which are resistant to antibiotics [82]. mPEGTH2-AgNPs have been
demonstrated as a promising candidate to kill pathogenic microbes [68].

Nanoparticles are possible to have a more significant effect on Gram-negative cells [35].
This can explain the higher inhibitory effect of AgNPs in low concentrations on the growth
of E. coli biofilms, compared with S. aureus biofilm. In the case of the destruction of the
biofilm, it seems that the results of the experiment can be described by differences in biofilm
formation properties of strains: density of mature biofilms, rate of division and formation
of microcolonies, etc.

Salunke et al. [83] reported a connection between nanoparticles and their several
physicochemical properties in action on different bacterial strain’s biofilms. Additionally, in
our study, the effect of the green synthesized AgNPs on bacterial biofilms was demonstrated.
This effect correlated, to a greater extent, with the results of the diffusion test (Figure 4)
than with the MIC (Table 3). AgNPs had a generally lower effect on E. coli compared to S.
aureus biofilm (Figure 8).
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The inhibitory concentration is a characteristic that primarily indicates the susceptibil-
ity of bacteria to a specific type, modification or size of nanoparticles [83]. Some researchers
emphasize that smaller nanoparticles can have a more significant effect on biofilms because
they quickly diffuse into the three-dimensional structure of biofilms and can affect a more
significant number of cells [84]. The size of all studied nanoparticles in our work was
comparable. However, as demonstrated by the TEM results, AgNPs_AS particles formed
denser aggregates in the solution. This explains the low efficiency of these nanoparticles in
the destruction of mature biofilms (Figure 6) and lower diffusion in the antibacterial test on
an agar medium.

Earlier, the toxic effect of zinc nanoparticles synthesized from extracts of A. scholaris
was reported. For the most part, the prevalence of the antifungal effect was shown, com-
pared with the antibacterial effect [85]. Thanks to the combined effect of the components
of A. scholaris extract and the antibacterial and anti-inflammatory effects, the nanopar-
ticles that can be synthesized from this plant can be optimized for use in the treatment
of wounds. In the case of AgNPs, the toxic effect of AgNP on eukaryotic cells is also
considered [50,53,56]. A promising critical approach to improving the antibiofilm and
antimicrobial properties of nanoparticles is the use of individual components of plant
extracts. For example, 3,5,7-trihydroxyflavone present in A. scholaris extract disrupt the
functioning of quorum sensing in Gram-negative bacteria [86]. Diab et al. [52] reported a
compound from the methanol extract of L. indica which was characterized as ′4-methoxy
apigenin-8-C-β-D-glucopyranoside with a high antimicrobial effect. Moreover, a promising
approach with individual components could be simulated first-hand with the molecular
docking protocol to observe the binding between the AgNPs and the protein with in silico
visualization.

In the article by Kriswandini et al., the measurement of the total biomass of proteins in
biofilms (cells and matrix) was analyzed not only quantitatively, but also qualitatively by
electrophoresis [87]. Additionally, the total biofilm protein is measured in conjunction with
dry biomass biofilm as well as to normalize data from other biofilm tests [88]. Measurement
of the protein in the composition of the destroyed biofilm allows you to obtain information
about cells and extracellular proteins can be used as an indicator of the effect of antimi-
crobial substances on the state of the system as a whole, including used in conjunction
with CFU.

Using the electrochemical Brdicka method (Figure 8), which was mainly used previ-
ously to measure thiols and small stress proteins [61,89], as another method of measuring
protein in a biofilm, correlates well with the results of the pyrogallol reaction (Figure 7). In
general, the biofilm measurement methods used in this work are relatively related.

Summarizing our observation, as well as the results of previous studies, various
authors have shown that AgNPs can be considered as powerful antibacterial agents against
E. coli and S. aureus. The most important mechanism of bacterial inhibition by AgNPs can
be attributed to ROS. ROS may be one of the possible modes of action of AgNPs. AgNPs
generated ROS when interacting with bacterial cells. AgNPs interaction with bacterial
membrane led to its damage [79].

5. Conclusions

Tropical forests have great potential in the search for new biologically active substances
of plant origin that could be used to treat serious human diseases. In this study, AgNPs were
prepared by the reduction in plant extracts (Lagerstroemia indica, Alstonia scholaris, Aglaonema
multifolium) with total phenol content (270–380 mg/mL). The formed nanoparticles showed
antibacterial activity against model microorganisms S. aureus and E. coli. The MICs was
found ranged from 15 to 20 µg/mL. In addition, these nanoparticles have been applied to
bacterial films formed by the above-mentioned bacteria. We found that the nanoparticles
were able to disrupt these films effectively after 24 h (44% and 57% for S. aureus and E. coli,
respectively) and after 48 h (32% and 34% for S. aureus and E. coli, respectively); however,
the effect was reduced by about half. In addition, levels of thiol compounds, especially
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metallothionein, were monitored (increase in total metallothionein (MT) levels from 70
to 150 nA). The MT of the microorganism can both modify the nanoparticles and bind
silver ions, thus significantly reducing the biological activity of these particles. Therefore, it
is necessary to address this issue and recognize other pathways of bacterial resistance to
heavy metals/metal ions as antibacterial agents further intensively.
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