
WIJEKOON, A., WIRATUNGA, N., NKISI-ORJI, I., PALIHAWADANA, C., CORSAR, D. and MARTIN, K. 2022. How close is 
too close? Role of feature attributions in discovering counterfactual explanations. In Keane, M.T. and Wiratunga, N. 
(eds.) Case-based reasoning research and development: proceedings of the 30th International conference on case-
based reasoning (ICCBR 2022), 12-15 September 2022, Nancy, France. Lecture notes in computer science, 13405. 

Cham: Springer [online], pages 33-47. Available from: https://doi.org/10.1007/978-3-031-14923-8_3  

 
 
 
 

This version of the contribution has been accepted for publication after peer review, but is not the Version of 
Record and does not reflect post-acceptance improvements or any corrections. The Version of Record is 
available online at: https://doi.org/10.1007/978-3-031-14923-8_3. Use of this Accepted Version is subject to 
the publisher’s Accepted Manuscript terms of use.  

This document was downloaded from 
https://openair.rgu.ac.uk 

How close is too close? Role of feature 
attributions in discovering counterfactual 

explanations. 

WIJEKOON, A., WIRATUNGA, N., NKISI-ORJI, I., PALIHAWADANA, C., 
CORSAR, D. and MARTIN, K. 

2022 

https://doi.org/10.1007/978-3-031-14923-8_3
https://doi.org/10.1007/978-3-031-14923-8_3
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms


How close is too close? Role of Feature
Attributions in Discovering Counterfactual

Explanations ⋆

Anjana Wijekoon, Nirmalie Wiratunga, Ikechukwu Nkisi-Orji, Chamath
Palihawadana, David Corsar, and Kyle Martin

School of Computing, Robert Gordon University, Aberdeen, Scotland
a.wijekoon1@rgu.ac.uk

Abstract. Counterfactual explanations describe how an outcome can
be changed to a more desirable one. In XAI, counterfactuals are “action-
able” explanations that help users to understand how model decisions
can be changed by adapting features of an input. A case-based approach
to counterfactual discovery harnesses Nearest-unlike Neighbours as the
basis to identify the minimal adaptations needed for outcome change.
This paper presents the DisCERN algorithm which uses the query, its
NUN and substitution-based adaptation operations to create a counter-
factual explanation case. DisCERN uses feature attribution as adapta-
tion knowledge to order substitutions operations and to bring about the
desired outcome with as fewer changes as possible. We find our novel ap-
proach for Integrated Gradients using the NUN as the baseline against
which the feature attributions are calculated outperforms other tech-
niques like LIME and SHAP. DisCERN also uses feature attributions
to bring the NUN closer by which the total change needed is further
minimised, but the number of feature changes can increase. Overall, Dis-
CERN outperforms other counterfactual algorithms such as DiCE and
NICE in generating valid counterfactuals with fewer adaptations.

Keywords: Counterfactual XAI, Feature Attribution, Integrated Gra-
dients, Adaptation

1 Introduction

The use of “similar solutions to solve similar problems” naturally promotes an
interpretable reasoning strategy [1]. Exemplar or prototype driven Explainable
AI (XAI) methods are able to conveniently use the neighbourhood of simi-
lar problems to formulate explanations [2]. For instance a Nearest-like Neigh-
bours (NLNs) based explainer, extracts factual information to form an explana-
tion from the similarity between the current problem and it’s neighbourhood [3].
Research has shown that similarity metrics guided by feature selection and
weighting [4] can significantly improve the relevance of NLNs.

⋆ This research is funded by the iSee project (https://isee4xai.com) which received
funding from EPSRC under the grant number EP/V061755/1.
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Whilst a factual explanation responds to “Why” questions, counterfactu-
als respond to “Why-Not” type queries. Counterfactuals are regarded as more
intuitive for people compared to factual explanations because they present al-
ternatives to reality with more desirable outcomes [5]. The prevailing CBR ap-
proach to counterfactual discovery harnesses similarities to Nearest-unlike Neigh-
bours (NUN), i.e. similar cases with different class labels (see Figure 1) [6, 7].
A NUN represents potential changes to the current problem, with feature at-
tribution prioritising the changes that, when actioned, can lead to a different
outcome [8]. Focusing on a small number of key “actionable” features is more
desirable from a practical standpoint, and has the benefit of reducing the recip-
ient’s cognitive burden for understanding the counterfactual.

Fig. 1: Nearest-like and Nearest-unlike Neighbours in 2D space. Explaining the
predicted class label of a query based on its similarity to the NLN is a factual
explanation, and based on its dissimilarity to the NUN is a counterfactual.

Counterfactual discovery can be viewed as a search in the space of possi-
ble feature values guided by feature attribution weights. Here the challenge is
to find a counterfactual with minimum feature changes to the query to achieve
the needed outcome change. To address this we present DisCERN, a NUN-
based counterfactual discovery algorithm that applies substitution-based adap-
tation operations [9] informed by feature attributions from Integrated Gradi-
ents (IntG) [10]. Specifically we seek answers to the following research questions:

– Can the query and NUN case pair form a suitable limit for the integral
interval when calculating feature attributions for counterfactual discovery
from IntG; and to

– What extent can the approximated integral intervals be used as perturba-
tions to discover counterfactuals closer to the NUN?

The rest of the paper is organised as follows. Section 2 reviews related liter-
ature followed by Section 3 presenting the DisCERN Algorithm using the IntG
feature attribution method for counterfactual discovery. Section 4 presents eval-
uation methodologies, the datasets and performance metrics with results in Sec-
tion 5. Conclusions and future work appear in Section 6.
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2 Related Work

Case-based Reasoning (CBR) [6, 7] and optimisation techniques [11, 12] have
been the pillars of discovering counterfactuals. Recent work in CBR has shown
how counterfactual case generation can be conveniently supported through the
case adaptation stage, where query-retrieval pairs of successful counterfactual
explanation experiences are used to create an explanation case-base [6]. Unlike
the CBR approach, optimisation techniques like DiCE [11] trains a generative
model using gradient descent to output multiple diverse counterfactuals. Both
approaches uphold two key requirements of good counterfactuals which are: max-
imising the probability of obtaining the desired label (i.e. different from current
label); and minimising the distance (similar to current problem). Additionally
the DiCE optimisation also maximises the distance between multiple counter-
factuals to ensure that they are diverse. With the CBR approach additional
counterfactuals can be identified by increasing the neighbourhood. In our work
presented here, we also adopt a CBR approach to finding counterfactuals, opt-
ing for a substitution-based adaptation technique informed by actionable feature
recommendations from feature attribution techniques. In doing so, we avoid the
need to create similarity-based explanation case-bases, yet maintain the advan-
tage of locality-based explanations which ensure plausible counterfactuals that
are often harder to guarantee with optimisation methods.

Feature attribution techniques are used in XAI to convey the extent to which
a feature contributes to the predicted class label, with a higher weight indicating
higher significance of the feature to the model’s decision. Both model-agnostic
and model-specific methods are found in literature. Model-agnostic approaches
include LIME [13] and SHAP [14]; model-specific approaches often refer to Gradi-
ent based techniques, such as DeepLift [15] and Integrated Gradients [10]. Given
a query, Integrated Gradients (IntG) are feature attributions calculated as the
cumulative change of gradients with respect to interpolated estimates bounded
by a baseline and query. This baseline is formalised as the input where the pre-
diction is neutral. Originally IntG opted to select an all zero input as the baseline
for images and text [10], while [16] proposed a mask optimisation approach. In-
stead in this paper we explore two approaches to selecting the baseline specific
to counterfactual discovery based on the uncertainty of the black-box model
and the desired outcome change. While the flexibility to use different baselines
makes IntG suitable for feature attribution during counterfactual discovery, it
limits our approach to explaining only gradient descent optimised models.

3 DisCERN

Consider a neural network classifier F trained to predict the label y for a given
input data instance x. The query instance x has m features where the ith fea-
ture is denoted by xi and the label predicted by the classifier for x is F (x). The
optimal counterfactual for x is a data instance x̂ where ŷ is a more desirable la-
bel (i.e. ŷ ̸= y) and is closest to x in the feature space. DisCERN’s counterfactual
discovery for x has the following steps:
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1. find the Nearest-unlike Neighbour (NUN), x′;
2. compute the feature attribution weight wi for each xi of query x, using a

feature attribution method Φ. Order the list of features in descending order
of their feature attributions, such that the first feature contributes the most
to F (x); and

3. iterate over the list of ordered features and at each step, a feature of the
query is substituted with the corresponding feature from the NUN, which
incrementally forms the adapted query x̂. Repeat until F (x̂) ̸= y, at which
point, x̂ is selected as the counterfactual for query x.

3.1 Nearest-unlike Neighbour

DisCERN considers the NUN, x′, as the basis for discovering the optimal coun-
terfactual x̂ for the query x. Given a query, label pair (x, y) and the training
dataset X, a function N retrieves the query’s NUN, (x′, y′):

N = arg min
(xi, yi)∈X

d(x, xi); yi ̸= y

(x′, y′)← N ((x, y), X)
(1)

N calculates the distance d(.) between the query and each candidate (xi, yi) in
X, and returns the closest (minimum distance) candidate with the desired label,
y′ (i.e. yi ̸= y). Figure 1 illustrates a 2D (m = 2) feature space for a binary
classed problem. It shows, for a given query, how the NUN (with the desired
class label y′) appears close to its decision boundary. Although the NUN is a
valid counterfactual, there could be an alternative that is closer to the query.
Accordingly, DisCERN applies adaptation operations that are bounded by both
the query and the NUN to form the counterfactual.

3.2 Feature Ordering by Feature Attribution

Given a query x and it’s NUN, x′, the adaptation step can be as simple as
randomly selecting a feature at a time from x′ into query x̂. Consider the two
adaptations presented in Figure 2. Option 1 (Figure 2a) needs two substitutions
to find its counterfactual; in contrast Option 2 (Figure 2b) needs just one sub-
stitution. This highlights the importance of feature ordering when the query is
being iteratively adapted.

Feature attribution techniques identify important features that contributed
to a query’s class prediction. These attributions can be quantified as weights to
enforce an ordering of features. Global feature weighting methods, such as Chi2,
and more recent feature attribution explainer methods, such as LIME, SHAP
and IntG; are all suitable sources of feature weights. Given feature attributions,
w, features are ordered for adaptation in descending order of their feature attri-
butions. The order of the resulting feature indices highlights the features that
contribute the most to the current class label. Equation 2 formalises the partial
order condition applied to obtain this list of feature indices.

xi ⪯R xj ⇐⇒ R :: wi ≥ wj (2)
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(a) f2 → f1 (b) f1 → f2

Fig. 2: Adaptations based on different feature orderings

3.3 Substitution-based Adaptation

We illustrate in Figure 3 the use of feature attributions to adapt query x to
its counterfactual x̂ following three ordered substitutions. Each involves a copy
operation from the NUN (from N ). Here the adapted query x̂ becomes the
counterfactual once F(x̂) outputs the same class as the NUN. In the worst case

Fig. 3: Substitution-based Adaptation Operations

scenario, counterfactual is equal to the NUN (i.e. x̂ = x′) where DisCERN
performed m number of substitution operations. In an average case, DisCERN
performs only n number of substitution operations where 1 ≤ n ≤ m.

3.4 Integrated Gradients for DisCERN

Integrated Gradients (IntG) is a gradient based approach to finding feature at-
tribution weights [10]. An attribution is calculated as the sum of gradients on
data points occurring at sufficiently small intervals along the straight-line path
from a baseline, x′, to the query, x. These intermediate data points are syn-
thetic, perturbed instances between a baseline and the query. With A, number
of perturbations, the αth perturbation, xα, can be calculated as in Equation 3.

xα = x′ + α× (x− x′) (3)
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Here α controls the number of integral interval steps the baseline has taken
towards the query x. The amount of perturbation is controlled by both the
integral step α and the difference between query and baseline. Accordingly a
perturbed data instances can be viewed as the baseline taking α number of
integral interval steps towards the query x. For symbolic features in tabular data,
this require converting symbolic values into nominal values before applying the
integration interval step in Equation 3. Figure 4 presents an example in the 2D

Fig. 4: Perturbation created between the Baseline and the Query

space, where six perturbations are created on the straight-line path between a
query and a baseline. Given the set of perturbations, an attribution weight wi

for feature xi, is calculated as in Equation 4.

wi = (xi − x′
i)×

A∑
α=1

∂xα

∂xi
(4)

In practice, a large number of perturbations is preferred because the summation
of gradients is a discrete approximation of a continuous integration as discussed
in [10].

An important decision for IntG feature attribution is the choice of the base-
line. Typically an area of uncertainty provides a suitable place to form this
baseline. With respect to a neural network classifier a data instance for which
the classifier predicts similar probabilities to all class labels at the Softmax acti-
vation layer would be an ideal baseline choice. More formally, given the classifier
F and a data instance xi in X, the uncertainty of F in predicting the label of
xi is measured by an entropy H(xi|F ) score. Therefore the chosen baseline, x′,
is the xi which maximises entropy from all data instances.

x′ ← arg max
xi∈X

H(xi|F ); xi ∈ X (5)

Visually, the selected baseline, x′, is either on the decision boundary or very close
to it (Figure 5a). Therefore the resultant feature attributions from a maximal
entropy informed baseline, will identify feature values that caused the query



Role of Feature Attributions in Counterfactual Discovery 7

(a) Baseline that maximises entropy for
vanilla feature attribution

(b) Baseline that minimises distance for
guiding counterfactual discovery

Fig. 5: Choice of Baselines for IntG

to move away from the decision boundary where uncertainty is highest to its
current class label.

In DisCERN, we want to choose a baseline for the straight line approxi-
mations to better suit our task of counterfactual discovery where feature at-
tributions should highlight actionable features. Additionally this baseline data
instance should be closer to the query in the feature space to minimise the
changes needed to cross the decision boundary for class change. This is different
from having a constant baseline that on average is an uncertain instance to all
data points. Instead with DisCERN the baseline should change according to the
locality of the query. Therefore the natural baseline choice for DisCERN is to
have the NUN as the baseline. More formally, given the NUN function N , and
training set X, the baseline x′ is retrieved as follows:

x′ ← N ((x, y), X) (6)

Figure 5b illustrates an example where a NUN is selected as the baseline. Here
too the baseline by being close to the query is also in an area of uncertainty. How-
ever instead of a globally uncertain area, the NUN ensures that this uncertainty
is locally relevant to the query to action the desired class change. Accordingly,
the feature attributions can be interpreted as the feature contributions that ac-
tion the query change from one side of the decision boundary to the other.

3.5 Bringing the NUN Closer

DisCERN’s adaptations are bounded by the NUN such that in the worst case
scenario, the adaptation-based counterfactual discovery results in the NUN itself
(i.e. when all NUN values are copied over to the query). Typically, DisCERN
would discover a counterfactual after performing only a subset of the total sub-
stitutions suggested by the NUN. This means that an adapted query, with just
a small subset of feature value substitutions from the NUN, can be pushed over
the boundary to the desired class label. Therefore it is interesting to consider
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whether an “even close” NUN can be identified by focusing on just a subset of
important features. Here we study two methods to bring the NUN closer to the
boundary using: a weighted k-NN retrieval (Nw); and from adapted perturba-
tions (Np). The NUN found by the former is a true data instance whilst the
latter is a perturbed “synthetic” data instance. We will refer to the unweighted
k-NN retrieval of the NUN discussed in Section 3.1 as N in order to contrast
that with the retrieval methods used by the weighted and perturbed methods
aimed at recognising a NUN that is closer to the query.

(a) Weighted k-NN retrieval to find
NUN

(b) Adapted IntG Perturbation

Fig. 6: Bringing NUN Closer

Weighted k-NN retrieval uses a feature attribution technique to select the
subset of features to attend to when calculating distance. It then returns the
NUN, x′, for query, x, as follows:

w = ϕ(x, ...)

Nw = arg min
(xi,yi)∈X

d(x, w, xi); yi ̸= y

(x′, y′)← Nw((x, y), ϕ, X)

(7)

Here ϕ returns the feature attributions w by adopting a method such as LIME [13],
SHAP [14] or IntG [10]. The ... denotes any other requirements of the ϕ to gen-
erate feature attributions (such as method specific hyper-parameters). Note that
when ϕ is IntG, a baseline must be specified before feature attribution weights
can be computed. This weighted retrieval is illustrated in Figure 6a for a given
query x. The baseline for IntG here is an instance that maximises uncertainty,
as measured by entropy in Equation 5 (vanilla version). In our 2D space the
feature attributions for Features 1 and 2 are w1 ≥ w2, as such Nw will return
the new NUN which is closer to the query with respect to f1.
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Adapted Perturbation approach creates a synthetic data instance by creating
a perturbed instance between the NUN (retrieved by N ) and the query, x, which
is closer to the query. This is illustrated in Figure 6b with an example in 2D
space where the ”blue” coloured cross shows an ideal synthetic perturbed NUN
that is closer to the query compared to the actual NUN. The discovery of this
perturbed NUN, x′, can be formalised as follows:

α∗ = arg max
α∈A

α; F (xα) ̸= y

Np =

{
x′
i if i is a symbolic feature

xα∗
i otherwise

(x′, y′)← Np((x, y), N , X)

(8)

First, an A number of perturbations are created using Equation 3 from the
baseline to the query (see Figure 4). The black box model, F , is used to predict
the class for each perturbed data instance in turn. The selected perturbation,
α∗, is the closest to the boundary with a prediction matching the desired class.
Depending on the feature type (i.e. numeric or symbolic), values from the base-
line, x′, and xα∗ are used to form the adapted perturbation. Specifically, symbolic
features are substituted from x′ and numerical features from the selected pertur-
bation xα∗. Note that the latter will have interpolated numeric values discovered
as part of the perturbations. As a result, Np returns a synthetic NUN, which
preserves plausibility [5] when used in DisCERN’s adaptation operations.

In figure 6b the adapted perturbation is on the straight-line path between the
NUN from N and the query. Here both Features 1 and 2 are numeric. However
with categorical features, the resulting adapted perturbation may not fall on the
straight-line, yet we confirm that F (xα∗) ̸= y (i.e. ensures a valid NUN from a
different class to that of the query).

4 Evaluation

Three comparative experiments were conducted as follows:

– a comparison of feature attribution methods for query adaptation in coun-
terfactual discovery with DisCERN;

– a comparison of DisCERN against other counterfactual discovery algorithms
in literature; and

– a comparison of approaches to find closer NUNs for counterfactual discovery.

4.1 Datasets

Five public domain datasets were used - Loan and Income datasets are from
Kaggle; and Credit, Cancer and ICU datasets are from the UCI Machine Learn-
ing Data Repository. Table 2 summarises the properties of each dataset and the
explanation needs as actionable questions. The labels column shows two class
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Table 1: Dataset Details
Datasets Description Actionable Question Labels

Loan Predicts if a loan application is
approved or not

What changes to the applica-
tion will help to get the loan
approved?

Q:Rejected
CF:Approved

Income Predicts if a persons income is
higher or lower than 50K based
on Census data

What changes will help an
adult get an income over
50K?

Q:≤50K
CF:≥50K

Credit Predict if a credit card applica-
tion is successful or not

What changes to the applica-
tion will help to get a credit
card?

Q:Rejected
CF:Approved

Cancer Predict the level of lung cancer
risk of a patient based on demo-
graphic and triage data

How to reduce lung cancer
risk of a patient?

Q:High risk or
Medium risk
CF:Low risk

ICU Predict patient outcome in the
Intensive Care Unit (ICU) based
on demographic and diagnostic
data

Which features will help pre-
vent the death of a patient in
the ICU?

Q:Deceased
CF: Discharged

labels: the desirable (CF); and less desirable (Q). Typically a counterfactual ex-
planation is needed to explain how a desirable situation could have been achieved
when the black box model prediction is the less desired class.

Table 2: Dataset Properties
Datasets Loan Income Credit Cancer ICU

Features 69 14 14 12 107

Categorical Features 8 8 8 11 8

Classes 2 2 2 3 2

Data instances 342865 45222 653 427 6238

Negative test instances 22543 11216 121 109 1003

RF Test Accuracy (%) 99.51 85.66 77.31 87.94 81.70

NN Test Accuracy (%) 99.66 85.02 75.00 87.23 73.08

4.2 Experiment Setup

The experimental pipeline to measure performance of a counterfactual discovery
method appears in Figure 7. First the dataset is split as 2/3 train and 1/3
test data. Next, a black-box classifier is trained and used to populate a case-
base of labelled train data. In this paper we consider two classifiers: Random
Forest and Neural Networks. Test set performance of these 2 classifiers are in
Table 2. The test instances classified into the less desirable class are the queries
which form the Negative test set (see Table 1 for more details). Finally, the
counterfactual discovery algorithm uses the classifier and the populated case-base
to find counterfactuals for all query instances in the Negative test set. DisCERN
uses Euclidean distance as d(.); and it is available publicly on GitHub 1.

1 https://github.com/RGU-Computing/DisCERN-XAI
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Fig. 7: Experiment Setup

4.3 Performance Measures for Counterfactual Explanations

Validity (V ) measures the percentage for which an algorithm is able to find a
counterfactual with the desired label. If N is the total number of queries and Nv

the number of counterfactuals found, then Validity is calculated as V = Nv

N ×100.

Sparsity (#F ) is the average number of feature differences between a query (x)
and its counterfactual (x̂) explanation. Here m is the number of features.

#F =
1

Nv ×m

Nv∑
j=1

m∑
i=1

1[x̂i ̸=xi] (9)

Proximity ($F ) measures the mean feature-wise distance between a query
and its counterfactual explanation. The sum of normalised feature differences
are average over #F and the number of counterfactuals (Nv).

$F =
1

Nv ×#F

Nv∑
j=1

m∑
i=1

(|x̂i − xi|) (10)

Datasets with more categorical features will have higher $F (difference is always
1), meaning, $F is not comparable across datasets. Note that higher values of
V and smaller values of #F and $F are preferred.

5 Results

5.1 A comparison of feature attribution techniques

Feature attributions determine the order in which values are copied from NUN to
query. This adaptation knowledge guides the value substitution operations until
a valid counterfactual is discovered. In Figure 8 we compare DisCERN with five
feature attribution variants for ordering substitution operations: Random (i.e.
no adaptation knowledge); X 2 global feature selection; LIME local surrogate
relevance weights, SHAPely values from the KernelSHAP implementation; and
IntG with the NUN (N ) baseline. Here, DisCERN uses the NUN from un-
weighted k-NN retrieval (i.e. N ) In Figure 8, 5 marker shapes corresponds to
each of the 5 algorithms, and 5 marker colours relate to results corresponding
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to each dataset. When sparsity and proximity are low the markers appear closer
to the origin - this is desirable. Note that for visual clarity the x-axis is in log
scale.

IntG achieves the lowest sparsity while random and X 2 techniques achieves
lower proximity. IntG’s use of the NUN baseline has successfully contributed to
reducing sparsity, i.e. IntG’s feature attributions had significantly reduced the
number of adaptation operations, when compared to using feature attributions
from LIME and SHAP. Generally we found that with all datasets, making larger
changes to feature values ($F ) leads to discovering a counterfactual with fewer
feature substitutions (#F ). Therefore when we consider the total change (#F ×
$F ), IntG is best on all datasets except on Loan, where X 2 was better. We also
see that IntG had higher proximity (0.72 compared to the rest in a range of
0.28-0.39) on the Cancer dataset, but it had significantly lower sparsity (fewer
features adapted), with almost half that of the other attribution methods (log
scale can mask this difference). This can be a result of IntG selecting categorical
features compared to other techniques.

Fig. 8: Feature attribution results Fig. 9: Counterfactual algorithm results

5.2 A Comparison of counterfactual discovery algorithms

A sparsity and proximity comparison of DisCERN (using Φ = IntG) with popu-
lar counterfactual discovery algorithms from literature appear in Figure 9. DiCE
is a generative algorithm that discovers counterfactuals by optimising a randomly
initialised input to maximise diversity and minimise sparsity and proximity [11].
NICE is a NUN based counterfactual discovery algorithm that uses a reward
function to minimise sparsity, proximity and to preserve plausibility [7].

Overall minimum proximity is seen with DisCERN (lowest on credit, income
and loan). DiCE is better for sparsity (lowest on cancer, income and loan) but
at the expense of proximity, which leads to larger value adaptations (i.e. higher
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Table 3: Validity and total change between counterfactual discovery algorithms

Algorithm
Validity Total Change

Loan Income Credit Cancer ICU Loan Income Credit Cancer ICU

DiCE 99.20 92.55 80.99 100 33.80 1.009 0.945 1.286 2.207 2.991

NiCE 97.70 92.50 85.12 82.57 82.35 0.461 0.466 0.491 2.278 3.230

DisCERN 100 100 100 100 100 0.599 0.209 0.338 2.014 1.387

proximity) of the query applied to a fewer number of features (i.e. lower sparsity).
Between NUN-based algorithms NICE and DisCERN, the lower sparsity and
proximity achieved with DisCERN makes it a better candidate for counterfactual
discovery.

Crucial to counterfactual explainers is the ability to find a valid counter-
factual situation (i.e. one with the desired class). Results in Table 3 show that
DisCERN dominates in this respect, whereby the NUN guided counterfactual
is 100% valid. This is in comparison to DiCE, which uses a generative model
given a randomly initialised input and NICE, which like DisCERN, uses a NUN
as the basis but uses a reward function to find a counterfactuals. As a result,
DiCE and NICE are likely to either fail to generate a counterfactual, or fail to
generate a counterfactual that does belong to the desired class (in a multi-class
setting). Note that for DiCE and NICE results in Figure 9, we have reported
averaged results using only those queries for which a valid counterfactual was
discovered (Nv).

Since we observed a trade-off between sparsity and proximity (in Figure 9),
these are combined into a total change (#F × $F ) in the results presented in
Table 3. We can see that DisCERN is best on all datasets (except Loan where
it is marginally worse) as it manages to better balance proximity and sparsity
requirements.

5.3 Impact of bringing NUN closer

Figure 10 compares DisCERN counterfactual discovery with the weighted (Nw)
and non weighted kNN (N ) NUN retrieval methods. The additional adapted
perturbation (Np) results is included for IntG feature attribution method. Here
in each evaluation DisCERN ensures Φ = ϕ. For example, if DisCERN feature
ordering (Φ) is using SHAP feature attributions, weighted k-NN retrieval also
uses SHAP weights (ϕ = SHAP ) to find the closer NUN. We note that Nw

approach was not evaluated with the Cancer dataset since we were unable to
find a valid baseline that maximises entropy in the comparably smaller train set.

Overall Np with IntG and Nw with SHAP and IntG show increased sparsity
and decreased proximity compared to N . Lower proximity is a result of bringing
the NUN closer with respect to a subset of important features. Here the resulting
NUN will have smaller value differences (decreased proximity) with the query.
Therefore, initial substitutions will only make smaller actionable changes to the
query. These initial features were already part of the subset that influenced the
weighted kNN retrieval. As a result, the query will need an increased number
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Fig. 10: Results on alternative approaches to form closer NUNs

of feature changes (increased sparsity). However, empirical evidence remains
inconclusive for Nw with LIME. This might be explained by LIME being a
local surrogate attribution method. Accordingly, Nw with LIME returns a NUN
closer to the decision boundary of the local surrogate model, not of the global
model. As a result, DisCERN makes larger changes to the query (i.e. increased
proximity) in earlier substitutions which decreases the number of feature changes
needed (decreased sparsity). In contrast, SHAP or IntG feature attributions
seems globally faithful and better aligned to the black box decision boundary.
Similarly, adapted perturbation based NUN is also globally faithful which results
in increased sparsity and decreased proximity.

6 Conclusions

The XAI DisCERN algorithm discovers counterfactual explanations by applying
a set of substitution-based adaptation operations to the NUN. These adaptations
help create counterfactual explanations for black box predictions. DisCERN uses
feature attribution weights, firstly to guide adaptation choices and, secondly to
identify NUNs closer to the decision boundary. Both lead to valid counterfactuals
from minimally adapted queries. The use of integrated gradients for feature
attribution by limiting the integral approximation to the query and NUN is a
unique contribution of this paper. Results suggests that this approach is more
effective in guiding counterfactual discovery compared to feature attributions
that do not consider both the desired and current prediction boundary locality.

An interesting study of where to position the NUN in support of counter-
factual discovery found that it was possible to significantly minimise the total
actionable changes required to create the counterfactual explanation, but also
increased the number of feature changes needed for the desirable class change. In
conclusion, DisCERN discovers effective counterfactuals, and provides the flex-
ibility to select NUN and feature attribution technique based on the AI model
and the preference of feature changes in the problem domain. Future work will
look to expand DisCERN to generate counterfactual explanations that can also
satisfy immutable and constrained feature requirements.
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