
NKISI-ORJI, I., PALIHAWADANA, C., WIRATUNGA, N., CORSAR, D. and WIJEKOON, A. 2022. Adapting semantic
similarity methods for case-based reasoning in the Cloud. In Keane, M.T. and Wiratunga, N. (eds.) Case-based

reasoning research and development: proceedings of the 30th International conference on case-based reasoning
(ICCBR 2022), 12-15 September 2022, Nancy, France. Lecture notes in computer science, 13405. Cham: Springer

[online], pages 125-139. Available from: https://doi.org/10.1007/978-3-031-14923-8_9

This version of the contribution has been accepted for publication after peer review, but is not the Version of
Record and does not reflect post-acceptance improvements or any corrections. The Version of Record is
available online at: https://doi.org/10.1007/978-3-031-14923-8_9. Use of this Accepted Version is subject to
the publisher’s Accepted Manuscript terms of use.

This document was downloaded from
https://openair.rgu.ac.uk

Adapting semantic similarity methods for case-
based reasoning in the Cloud.

NKISI-ORJI, I., PALIHAWADANA, C., WIRATUNGA, N., CORSAR, D. and
WIJEKOON, A.

2022

https://doi.org/10.1007/978-3-031-14923-8_9
https://doi.org/10.1007/978-3-031-14923-8_9
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

Adapting Semantic Similarity Methods for
Case-Based Reasoning in the Cloud ⋆

Ikechukwu Nkisi-Orji[0000−0001−9734−9978], Chamath
Palihawadana[0000−0002−9594−8683], Nirmalie Wiratunga[0000−0003−4040−2496],
David Corsar[0000−0001−7059−4594], and Anjana Wijekoon[0000−0003−3848−3100]

School of Computing, Robert Gordon University, Aberdeen, UK
{i.nkisi-orji,c.palihawadana,n.wiratunga,d.corsar1,a.wijekoon1}@rgu.ac.uk

Abstract. Clood is a cloud-based CBR framework based on a mi-
croservices architecture which facilitates the design and deployment of
case-based reasoning applications of various sizes. This paper presents
advances to the similarity module of Clood through the inclusion of
enhanced similarity metrics such as word embedding and ontology-based
similarity measures. Being cloud-based, costs can significantly increase if
the use of resources such as storage and data transfer are not optimised.
Accordingly, we discuss and compare alternative design decisions and
provide justification for each chosen approach for Clood.

Keywords: CBR architectures and frameworks, Cloud microservices,
Semantic similarity, Ontologies

1 Introduction

Modern computing has evolved rapidly with the adoption of cloud computing
across sectors such as healthcare, finance and travel. As organisations transi-
tion to the latest technology stacks and update the underpinning infrastructure,
keeping existing development tools and frameworks up to date can pose signif-
icant challenges. Case-based reasoning (CBR) is an example of one such appli-
cation area where once popular frameworks have become unusable with new,
state-of-the-art technologies. Recently Clood [13] was introduced with the aim
of addressing this challenge by adopting a cloud-first approach based on a mi-
croservices oriented architecture.

Clood has demonstrated more robust performance and scalability than
other CBR systems like jcolibri[4] and has been successfully integrated into
industry projects, enabling the application of aspects of the CBR cycle in large
scale systems. The practical demands of applying CBR in real-world applications
often leads to the requirement to extend the built-in local similarity functions.
One such project is iSee1 which aims to enhance the explainability of machine

⋆ This research is funded by the iSee project (https://isee4xai.com) which received
funding from EPSRC under the grant number EP/V061755/1. iSee is part of the
CHIST-ERA pathfinder programme for European coordinated research on future
and emerging information and communication technologies.

1 https://isee4xai.com/

2 Nkisi-Orji I, Palihawadana C, Wiratunga N, Corsar D & Wijekoon A

learning models. iSee is developing a CBR system that uses the experiences
of multiple users who have received explanations for the outputs of machine
learning models, as the basis for new explanation strategies (combinations of ex-
plainability techniques), generated using CBR methods. The new strategy can
then be executed to provide new users with explanations for model output(s).
The iSee project is developing iSeeOnto2 to describe AI Models, explanations,
explainability techniques, explanation strategies, and user experiences. We ar-
gue that the similarity and adaptation containers of the iSee CBR system would
benefit from using advanced semantic similarity methods, such as ontology-based
and vector-based approaches to improve the quality of the generated explanation
strategies.

Cloodmodels its casebase using an open-source search engine (OpenSearch3)
which leverages the efficient Lucene index for case retrieval. While the similarity
module of OpenSearch (and similar search engines) supports several similarity
metrics such as exact and fuzzy matching techniques out-of-the-box, it lacks sev-
eral similarity metrics that are useful for case-based reasoning applications such
as iSee. Extending the similarity module to include new metrics requires the
use of custom similarity scripts that accomplish the retrieval needs within the
microservices architecture and without a significant overhead in resource use.

A key challenge when extending the capabilities of a framework like Clood
is to retain the core design principles: cloud-first, microservices-oriented, and
serverless (on-demand workloads) application model. Furthermore, a framework
will be sustainable and adopted by the community only if it maintains the op-
erational overheads (e.g. compute time and resource cost) as new features are
added. In this work, both of these challenges are addressed while enhancing the
functionality of the Clood CBR framework with support for semantic similarity
metrics for local similarity which includes:

– similarity table, word embedding based similarity, and ontology-based simi-
larity measures,

– architectural considerations to retain the microservices nature of the plat-
form,

– minimising the retrieval overhead due to the introduction of the semantic
similarity measures,

– reviewing the potential impact of extending Clood as a platform for rapid
integration of CBR.

The remainder of this paper is structured as follows; in Section 2 we dis-
cuss the related work in semantic relatedness measures, ontologies in CBR and
Clood; Section 3 presents the introduced semantic similarity metrics; Section
4 discusses the integration of the metrics into the existing microservices archi-
tecture of Clood; Section 5 experimentally evaluates the impact of adopting
alternative approach on the most resource-intensive metrics; Section 6 concludes
the paper with a review of contributions and outlines future directions of Clood.

2 https://github.com/isee4xai/iSeeOnto
3 https://opensearch.org/

Semantic Similarity for CBR in the Cloud 3

2 Related Work

2.1 Clood CBR

Introduced in [13], Clood is the first cloud-based generic CBR framework devel-
oped for scalability using a microservices-oriented design. Prior to Clood, CBR
frameworks were based on monolithic architectures which was restrictive for ap-
plications that require high scalability. Clood opened up a new avenue in the
CBR landscape by enabling CBR applications to reach higher levels of scale. An
empirical study showed that Clood can scale extensively without compromising
performance (e.g. retrieval from a casebase of half a million cases was over 3,700
times faster than jcolibri). Further, limited integration support (e.g. APIs)
in the previous CBR frameworks has been an obstacle for adopting CBR for
some real-world applications. The extensible and open source nature of Clood
has facilitated its improvement and enhancement over time. Implementation us-
ing the microservices paradigm makes Clood more sustainable considering the
rapid adoption of cloud computing and serverless computing, particularly in en-
terprise settings [19]. A complete Clood based implementation consists of the
following:

– Casebase contains the cases of a CBR application and is implemented using
a full-text search engine (e.g. Elasticsearch, OpenSearch).

– CBR Functions consists of the CBR cycle operations (retrieve, reuse, re-
vise, retain), which were implemented using Serverless functions.

– Similarity Functions provides the mechanism to match and rank cases
during case retrieval. The microservices based architecture in Clood is ad-
vantageous for extending similarity functions.

– External Access consists of a set of HTTP API endpoints that trigger the
CBR functions. This external interface is implemented using cloud-native
microservices that is available on most cloud service providers (e.g. AWS
API gateway, Google API Gateway).

– Data sources are the persistence tools where applications store their data
(e.g. MySQL, MongoDB) and these data sources can be synchronised with
the Casebase through the external access APIs.

– Client applications are front facing components of any system such as the
Clood dashboard. Client applications on any platform can use the external
APIs to achieve CBR integration.

2.2 Ontologies in CBR

Ontologies have long been used in various aspects of CBR such as the vocab-
ulary for describing cases [1, 12, 16], case structure and indexing [14], semantic
knowledge for similarity measurements [1, 6, 12, 14, 16], and domain knowledge
for case adaptation [16]. Our focus is the use of ontologies to determine the se-
mantic similarity during case retrieval. Ontology-based semantic similarity ap-
proaches consider factors such as the taxonomic relations between concepts and

4 Nkisi-Orji I, Palihawadana C, Wiratunga N, Corsar D & Wijekoon A

the degree of shared properties. The Ontology-based similarity approaches differ
according to the type of information used to determine similarity (or related-
ness) with path based, information content (IC) based and feature based as the
main categories of alternative approaches [9]. Path based approaches rely on rel-
ative distances between the concepts of an ontology to determine similarity [15,
21]. The first path based methods solely relied on the shortest distance between
concepts. Subsequent methods added extensions such as the use of most specific
common subsumer (MSCS) information and depth scaling. MSCS is the most
distant node from the root that subsumes the concepts of a comparison. Typi-
cally, concepts become increasingly specific as an ontology is traversed from the
root to leaf nodes. Depth-scaling approaches consider concepts in close proximity
to be more closely related when they are nearer the leave nodes than when they
are nearer the root. IC approaches integrate a measure of information content in
their similarity models [10, 17]. Some IC approaches rely on the occurrence infor-
mation of concepts in an external corpus to determine their information content
and this introduces the challenge of correctly annotating the corpus. Feature
based approaches determine similarity by comparing the features of concepts
[18]. Similarity is determined by offsetting the degree of common features by
the distinct features. The symmetric property is one of the differentiating fea-
tures of different algorithms for ontology-based similarity. With the symmetric
property, the similarity between concepts remains the same irrespective of the
direction of comparison (i.e. sim(x, y) = sim(y, x)). Ontology-based similarity
or relatedness measures correlate positively with human judgements to a good
extent [7].

2.3 Retrieval with Word Embedding

A word embedding is a distributed representation for text that allows words
with similar meanings to have similar embeddings. Most of the recent word
embedding methods use neural networks to generate embedding vectors (dense
vector of real numbers) that encode the context-induced meaning of words [11].
Context is determined by a corpus from which the word embedding is generated.
Similarity is computed by comparing the vector representation of terms with
the expectation that words with similar meanings will have similar embeddings.
There are different types of learning techniques for creating word embedding
models (e.g. Word2Vec, GloVe, BERT) [8] and several pre-trained models are
available for reused. The embedding vectors can be used to determine local
similarity measures during case retrieval as discussed in [2].

The use of vector-based similarity is not limited to textual CBR as it can
apply to other media (e.g. image and audio). Also, there are ontology-based
similarity approaches that use word embedding techniques to embed knowledge
graphs into a dense vector space [9].

Semantic Similarity for CBR in the Cloud 5

2.4 Serverless Function Benefits and Limitations

Serverless concepts provide many benefits such as the ability to scale systems
according to workloads, flexibility of development, isolation of services, minimum
maintenance overheads and major cost reductions. However, there are a few
drawbacks which can pose implementation challenges such as provider-defined
limits on compute resources (e.g. execution timeout in AWS Lambda, a widely
used Function-as-a-Service) [22, 20]. Serverless functions are used to compute
fine-grained tasks which require very little computation unlike a large monolith
application. Based on the study in [5], scalability is the main goal when using
the microservices architecture while performance and response time are the chief
optimisation concerns.

Clood depends on serverless functions for similarity calculations and other
CBR functions, which only require small amounts of computation resources.
Also, the casebase is not loaded into memory in Clood for scalability and per-
formance reasons. However, operations such as pre-loading a large database from
a CSV file, generating vector representations of strings, or computing similarity
between nodes of a logically complex ontology will require additional computa-
tional resources, which can increase costs and affect the overall system perfor-
mance. In this work we explore these limitations and propose options to overcome
the challenges of using rich knowledge sources (word embedding and ontology)
for similarity measures in Clood without imposing a significant negative impact
on scalability, performance and response time.

3 Semantic Similarity Metrics in a Microservices
Architecture

Several design challenges have to be overcome in order to implement enhanced
similarity measures in the microservices architecture which Clood uses. In this
section we present how the current limitations of cloud-based microservice archi-
tectures can be overcome to enable the inclusion of semantically rich knowledge
resources for similarly measures. Specifically, we consider similarity metrics using
similarity tables, word embeddings and ontologies. By leveraging the indexing
capabilities of a NoSQL database equipped with a search engine, the current and
future similarity methods can be incorporated into Clood without sacrificing
overall CBR performance.

3.1 Clood Similarity Functions Overview

Table 1 is an overview of the local similarity metric functions that are available
on Clood. This paper focuses on the similarity metrics in bold font face. The
similarity metrics that are not marked as “Core” are implemented as separate
microservices that are used by the base retrieval system through API calls dur-
ing case retrieval. The decision to implement these metrics as separate services
due to their resource needs is one of the measures used to ensure efficiency in
performance.

6 Nkisi-Orji I, Palihawadana C, Wiratunga N, Corsar D & Wijekoon A

Table 1. Clood’s Local Similarity Metrics - the enhanced metrics presented in this
paper are highlighted in bold text.

Data type Similarity metric Description Core

All Equal Similarity based on exact match (used as
a filter)

✓

String

EqualIgnoreCase Case-insensitive string matching ✓
BM25 TF-IDF-like similarity based on Okapi

BM25 ranking function
✓

Semantic USE Similarity measure based on word
embedding vector representations

–

Numeric

Interval Similarity between numbers in an interval ✓
INRECA Similarities using INRECA More is Better

and Less is Better algorithms
✓

McSherry Similarities using McSherry More is Better
and Less is Better algorithms

✓

Nearest Number Similarity between numbers using a linear
decay function

✓

Categorical
EnumDistance Similarity of values based on relative posi-

tions in an enumeration
✓

Table User-defined similarity between en-
tries of a finite set of domain values

✓

Date Nearest Date Similarity between dates using a decay
function

✓

Location Nearest Location Similarity based on separation distance of
geo-coordinates using a decay function

✓

Ontology
Path-based Similarity using Wu & Palmer path-

based algorithm
–

Feature-based Similarity using Sanchez et al.
feature-based algorithm

–

3.2 Similarity Table

A similarity table is a cartesian square of similarity measures of a finite set
domain values/entities that specifies how any pair of values are related. A sim-
ilarity table can capture the knowledge of a domain expert by recording their
assessment of the similarity of entity pairs. Practical considerations mean this
approach is best suited when the number of values is low. The complexity for
specifying the similarity knowledge for the similarity table is O(n2) which can
make managing the table to become tedious and time-consuming for domain
experts as the number of possible values n, increases. The number of new sim-
ilarity measures to be specified increases by 2n + 1 whenever n increases by 1
for asymmetric similarity. When relying on domain experts to explicitly create
similarity tables is unfeasible, word embeddings and ontology-based similarity
measures can be used to reduce the burden of acquiring the semantic similarity
knowledge for case retrieval.

Semantic Similarity for CBR in the Cloud 7

Since user-defined similarity tables are not expected to grow too large, each
similarity table is persisted as part of the similarity knowledge for case retrieval.
The similarity table forms a lookup table for the local similarity measures be-
tween query and case values at retrieval time.

3.3 Word Embedding Based Similarity

A word embedding based similarity method can be added to the CBR system as
a loosely-coupled service. Persisting the word embedding model, generating em-
bedding vectors for terms and comparing the vector representations are the main
resource considerations for using a similarity measure based on Word Embed-
ding. By using a separate service, we ensure that the word embedding component
is easier to manage and able scale up or down according to the model’s require-
ments without affecting the other components. Also, adding the component as
a separate service offers the flexibility to exclude it from an instantiation of the
CBR framework when it is not needed leading to further reduction in resource
use and lower-cost application when deployed on cloud infrastructure.

The processes that run on serverless functions are expected to be ephemeral
and free up resources as the execution of functions end. When using word em-
bedding model, most of the time is spent to load up the model and reloading
the model each time we want to compute similarity measures can cause signifi-
cant delays. In order to minimise delays during case retrieval, we generate any
required vector representations when cases are being added during the pre-cycle
stage or during a retain operation. The resulting dense vector representations are
persisted as part of the retrieval knowledge in the casebase. While pre-computing
vector representations slightly increases the time it takes to add cases to the case-
base, it significantly reduces the time it takes to retrieve cases. At retrieval time,
we only determine the vector representations of the applicable query values and
compute word embedding based local similarity measures by taking the cosine
similarity between the query vectors and the pre-loaded vector representations
of cases.

3.4 Ontology-based Similarity Measure

An ontology-based similarity method can be integrated into the microservices
architecture as a separate service that is accessed by the base system through
API calls. Similar to the word embedding similarity component, this separation
increases flexibility and allows the service is manage its resource needs inde-
pendent of the base system. Accordingly, there were two main challenges to
overcome when implementing ontology-based similarity: how to maintain the
ontology-based similarity independent in a scalable manner; and how computa-
tionally intensive operations like large tree traversal can be implemented using
cloud functions.

On the first challenge, a key decision was made to change the system ar-
chitecture to support computing similarity measures outside the base retrieval

8 Nkisi-Orji I, Palihawadana C, Wiratunga N, Corsar D & Wijekoon A

system. Prior to this challenge, all the similarity function scripts were main-
tained inside the core retrieval functions, but for enhanced similarity methods
like ontology-based similarity, support for the use of local similarity measures
that are returned through API responses was needed. This requirement is be-
cause, there was no practical way of directly apply ontology-based similarity
computation to case retrieval without having to load the cases into memory and
this will have significant negative impact on the system’s scalability. Instead,
the ontology-based similarity component computes and returns all the similarity
measures that are relevant for a query as a similarity table that is looked up for
local similarity measures at retrieval time.

Given an ontology, θ with concepts ci, . . . , cn, the similarity table for all the
possible similarity measures of the n concepts require n2 comparisons. However,
when the query concept cq ∈ θ is known, we only need to a row of the similarity
table that compares cq with the other concepts of θ for case retrieval (i.e. n
comparisons). In addition to reducing computation cost, using a row of the
similarity table for each retrieval instance reduces the data transfer between the
ontology-based similarity service and the base retrieval system.

In considering the computational cost that is associated with using ontology-
based similarity methods and knowing that we only need a subset of ontology
concept comparisons when retrieving for a query, we considered three options:

1. Pre-loaded: Pre-load determines all the similarity measures that can be
determined by the ontology and persists the measures in a searchable index
(flattened). We expect this method to have high a computation cost for large
ontologies. The pre-loading of similarity measures takes place only once after
the ontology added. Also, any updates to the ontology will require a complete
refresh of the index to determine new similarity measures.

2. Cached: Similarity knowledge for retrieving for any newly seen concept
(i.e. similarity between query concept and all the concepts of the ontology)
is computed and cached in a searchable index. Whenever a request is made
with a query concept, new ontology-based similarity measures are computed
only if it is not stored previously in the index. Otherwise, it performs a
simple lookup of previously cached similarity measures. Any updates to the
ontology will require clearing the cached similarity measures.

3. Non-Cached: This approach will not persist any similarity measures so
that similarity computation occurs on each request. This method will not
use up storage space for an index.

An enhancement that can improve efficiency and reduce retrieval times is
the ability to limit similarity computations to a sub-graph of the ontology. For
example, a travel ontology can specify entities for both accommodation and
activity amongst others. If we are only interested in the activity entities for case
description, the ability to limit similarity computations to the activity sub-graph
of the ontology can result in significant savings with respect to computation
resources and retrieval times.

Note that the ontology-based similarity measure discussed here is applicable
when the case attribute values map to classes (or concepts) instead of instances

Semantic Similarity for CBR in the Cloud 9

of classes. However, the ontology-based similarity component can be extended
to support the computation of similarity measures for instances of classes.

4 Implementation of Semantic Similarity Measures on
Clood Framework

This section discusses how the semantic similarity measures are implemented
in Clood taking the design consideration in Section 3 into account. Figure 1
presents the Clood system architecture with its microservices. Updated com-

Fig. 1. Updated Clood CBR Architecture diagram

ponents of the diagram are numbered as from 1-3. Component (1) represents the
proposed isolation of enhanced similarity functions, this component represents
all the extended functions as microservices. Component (2) and (3) represents
the proposed Ontology-based similarity measure (Section 3.4) and Word Embed-
ding similarity measure (Section 3.3) respectively. The discussion in this section
includes how the similarity measures are used through the Clood dashboard.
As indicated in Figure 1, the user interfaces can be implemented differently
with API access to the Clood functions. Description of the API end-points are
available on the Clood repository4.

Building a similarity table on Clood is facilitated by an interactive user
interface that enables a user to enumerate the possible values that attributes
and the pairwise similarity measures of values as shown in Figure 2. The config-
uration interface to create a similarity table is only available for attributes with

4 https://github.com/RGU-Computing/clood

10 Nkisi-Orji I, Palihawadana C, Wiratunga N, Corsar D & Wijekoon A

table similarity metric type. There is option to make the similarity table sym-
metric or asymmetric. The user is required to provide only half of the similarity
measures when using the symmetric option. The similarity table is persisted as

Fig. 2. Specifying a similarity table on Clood.

a parameter of the case definition/configuration for lookup during case retrieval.
The case definition is where the similarity type, reuse strategy and feature im-
portance/weight of each case attribute is held for computing and aggregating
local similarity measures, and for composing a recommended solution.

4.1 Word Embedding Similarity on Clood

We implemented semantic similarity onClood using a pretrained Universal Sen-
tence Encoders (USE) for word embedding5. USE is a general-purpose context-
aware encoding model for word representations based on the transformer archi-
tecture [3]. Additional word embedding models can be included and the USE
model can be replaced by a different type of word embedding model. The vector
representations are stored as dense vector types in the casebase and the built-in
functionality of OpenSearch is used to determine the cosine similarity between
vector representations for local similarity measures during case retrieval.

Although similarity is based on vector representations when using word em-
bedding, presenting the dense vectors of real numbers to users will not be very
useful. Accordingly, appropriate conversions are made in the layer between the
user interface and the casebase. In order to support this conversion, the values of
attributes with word embedding vector based similarity are persisted as object
(non-primitive) data type in the casebase consisting of both the human-readable
attribute values and their corresponding vector representations. The user only

5 https://npmjs.com/package/@tensorflow-models/universal-sentence-encoder

Semantic Similarity for CBR in the Cloud 11

see the human-readable values while the retrieval function uses the vector repre-
sentations to match and rank cases in the casebase. As a result, no modifications
were made to the user interfaces to support the use of word embedding based
similarity measures. The user only has to indicate that an attribute will use a
word embedding similarity metric function during the attribute configuration
for a casebase.

4.2 Ontology-based Similarity on Clood

We implemented the service for ontology-based semantic similarity measures
on Clood with the options for Pre-loaded, Cached and Non-Cached methods
as discussed in Section 3.4. If the user specifies that an attribute will use an
ontology-based similarity approach for local similarity, a configuration option to
specify the ontology detail becomes available on the user interface. The configu-
ration interface allows the user to specify the URI locations of the ontology files,
each file’s format and an optional name for the ontology source. The support for
including multiple sources/files is useful for instances where an ontology is stored
in multiple files of overlapping concepts (e.g. the modular structure of iSeeOnto).
There is option to specify a root concept which is useful when the intention is to
use a sub-graph of the ontology for computing similarity measures. When a root
is not specified, it is inferred as the uppermost reachable node from the concepts
of the ontology. Also, there is option to specify a relation type for determining
taxonomic structure if it is different from “rdfs:subClassOf” relation.

We demonstrated support for ontology-based semantic similarity measures by
integrating path-based and feature-based similarity measures on Clood. Path-
based approach uses Wu and Palmer algorithm [21] as shown in Equation 1

sim(ci, cj)wup =
2 ∗ depth(mscs(ci, cj))

depth(ci) + depth(cj)
(1)

where mscs(ci, cj) is the most specific common subsumer of concepts ci and cj .
The depth of concept ci (i.e. depth(ci)) is the number of edges between ci and
the root node.

Feature-based approach is based on Sanchez et al. normalised dissimilarity
[18] as shown in Equation 2

sim(ci, cj)san = 1− log2(1 +
|ϕ(ci) \ |ϕ(cj)|+ |ϕ(cj) \ |ϕ(ci)|

|ϕ(ci) \ |ϕ(cj)|+ |ϕ(cj) \ |ϕ(ci)|+ |ϕ(ci) ∩ |ϕ(cj)|
)

(2)
where ϕ(c) is the taxonomic ancestors of concept c.

5 Evaluation of Resource Impact

In considering the semantic similarity measures we have discussed, design de-
cision based difference in performance is expected to be most noticeable for
ontology-based similarity measures. Accordingly, we compare the three imple-
mentation options (i.e. pre-loaded, cached or non-cached) to highlight their
strengths and weaknesses.

12 Nkisi-Orji I, Palihawadana C, Wiratunga N, Corsar D & Wijekoon A

5.1 Experiment Setup

We use the Pizza Price Prediction dataset6 that describes pizza using attributes
for company, price, topping, size, etc. for the case description. We use the pizza
ontology7 for the ontology-based similarity of different types of pizza toppings
during case retrieval. First, we anchor the dataset attribute’s pizza topping val-
ues to the concepts of the pizza ontology. To achieve this, we used an edit distance
similarity measure (based on Levenshtein) to map pizza toppings of the dataset
to the most suitable concepts of the pizza ontology. The topping attribute was
set up to Clood’s path-based similarity to determine local similarity measures
during retrieval. Then, we randomly selected 500 toppings with replacement
from the pizza ontology to compose queries for case retrieval. Random selec-
tion with replacement ensures that queries can repeat multiple times which is
expected in real-life applications. Several toppings repeat multiple times in the
query selection because the ontology specifies 48 unique pizza toppings. Figure 4
shows the proportion of the query values that are unique as the query selection
increases. At 500 query selection, all the pizza toppings had been seen more once
as indicated by the line that shows the proportion of unique queries go to 0.

5.2 Result and Discussion

We performed case retrieval and noted the retrieval times as the number of
queries increase as shown in Figure 3. Retrieval times were measured at different
intervals and the average time for 5 runs of each set of queries was reported.

Fig. 3. Times for case retrieval for different methods of implementing ontology-based
similarity.

6 https://www.kaggle.com/datasets/knightbearr/pizza-price-prediction
7 https://protege.stanford.edu/ontologies/pizza/pizza.owl

Semantic Similarity for CBR in the Cloud 13

Fig. 4. Proportion of unique queries with
total number of queries

Fig. 5. Comparison between Cache and
Non-Cache methods

In Pre-loaded, most of the time is spent to pre-compute all the pairwise
similarity measures between the ontology concepts. In the experiment, we also
compared the using the entire ontology graph (i.e. Pre-loaded (All Nodes)) with
the option that pre-loads only a sub-hierarchy of the ontology (i.e. Pre-loaded
(Sub-hierarchy)). For the sub-hierarchy, we used a portion of the ontology for
pizza toppings only by specifying the most general concept of pizza topping as
the root for similarity measures. Specifying the root restricted computations to a
smaller relevant portion of the ontology which reduced the total retrieval times.
Given that there are 48 pizza toppings in the ontology, the pairwise similarity
computation determines 2,304 (48 x 48) similarity measures when using the
sub-hierarchy option. The entire ontology describes 99 concepts (classes) with a
possible 9,801 pairwise similarity measures most of which are outside the pizza
topping sub-domain. We added the pre-loading time to the retrieval time of the
first query. The time spent in executing additional queries mostly consists of the
lookup time from the index of similarity measures. In the Cached option, the
total retrieval time is initially similar to Non-Cache. However, it becomes almost
horizontal as queries begin to recur. At some point, all the concepts become
available in the cache so that it becomes a lookup of similarity values like the pre-
loaded option. The Non-Cached option neither pre-computes similarity measures
nor maintain an index of seen comparisons. Unsurprisingly, the total retrieval
time increases linearly as the number of queries increases. Figure 5 shows how the
average time of retrieval for each query reduces over time providing additional
insight into the advantage of caching over non-caching. The average time per
query remains consistently high for Non-Cached. In contrast, the average time
per query significantly reduces over time for Cached. By the 100th query, Cache
was already more than 2 times better than Non-Cached.

Similarity results were obtained for ontology feature-based similarity. In gen-
eral, Pre-loaded option is useful if most of the ontology nodes are being used in
the casebase. Cached is an efficient approach if queries often repeat and for large

14 Nkisi-Orji I, Palihawadana C, Wiratunga N, Corsar D & Wijekoon A

scale ontologies where only a few nodes are used. Non-Cached can be useful for
smaller rapidly changing ontologies.

6 Conclusion

In this paper, we discussed how architectural challenges influenced decisions on
how to include semantic similarity measures for case retrieval in a microser-
vices architecture. We showed how the similarity measures can be implemented
on the Clood framework and presented an experimental evaluation to demon-
strate the impact of different options for using ontology-based semantic similarity
measures.

Future work will provide support for additional methods of computing the
ontology-based similarity measures including approaches for embedding knowl-
edge graphs. As a supplement to the open-sourced and extensible Clood frame-
work, the team is currently building the first CBR-as-a-Service platform. Clood
API will be a software-as-a-service offering where organisations, developers and
researchers can harness the power CBR and Clood within few minutes. The
key reason for this direction is due to the time consumed for setting up CBR
frameworks for each project/product. This can be solved by using a CBR-as-
a-Service platform where the entire CBR system is itself a single microservice.
Infrastructure, security, maintenance and bug-fixes can be centrally handled re-
ducing any overhead for organisations to adapt and integrate CBR into their
applications. This will be a solution for small-medium scale businesses with lim-
ited expertise on CBR and cloud to setup the systems. With an interactive
and simple dashboard the entire CBR cycle can be ready and exposed as API
endpoints in very few steps. You can submit your interest in this platform at
https://cloodcbr.com.

References

1. Amailef, K., Lu, J.: Ontology-supported case-based reasoning approach for intelli-
gent m-government emergency response services. Decision Support Systems 55(1),
79–97 (2013)

2. Amin, K., Lancaster, G., Kapetanakis, S., Althoff, K.D., Dengel, A., Petridis, M.:
Advanced similarity measures using word embeddings and siamese networks in
cbr. In: Proceedings of SAI Intelligent Systems Conference. pp. 449–462. Springer
(2019)

3. Cer, D., Yang, Y., Kong, S.y., Hua, N., Limtiaco, N., John, R.S., Constant, N.,
Guajardo-Cespedes, M., Yuan, S., Tar, C., et al.: Universal sentence encoder. arXiv
preprint arXiv:1803.11175 (2018)

4. Dı́az-Agudo, B., González-Calero, P.A., Recio-Garćıa, J.A., Sánchez-Ruiz-
Granados, A.A.: Building cbr systems with jcolibri. Science of Computer Pro-
gramming 69(1-3), 68–75 (2007)

5. Ghofrani, J., Lübke, D.: Challenges of microservices architecture: A survey on the
state of the practice. ZEUS 2018, 1–8 (2018)

Semantic Similarity for CBR in the Cloud 15

6. González-Calero, P.A., Dı́az-Agudo, B., Gómez-Albarrán, M., et al.: Applying dls
for retrieval in case-based reasoning. In: In Procs. of the 1999 Description Logics
Workshop (Dl’99). Linkopings universitet. Citeseer (1999)

7. Hliaoutakis, A., Varelas, G., Voutsakis, E., Petrakis, E.G., Milios, E.: Informa-
tion retrieval by semantic similarity. International journal on semantic Web and
information systems (IJSWIS) 2(3), 55–73 (2006)

8. Khattak, F.K., Jeblee, S., Pou-Prom, C., Abdalla, M., Meaney, C., Rudzicz, F.:
A survey of word embeddings for clinical text. Journal of Biomedical Informatics
100, 100057 (2019)

9. Lastra-Dı́az, J.J., Goikoetxea, J., Taieb, M.A.H., Garćıa-Serrano, A., Aouicha,
M.B., Agirre, E.: A reproducible survey on word embeddings and ontology-based
methods for word similarity: linear combinations outperform the state of the art.
Engineering Applications of Artificial Intelligence 85, 645–665 (2019)

10. Lin, D., et al.: An information-theoretic definition of similarity. In: ICML. vol. 98,
pp. 296–304 (1998)

11. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. Advances in neural
information processing systems 26 (2013)

12. Montero-Jiménez, J.J., Vingerhoeds, R., Grabot, B.: Enhancing predictive main-
tenance architecture process by using ontology-enabled case-based reasoning. In:
2021 IEEE International Symposium on Systems Engineering (ISSE). pp. 1–8.
IEEE (2021)

13. Nkisi-Orji, I., Wiratunga, N., Palihawadana, C., Recio-Garćıa, J.A., Corsar, D.:
Clood cbr: Towards microservices oriented case-based reasoning. In: International
Conference on Case-Based Reasoning. pp. 129–143. Springer (2020)

14. Qin, Y., Lu, W., Qi, Q., Liu, X., Huang, M., Scott, P.J., Jiang, X.: Towards an
ontology-supported case-based reasoning approach for computer-aided tolerance
specification. Knowledge-Based Systems 141, 129–147 (2018)

15. Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of
a metric on semantic nets. IEEE transactions on systems, man, and cybernetics
19(1), 17–30 (1989)

16. Recio-Gaŕıa, J.A., Dı́az-Agudo, B.: Ontology based cbr with jcolibri. In: Interna-
tional Conference on Innovative Techniques and Applications of Artificial Intelli-
gence. pp. 149–162. Springer (2006)

17. Resnik, P.: Using information content to evaluate semantic similarity in a taxon-
omy. arXiv preprint cmp-lg/9511007 (1995)

18. Sánchez, D., Batet, M., Isern, D., Valls, A.: Ontology-based semantic similarity: A
new feature-based approach. Expert systems with applications 39(9), 7718–7728
(2012)

19. Schleier-Smith, J., Sreekanti, V., Khandelwal, A., Carreira, J., Yadwadkar, N.J.,
Popa, R.A., Gonzalez, J.E., Stoica, I., Patterson, D.A.: What serverless computing
is and should become: The next phase of cloud computing. Communications of the
ACM 64(5), 76–84 (2021)

20. Taibi, D., El Ioini, N., Pahl, C., Niederkofler, J.R.S.: Patterns for serverless func-
tions (function-as-a-service): A multivocal literature review (2020)

21. Wu, Z., Palmer, M.: Verb semantics and lexical selection. arXiv preprint cmp-
lg/9406033 (1994)

22. Xie, R., Tang, Q., Qiao, S., Zhu, H., Yu, F.R., Huang, T.: When serverless comput-
ing meets edge computing: architecture, challenges, and open issues. IEEEWireless
Communications 28(5), 126–133 (2021)

	coversheet_template
	NKISI-ORJI 2022 Adapting semantic similarity methods (AAM)
	coversheet_template
	NKISI-ORJI 2022 Adapting semantic similarity methods (AAM)

