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Abstract: The growth of information technologies has driven the development of the transportation
sector, including connected and autonomous vehicles. Due to its communication capabilities, the
controller area network (CAN) is the most widely used in-vehicle communication protocol. However,
CAN lacks suitable security mechanisms such as message authentication and encryption. This makes
the CAN bus vulnerable to numerous cyberattacks. Not only are these attacks a threat the information
security and privacy, but they can also directly affect the safety of drivers, passengers and the
surrounding environment of the moving vehicles. This paper presents CAN-CID, a context-aware
intrusion detection system (IDS) to detect cyberattacks on the CAN bus, which would be suitable for
deployment in automobiles including military vehicles, passenger cars, commercial vehicles and other
CAN-based applications such as aerospace, industrial automation and medical equipment. CAN-CID
is an ensemble model of a gated recurrent unit (GRU) network and a time-based model. A GRU
algorithm works by learning to predict the centre ID of a CAN ID sequence, and ID-based probabilistic
thresholds are used to identify anomalous IDs, whereas the time-based model identifies anomalous IDs
using time-based thresholds. The number of anomalies compared to the total number of IDs over an
observation window is used to classify the window status as anomalous or benign. The proposed model
uses only benign data for training and threshold estimation, avoiding the need to collect realistic attack
data to train the algorithm. The performance of the CAN-CID model was tested against three datasets
over a range of 16 attacks, including fabrication and more sophisticated masquerade attacks. The CAN-
CID model achieved an F1-Score of over 99% for 13 of those attacks and outperformed benchmark
models from the literature for all attacks, with near real-time detection latency.
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1. INTRODUCTION

Modern automobiles are becoming complex and highly connected to provide safe, efficient and
intelligent services to users. To facilitate these services, automobiles are equipped with multiple
networks and communication devices and a range of sensors, actuators, cameras and microprocessor-
based electronic control units (ECUs) [1]. Modern vehicles run software that exceed 100 million lines
of code, and future vehicles will require 200 to 300 million lines of code [2]. These software run on up
to 100 ECUs [3] that are connected to a controller area network (CAN) which is considered to be the
de-facto network protocol for in-vehicle communication [1]. The CAN bus is a message-based protocol
commonly used in vehicles, aerospace, industrial automation and medical equipment due to several
benefits such as being low cost, speedy, lightweight and robust [4]. Despite these benefits, the CAN
bus lacks security measures, especially given the absence of authentication, an ID-based priority
system, broadcast transmission and lack of encryption. Increased connectivity and complexity and
CAN bus security flaws have made modern vehicles vulnerable to cyberattacks. In fact, security
researchers have demonstrated the capability of attacks against modern vehicles by compromising the
CAN networks of various vehicle brands [5], [6], [7]. These researchers have shown that it is possible
to implement CAN message injection attacks remotely and take physical control of these vehicles. An
attacker obtaining physical control of a moving vehicle will directly affect the safety of drivers,
passengers and the surrounding environment of the vehicle. The security of modern automobiles is a
major concern for automotive manufacturers; therefore, they are seeking security measures to protect
against such attacks [8], [9].

Developing an in-vehicle IDS for widespread adoption with a high detection capability is challenging
due to the lack of knowledge about the CAN data specifications [10]. Generally, specifications of CAN
messages are stored in a database-like file known as the database CAN (DBC), a confidential source
of proprietary information, access to which is usually restricted to the vehicle manufacturer. Depending
on the number of ECUs, the CAN bus transmits about 2000 frames per second [11]. This demands an
IDS with real-time or near real-time detection capability under a computationally constrained
environment. Cyberattackers could use various types of attacks (e.g. injection and masquerade attacks)
that alter the different data fields of CAN messages to compromise the in-vehicle network. This is
another challenge that limits the detection and generalization capabilities of an IDS. In addition, many
events that arise in a vehicle could be considered anomalies despite being legitimate driving scenarios.
For example, an emergency brake or sudden steering wheel turn while driving at 70 mph would be
considered anomalous in normal driving scenarios. These kinds of benign anomalous behaviours could
produce a significant number of false positives. Hence, knowledge of the context of the CAN sequences
is vital to distinguish benign anomalies from potential attack scenarios. To successfully deal with the
aforementioned challenges, this paper proposes CAN-CID (CAN Centre ID prediction) a novel
context-aware ensemble IDS for the CAN bus based on natural language processing (NLP) and time-
based techniques.

The main contributions of this paper can be summarized as follows.

1. CAN-CID uses only benign data to train the model and estimate thresholds. This avoids the
need to collect real attack data to train the algorithm. It is significantly easier and safer to
collect benign CAN data from real vehicles than to collect attack data. Further, using only
benign data (one-class) during the training process improves the generalization capability of
the algorithm.

2. Probability-based thresholds were estimated for each ID using only benign training data.
Minimum thresholds were selected with the aim to minimize false positives which will help to
improve the overall accuracy of the ensemble model.

3. CAN-CID uses a one-layer shallow GRU network to detect anomalous ID sequences. Hence
it is lightweight, and detection latency is very low (10 ms for a 100 ms window). This makes
the proposed solution suitable to deploy in real vehicles.



The rest of this paper is structured as follows: Section 2 presents the related work. Section 3 provides
the background, including CAN data analysis. The proposed algorithm is explained in section 4. In
section 5, the experiment results and performance evaluations are presented. Finally, section 6
concludes the paper.

2. RELATED WORKS

Recent experiments focusing on attacks against modern automobiles [5], [6] have motivated research
into countermeasures against in-vehicle network attacks. The majority of these works have focused on
securing the CAN bus, as notable experimental attacks targeted the vulnerabilities of the CAN bus [6],
[7]. In [11], the authors proposed a specification-based IDS for in-vehicle network intrusion detection
by extracting design specifications of CAN messages. The IDS proposed in [12] used unique voltage
signals generated by ECUs as features of the deep support vector domain description model. However,
both of these models [11], [12] have a low generalization capability as they require specific knowledge
of CAN data. A one-class compound classifier was used in [13] to detect CAN bus attacks. But this
detected only 45-65% of attacks. The authors then suggested an ensemble of detection methods to
overcome the problems that arise when using only one classifier. In [14], the authors proposed a long
short-term memory (LSTM) autoencoder to detect CAN bus anomalies. This was trained using a
payload of legitimate CAN frames. Reconstruction error was used to distinguish benign from malicious
frames. A major limitation of this model, however, was the slow computation time due to the complex
model architecture. LSTM-based deep learning model, which utilized the linear embedding of the CAN
payload, was used in [15] to detect contextual anomalies in the payload. The authors examined the
effect of context by removing the embedding layer of the proposed model. They observed that context
and embedding helped to slightly improve the performance. However, this model recorded only around
95% accuracy for all attacks on one dataset. CAN payload signals were selected as the features of the
deep learning-based IDS proposed in [16]. Similarly, the authors in [17] used sensor values in their
deep neural network-based IDS. However, both of these approaches [16], [17] require the DBC files
or knowledge about the CAN payload, which could limit the generalization capability of the proposed
algorithms.

Frequency or time-based IDSs utilize the timing of CAN frames or the sequential nature of the IDs. In
[18], the authors developed a context-aware anomaly detector for monitoring cyberattacks on the CAN
bus using sequence modelling. The authors of [19] proposed an anomaly detection algorithm by
modelling the normal behaviour of the CAN bus considering the recurring pattern of CAN IDs. This
is equivalent to 2-grams in the N-gram based model used in [18]. While N-gram based algorithms can
capture the context, this often leads to high computational overhead as N increases. A time-based IDS
was proposed by [20] to detect CAN injection attacks. In [21], the authors used an LSTM model to
predict the next ID and compare it with the actual ID to identify anomalous frames. However, this
approach achieved only 60% accuracy. A CAN bus attack detection framework was proposed by [22]
utilising both a rule-based and a supervised LSTM model. This ensemble model outperformed the
individual models. In general, the deep learning-based IDSs discussed above demonstrated a higher
detection capability than the other models. However, supervised learning-based models might have
low generalization capability to other attacks and vehicles as they learn the attack pattern of the
particular dataset. Further, these models have high detection latency due to their complex deep learning
architecture. To address these problems, this work presents a lightweight ensemble model that uses a
shallow neural network.



3. BACKGROUND

A. Controller Area Network (CAN Bus)

CAN is a broadcast-based communication protocol developed by Bosch for in-vehicle communication
[23]. ECUs of modern vehicles communicate using high-speed and low-speed CAN buses as their
network protocol. Time-critical modules such as engine control and transmission control are connected
to a high-speed CAN bus, whereas less time-critical modules such as door control and light control are
connected to a low-speed CAN bus. A CAN bus data frame includes several fields: the CAN ID
(arbitration field) is used to prioritize the messages and is capable of handling concurrent messages; a
CAN payload contains the actual information (data) that is to be transmitted over the network; and
other fields include start of frame (SOF), control field (DLC), cyclic redundancy code (CRC),
acknowledge field (ACK), and end of frame (EOF). These fields are depicted in Figure 1, with their
respective bit-lengths. When a node (ECU) is ready to transmit a frame, it checks the status of the bus,
and if the bus is idle, it transmits the frame. The addresses of the transmitting node and the receiving
node are not included in the frame. Instead, it uses CAN IDs unique to the transmitting nodes. As a
result of the broadcast nature of the network, all nodes in the CAN network can receive the frame.
Based on the ID of the frame, other nodes in the network decide to accept or ignore the frame. The
priority-based arbitration scheme ensures that the highest priority IDs (lower IDs) get bus access when
multiple nodes simultaneously transmit frames onto the CAN bus. The lowest priority IDs, on the other
hand, must wait until the bus becomes idle.

Figure 1: CAN bus data frame. Example values are given for ID, DLC and data fields
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B. CAN Bus Vulnerabilities and Attacks

The CAN bus is designed to provide robust, efficient, simple and low-cost in-vehicle communication
without paying much attention to security-related features [13]. Therefore, by design, it is vulnerable
to cyberattacks. Since the CAN bus uses no authentication, any node could transmit a message with an
ID that belongs to another node. In addition, CAN frames are not encrypted due to real-time
communication requirements. This allows attackers to collect and analyse CAN data (via sniffing). The
broadcast nature of the CAN bus also transmits frames to all nodes connected to the CAN bus.
Therefore, by utilising this property, a compromised ECU can not only monitor and listen to all CAN
frames transmitted through the CAN bus but also send any frame to the network. Furthermore, attackers
can use the ID-based priority scheme to inject their messages with the highest priority IDs to create a
denial-of-service (DoS) attack, consequently making communication services unavailable to other IDs.

Some of the common CAN attack types are: DoS [24], fuzzing [25], replay [24], spoofing [26] and
masquerade attacks [27]. In a fuzzing attack, a large number of random frames are injected into the
CAN bus. Replay attacks re-send previously recorded frames at different times. When an attacker
targets (injects) frames with specific CAN IDs, it is called a spoofing attack. In a masquerade attack, a
compromised node impersonates another node to send malicious frames. All of these attacks have the
potential to cause unexpected or harmful effects to a vehicle depending on the attacker’s purpose.



C. CAN Bus Data Analysis

We analysed CAN ID data to understand the anomalous traffic patterns, both benign and malicious.
To do this, we used a publicly available dataset, the Real ORNL Automotive Dynamometer (ROAD)
CAN Intrusion dataset [10]. Figure 2 shows a five-second snapshot of a targeted ID attack. In this
attack, the targeted ID is 0D0. What stands out in this figure is the periodic behaviour of the IDs. Each
node transmits frames at a fixed interval, as observed in [6]. In the ROAD dataset, 104 out of 106 IDs
exhibit similar behaviour. However, the injected ID causes a change in this pattern during the targeted
ID attack. This can be observed in the shaded area (attack period) for 0DO. This changes the fixed
transmission interval of IDs compared to that of the period of normal driving. In addition, it could
create new ID sequences resulting from new frames appearing in an unusual context. For example, it
might introduce a new ID sequence, such as ‘6E0 0D0 0D0’, which was not observed during normal
driving conditions.

Figure 2: Frame transmission of a targeted ID (0DO0) attack. The shaded area represents the attack period. This
represents only a subset of the 106 CAN IDs
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Figure 3 shows a five-second snapshot of a masquerade attack for the same ID (0DO). In this case, it
does not significantly change the ID transmission frequency [10]. However, a masquerade attack might
cause a slight deviation (shift of time) in the frame transmission time due to the difficulty of time
synchronization with the legitimate ECU [28]. In addition, since a masquerade attack stops the frame
transmission of a legitimate ECU, there might be a brief period where there is no frame transmitted
with the targeted ID. A CAN bus transmits a large number of messages per second. Therefore, even a
slight deviation from the normal driving scenario could create new ID sequences. For example, ID 0D0
might have the sequence ‘ODO 6E0 0C0’ during normal driving, whereas a slight time shift or absence
of frames could create a new sequence of ‘6E0 0D0 0CO’. This behaviour (frequency and sequence
change) can be observed for all injection and masquerade attacks for the ROAD dataset.

Figure 3: Frame transmission of a masquerade attack (0DO0). The shaded area represents the attack period. This
represents only a subset of the 106 CAN IDs
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After analysing both benign and attack CAN traffic, our main finding is that most CAN IDs exhibit
periodic behaviour that creates a finite set of ID sequences for a fixed window size (e.g. a window of
ten consecutive IDs). Attacks on the CAN bus are likely to change the periodic behaviour of the IDs



and hence create new sequences. In addition, injection attacks change the time between the consecutive
attack IDs. Carefully trained machine learning algorithms can detect these subtle changes in CAN ID
streams. These findings provide the basis for the proposed IDS.

4. PROPOSED CAN-CID MODEL

A. Threat Model and Datasets

In this work, we used the ROAD [10] dataset to test the proposed model. Additionally, to evaluate the
generalization capability of the model, we used two other publicly available datasets, the car-hacking
dataset for intrusion detection (HCRL CH) [29] and the survival analysis dataset for automobile IDS
(HCRL SA) [30]. The ROAD dataset is considered the first open CAN bus dataset with advanced types
of real attacks that have physically verified effects on the vehicle [10]. Data was collected through the
OBD-II port in a fully compromised ECU mode while driving the vehicle on a dynamometer or on the
road. The dataset includes 12 ambient (benign) datasets representing different driving activities,
including drive, accelerate, decelerate, reverse, brake, cruise control, turn signals and anomalous but
benign driving activities such as unbuckling a seatbelt and opening doors while driving. Attacks are
categorized as fabrication attacks, suspension attacks and masquerade attacks. Fabrication attacks
include fuzzing and targeted ID attacks. Attacks shown in Table I were selected to investigate the
algorithm’s detection capability.

Table I: High-frequency injection (fabrication) attacks on the ROAD dataset

Attack Attack technique Consequence

Fuzzing Inject random IDs and arbitrary Wide variety of unexpected
payloads results

Correlated signal attack  Inject false wheel speed values (ID - Stop the car due to different
6E0) pairwise wheel speeds

Max speedometer attack Change one byte of payload to Display false speedometer
maximum (FF) value (ID-0D0) value

Reverse light on attack ~ Change one bit of payload (ID-0D0) Reverse lights do not reflect
what gear the car is using

Reverse light off attack ~ Change one bit of payload (ID-0D0) Reverse lights do not reflect
what gear the car is using

For fabrication attacks, the attacker injects a frame with a targeted ID immediately after a legitimate
frame appears. The aim of this is to get the vehicle to ignore the legitimate message and accept the
injected frame to change the vehicle state. In addition to the above attacks, this dataset includes a
masquerade version of each ID fabrication attack. The masquerade version removes the legitimate
target ID frames relevant to each injected frame in post-processing to simulate a masquerade attack.
These realistic attacks required message injections for each attack. Such an approach was trialled by
[6] in their experimental attacks. Message injections lead to changes in the transmission interval of the
targeted ID and new sequences being created. Hence, even a payload attack might require an attacker
to inject frames into the CAN bus [6]. This requirement makes an ID sequence or frequency-based
model suitable for detecting the majority of payload attacks without using the payload related features.
The HCRL CH dataset includes DoS, fuzzy and spoofing (RPM and gear) attacks, whereas the HCRL
SA (KIA Soul) dataset includes flooding, fuzzy and malfunction (targeted ID) attacks.

B. CAN Centre ID Prediction Task

This work is inspired by the work of [ 18] and the continuous bag-of-words (CBOW) model architecture
proposed by [31]. In [18], the authors used N-gram distributions to build the CAN ID sequence model.
The underlying concept of this work is a mathematical model (n-gram) that can be trained to learn the



CAN message sequences and predict subsequent elements in the sequence. The authors showed that
the occurrence of an event (ID) can be determined based on a short history. However, this might depend
on the number of nodes in the network (equivalent to the number of unique words in a language). Thus
for a larger number of nodes, a longer history may be required as a larger number of unique sequences
could be created for the selected window size. N-gram models are inefficient for higher values of N
because this will result in more combinations. This approach [18] is similar to the next word prediction
task of NLP given the previous words (context). The Word2vec model proposed by [31] learns the
word vectors (word embeddings) by learning to predict the centre (target) word given the context. This
model architecture is shown in Figure 4. The CBOW model is expected to learn the word vectors
representing the middle word’s meaning and the context words. However, the main objective of the
CBOW model is not to predict the words but to learn accurate word vectors that encode semantic
relationships for all the words in the corpus. Then, the learned word vectors can be used in many
language models with specific deep learning architectures.

Figure 4: Continuous bag-of-words (CBOW) architecture to predict the centre word given the previous and
next words as the context
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Using the target word’s historical and future words as the input words improved the centre word
prediction [31]. We expect the same behaviour for CAN ID sequences. To elaborate on this, as an
example, take a driving scenario of a right-hand turn at an intersection. Possible events in the vehicle
are activate signal lights, decelerate (apply brake), stop, accelerate and turn right. If we want to predict
the third event, which is stop in this case, we can use only previous events as the context or use previous
and future events as the context. These two tasks can be formulated as follows:

x; = {activate signal lights, decelerate}, y = {stop} (1
x, = {activate signal lights, decelerate, accelerate, turn right}, y = {stop} 2)

The second task (equation 2) can be used to make the prediction (stop) with higher accuracy, as the
number of possible events for the centre (middle) event will be equal to or fewer compared to the first
task. For example, ‘accelerate’ would be another probable prediction for equation 1. But in the second
task, given accelerate in the context, it will make the prediction of ‘stop’ more accurate. Therefore, we
use the CBOW architecture to infer the context for CAN ID sequences. One limitation of the CBOW
approach is that it must wait for a few messages to see if the target (centre) ID is malicious. However,
considering the CAN ID transmission rate, this will be a minimal amount of time (around a 0.005 s
delay for 10 IDs). Additionally, continuous message injections are required to execute such an attack



[6], which increases the chances of detecting the attack before the attacker can take physical control of
the vehicle. Hence, CBOW is a viable option for detecting attacks in CAN ID sequences.

C. CAN-CID Architecture

The order of the words is not considered in the CBOW model. However, the order is highly important
to identify anomalous frames in CAN ID sequences. A recurrent neural network (RNN) model can
capture the temporal patterns of sequential data [32]. But RNN models do not have a long-term memory
due to the vanishing gradient problem. To address this issue, LSTM was introduced. LSTM consists
of three gates: input, forget, and output. In contrast, GRU is a variant of LSTM with only two gates:
reset and update. The simple structure reduces the matrix multiplication, making GRU more
computationally efficient with low memory overhead [32]. Due to these properties, which are ideal for
resource-constrained environments, we use a GRU layer to capture the temporal pattern of CAN ID
sequences.

Figure 5 represents the architecture of the proposed model. We use a sliding window of size n (number
of IDs) within a large sliding window of size T (time), where n is an odd number. Let N be the total
number of unique IDs. For the GRU-based model, the input to the embedding layer is a sequence of
vectorised CAN IDs of size (n — 1). The centre (middle) ID (n + 1)/2 is used as the target of the
prediction. As mentioned earlier, a single GRU layer is used as the hidden layer to learn the temporal
patterns. A dropout layer is used to reduce the overfitting and improve the model generalization
capability. The output layer is a dense layer that outputs softmax probabilities for N IDs. During the
training, Wy, W,, and W3 are updated using backpropagation. P, which represents the softmax
probability of the target ID (A) is compared with the pre-defined ID-based threshold. If the predicted
probability is less than the threshold, the target ID is flagged as a weak anomaly; otherwise it is flagged
as a benign ID. In the same way, the time-based model compares the time between two consecutive
target IDs (8t,) with the pre-defined time-based thresholds (minimum and maximum time). If 8t, is
outside the thresholds, the current ID is flagged as a weak anomaly; otherwise it is flagged as a benign
ID. This process continues for all IDs in window T. The OR operator is used to combine the two models
as an ensemble model. Finally, an anomaly threshold is used to classify the window of time T as a
malicious sequence or a benign sequence. This process continues for all IDs in the CAN ID stream by
sliding the window of time T. The sliding window overlaps for (n — 1) IDs, to make predictions for
the missing IDs from the previous window.

Figure 5: Ensemble model architecture
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D. Threshold Estimation
The proposed model uses three thresholds.

1) ID-Based Threshold
A sample of the benign dataset was used to estimate thresholds. Softmax probabilities were
calculated for all IDs in the benign sample. The minimum values of each ID were selected as the
ID-based thresholds to minimize the false positives of the ensemble model. We assumed a zero
probability of values less than the minimum values for benign data. Figure 6 shows a softmax
probability distribution for a selected ID.

Figure 6: Softmax probability distribution of ID 580
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2) Time-Based Threshold
We used the training dataset to define the time-based threshold. For each ID, we calculated the
time difference between two consecutive frames for the benign dataset. Then, the minimum and
maximum values for each ID were used as the minimum and maximum thresholds. Figure 7
shows an inter-arrival time distribution for a selected ID.

Figure 7: Inter-arrival time distribution for ID 580
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3) Anomaly Threshold

We used ID-based and time-based thresholds to identify weak anomalies. Counting weak
anomalies over a window (T') helps to minimize false positives. Hence, we defined the anomaly
thresholds (€) to identify the windows as attack or benign. We assigned labels for each window
(0 for benign and 1 for attack) as the ground truth and used the same to evaluate the model
performance. Equation 5 was used to calculate ground truth, and equation 6 was used for window
prediction. The GRU-based model is likely to identify several frames besides the actual injected
frame as weak anomalies because the injected frame might create several new (anomalous) CAN
ID sequences.

X = Number of attack framesinT (3)
9 ™ Total number of framesinT

__ Number of weak anomalies in T

XW ~ Total number of framesinT (4)

Ground truth = {9 = & 5

round truth = {O,Xg <€ %)
. . 1,X, =€

Window prediction = {0’ X, <€ (6)

5. EXPERIMENT RESULTS AND PERFORMANCE EVALUATION

A. Experimental Setting

We selected ten benign datasets for training and two benign datasets for ID-based threshold estimation.
To create the sliding window, ten IDs were selected from both sides of the target ID (n = 10). In
addition, the attack datasets were split into 100-millisecond windows to identify attack windows, which
can be considered smaller windows for near-real-time detection. This resulted in about 250 IDs per
prediction window. To make the model more lightweight, only 32 GRU nodes were used in the hidden
layer, followed by a 0.2 dropout layer. The ROAD, HCRL CH and HCRL SA datasets include 106, 27
and 45 nodes respectively (N). Based on a grid search, we observed that small anomaly thresholds
(e.g. 0.01) work well with a large N and large anomaly thresholds (e.g. 0.1) work well with a small N.
Hence, for the ROAD dataset, we set the anomaly threshold to 0.01, and for the HCRL datasets, the
threshold was set to 0.1. A grid search was used for hyperparameter optimization, and the same
parameters used in the ROAD dataset were also used for both HCRL datasets. We selected the best
smallest hyperparameters for n, the number of GRU nodes and the embedding size. The proposed
algorithm was implemented using Python 3.8 with TensorFlow and the Keras library. Experiments
were run on a MacBook Pro 2.2 GHz Intel Core i7 with 16 GB RAM.

We compared CAN-CID with two baseline methods, that is, the N-gram-based model (N-gram) [18]
and the transition matrix-based model (transition matrix) [19], where both models detect anomalies
based on observed benign ID sequences. In addition, we used a variant of CAN-CID, referred to as
CAN-NID (CAN Next ID prediction). CAN-NID is similar to CAN-CID, except the GRU model takes
context IDs from one side (previous IDs). Optimized hyperparameters for the CAN-NID model include
16 previous IDs as the context, two hidden GRU layers with 128 nodes and a dense output layer with
a softmax activation function. We also fine-tuned both baseline models for each dataset for a fair
comparison with our model. To evaluate the model performance, we used F1-Score, false-positive rate
(FPR) and false-negative rate (FNR) [33].

B. Results and Discussion

The detection accuracy of the GRU model of CAN-CID depends on the centre word prediction
accuracy. We expect accurate predictions for benign frames and inaccurate predictions for attack



frames to detect weak anomalies. To identify the optimum context from both sides of the centre ID,
we tested various IDs by targeting the highest prediction accuracy for a sample from the benign dataset.
Similarly, we tested a number of previous IDs for the CAN-NID GRU model. As shown in Figure 8,
the CAN-CID model achieved 80% accuracy, whereas CAN-NID achieved a maximum of 61%
accuracy for 16 context IDs. This highlights the effectiveness of the CBOW approach for CAN
sequences. However, achieving 100% prediction accuracy is not realistic due to randomness incurred
from jitters [28]. Considering the computational efficiency, we selected ten context words (79%) from
each side for CAN-CID and 12 context words (60%) for CAN-NID.

Figure 8: Comparison of centre ID (CAN-CID model) and next ID (CAN-NID model) prediction accuracy
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Word embedding size is another critical factor for accuracy and computational efficiency. Therefore,
we tested the CAN-CID model with different embedding sizes as shown in Figure 9. We observed that
accuracy improved up to an embedding size of 50. Therefore, we used 50 as the embedding size for
both GRU models.

Figure 9: Accuracy improvement with word embedding size for the CAN-CID model
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The F1-Scores, FPRs and FNRs of the CAN-CID and CAN-NID models and two baseline models are
presented in Table II and III for the ROAD dataset. Table II and III report fabrication and masquerade
attacks respectively, where the best performance (F1-Score) for each attack is shown in bold. As shown
in the tables, the CAN-CID model outperforms the two baseline models for every attack and achieved
a 100% F1-Score for six attacks. More importantly, this model achieved 0% or very small FPR and
FNR values, which are critical aspects for an IDS. The CAN-NID model also outperformed baseline
models for seven attacks. A fuzzing attack is relatively easy to detect due to illegal ID injection, and
therefore, all models except the transition model achieved an F1-Score of 100%. However, correlated
signal and correlated signal masquerade attack detection rates are low compared to other attacks. This
might be because they target the second most frequent ID which has a slightly random transmission
rate compared to other IDs. Therefore, it creates more sequences, which results in more valid sequences
being created, even for attack frames. This is a limitation of the proposed model whereby it achieves a
lower detection rate for attacks that target IDs with random transmission rates. However, a greater
number of CAN IDs have fixed transmission rates [6], and therefore, CAN-CID can detect the majority
of injection attacks. Further, since CAN IDs have fixed transmission rates, most ID sequences are likely
to be independent of driving behaviours. This makes the model resilient to such changes. However,
one of the limitations of the proposed model is that the CAN-CID model requires greater variety in the
benign data to minimise the unseen CAN ID sequences and time intervals.

Table II: Comparison of CAN-CID and CAN-NID models and baseline models detection performance of
fabrication attacks (ROAD dataset)

Attack Model F1-Score FPR FNR
Fuzzing Transition matrix 1% 48% 0%
N-gram 100% 0% 0%
CAN-NID 100% 0% 0%
CAN-CID 100% 0% 0%
Correlated signal Transition matrix 90% 10% 6%
N-gram 27% 0% 100%
CAN-NID 78% 21% 42%
CAN-CID 91% 2% 12%
Max speedometer Transition matrix 79% 27% 0%
N-gram 89% 0% 28%
CAN-NID 100% 0% 0%
CAN-CID 100% 0% 0%
Reverse light on Transition matrix 63% 57% 0%
N-gram 87% 0% 29%
CAN-NID 94% 1% 2%
CAN-CID 100% 0% 0%
Reverse light off Transition matrix 92% 9% 0%
N-gram 94% 0% 16%
CAN-NID 100% 0% 7%

CAN-CID 100% 0% 0%




Table III: Comparison of CAN-CID and CAN-NID models and baseline models detection performance of
masquerade attacks (ROAD dataset)

Attack Model F1-Score FPR FNR
Correlated signal masquerade  Transition matrix 38% 10% 86%
N-gram 27% 0% 100%
CAN-NID 64% 22% 57%
CAN-CID 89% 4% 10%
Max speedometer masquerade  Transition matrix 79% 27% 0%
N-gram 99% 0% 1%
CAN-NID 86% 0% 36%
CAN-CID 100% 0% 0%
Reverse light on masquerade ~ Transition matrix 63% 57% 0%
N-gram 87% 0% 29%
CAN-NID 94% 1% 2%
CAN-CID 99% 0% 1%
Reverse light off masquerade = Transition matrix 92% 9% 0%
N-gram 94% 0% 16%
CAN-NID 95% 0% 7%
CAN-CID 100% 0% 0%

Figure 10 and 11 present comparisons of the attack detection performance of time-based and GRU
models. Figure 10 shows fabrication attacks, whereas Figure 11 shows masquerade attacks. Typically,
the time-based model is capable of detecting fabrication attacks with a higher F1-Score, whereas it
fails to detect masquerade attacks. In contrast, the GRU model is capable of detecting both types of
attacks with a higher F1-Score.

Figure 10: Time-based and GRU model detection performance for fabrication attacks
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Figure 11: Time-based and GRU model detection performance for masquerade attacks
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As mentioned earlier, we used two HCRL datasets to evaluate the generalization capability of the
proposed model. The results from these two datasets are similar to the results we achieved from the
ROAD dataset (see Table IV and V). The CAN-CID and CAN-NID models outperformed both baseline
models. However, both baseline models showed comparatively better results for the HCRL datasets.
This might be due to the HCRL datasets having a limited number of IDs, thus limiting the number of
CAN ID sequences created compared to the ROAD dataset, which would help achieve higher
predictability.

Table IV: Comparison of attack detection performance of the CAN-CID and CAN-NID models and the
baseline models for the HCRL CH dataset

Attack Model F1-Score FPR FNR
DoS Transition matrix 75% 52% 0%
N-gram 96% 10% 0%
CAN-NID 97% 6% 0%
CAN-CID 99% 1% 0%
Fuzzy Transition matrix 91% 20% 0%
N-gram 94% 14% 0%
CAN-NID 97% 6% 0%
CAN-CID 100% 0% 0%
Gear Spoofing Transition matrix 98% 4% 0%
N-gram 98% 4% 0%
CAN-NID 99% 1% 1%
CAN-CID 100% 0% 0%
RPM Spoofing Transition matrix 86% 28% 0%
N-gram 98% 4% 0%
CAN-NID 99% 0% 2%

CAN-CID 99% 0% 2%




Table V: Comparison of attack detection performance of the CAN-CID and CAN-NID models and the baseline
models for the HCRL SA dataset

Attack Model F1-Score FPR FNR
Flooding Transition matrix 89% 28% 0%
N-gram 99% 2% 0%
CAN-NID 100% 0% 0%
CAN-CID 100% 0% 0%
Fuzzy Transition matrix 85% 28% 0%
N-gram 99% 1% 0%
CAN-NID 99% 1% 0%
CAN-CID 100% 0% 0%
Malfunction Transition matrix 68% 54% 0%
N-gram 84% 28% 0%
CAN-NID 91% 2% 17%
CAN-CID 96% 0% 4%

Detection latency is another criterion that we focused on improving as it is vital for moving vehicles.
Table VI compares average detection latency for CAN-CID, CAN-NID and the two baseline models.
The IDS monitors CAN traffic for 100 ms and gives the prediction in 10 ms. CAN-CID outperformed
CAN-NID and the two baseline models. The small amount of time required for monitoring and
prediction allows the vehicle driver or the vehicle itself to take appropriate countermeasures. Therefore,
considering the detection capability and latency, the proposed algorithm is a practically deployable
solution to detect cyberattacks on the CAN bus. Furthermore, using the CAN ID and time as the only
features of the ensemble model improves the detection latency in a resource-constrained environment.
Additionally, this model is likely to have a better generalization capability than a payload-based model
as data (payload) specifications might change significantly across different vehicle makes and models.

Table VI: Average detection latency comparison for a 100 ms prediction window

Model Detection latency (ms)
Transition matrix 36
N-gram 452
CAN-NID 12
CAN-CID 10

6. CONCLUSION AND FUTURE WORKS

Increased connectivity and complexity in modern automobiles create more attack surfaces that could
allow attackers to take control of automobiles. Cyberattacks on moving vehicles are highly dangerous
and could result in serious injury or even deadly consequences. Therefore, there is a dire need to
implement defence mechanisms against these attacks. Due to the complexity of CAN data and the
different characteristics of different types of potential attacks, this work demonstrates that the solution
requires an ensemble model with an optimized model for each field of CAN data.

Hence, we proposed CAN-CID, a novel context-aware ensemble IDS for CAN bus security. Our
experiments showed that the ensemble model improved the overall attack detection performance and
outperformed two baselines and a variant of the proposed model. Additionally, the proposed CAN-
CID model has a low detection latency, which is necessary for a deployable in-vehicle IDS. We also



identified potential future work to improve the model. We propose adding another model to the
ensemble model to monitor the CAN payload and thus detect more advanced attacks, which would not
change ID sequences or frequencies. Secondly, the IDS should be capable of adapting to new data.
Therefore, we plan to work on introducing streaming learning capability. Finally, we plan to deploy
the IDS and test it under real-world conditions. These additions to the proposed model will help keep
moving vehicles secure from an even wider range of in-vehicle network cyberattacks.
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