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Abstract—Image registration is a research field in which images must be compared 

and aligned independently of the point of view or camera characteristics. In some 

applications (such as forensic biometrics, satellite photography or outdoor scene 

identification) classical image registration systems fail due to one of the images 

compared represents a tiny piece of the other image. For instance, in forensics 

palmprint recognition, it is usual to find only a small piece of the palmprint, but in the 

database, the whole palmprint has been enrolled. The main reason of the poor 

behaviour of classical image registration methods is the gap between the amounts of 

salient points of both images, which is related to the number of points to be 
considered as outliers. Usually, the difficulty of finding a good match increases when 

the image that represents the tiny part of the scene has been drastically rotated. Again, 

in the case of palmprint forensics, it is difficult to decide a priori the orientation of the 

found tiny palmprint image. We present a rotation invariant registration method that 

explicitly considers that the image to be matched is a small piece of a larger image. 

We have experimentally validated our method in two different scenarios; palmprint 

identification and outdoor image registration. 

Keywords. Image Registration, Candidate Voting, Generalised Hough Transform, 
Hungarian method, Iterative Closest Point, Bipartite Graph Matching. 

1   Introduction 

Image registration is the process of transforming, comparing and integrating 

different sets of data into one coordinate system. Such data may be collected from 

multiple pictures, multiple points of view, or sensors working at different time lapses. 

It is used in computer vision, medical imaging, satellite data and image analysis in 

general. Interesting image registration surveys are [1] and [2], which explain the 

problematic of this goal. Certain areas of image registration in computer vision are 

interested in determining which parts of one image correspond to which parts of 

another image instead of searching for a whole correspondence. This problem often 

arises at early stages of applications such as scene reconstruction, object recognition 
and tracking, pose recovery and image retrieval. We define this specific type of image 

registration as “partial to full” image registration. The aim of this paper is to present a 

general method to solve this problem. 

One of the most frequent uses of partial to full image registration is found on 

biometrics for forensic applications. In recent years, the use of palmprint recognition 

has increased with respect to fingerprint recognition in forensics applications [3], 
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since the palm contains more features than the fingerprint, which makes the 

identification more feasible. Nevertheless, on crime scenes, it is more likely to find a 

small portion of the sample rather than the full palm. For these cases, partial to full 

image registration comes as a viable solution for this problem. Another current use of 

partial to full image registration is in applications that locate elements in outdoor 

scenes. By using only a small part of an image, for instance, a picture taken from a 

cell phone or an image obtained from social media, it is possible to find the location 
given a larger image, for instance, satellite or surveillance camera images. It is of 

basic importance to develop effective methods that are both robust in two aspects: 

being able to deal with noisy measurements and having a wide field of application. 

Image registration methods are usually composed of two steps [4]. First, some 

salient points are selected from both images by using a feature extractor. Several 

methods have appeared to select salient points in images [5], for example SIFT [6], 

Harris corners [7] or SURF [8]. These methods are based on assigning some local 

features (for instance, a vector of 128 features) to each extracted point or pixel of the 

image. Each local feature usually depends on the information on the image given a 

radius and an angle. The second step is based on finding a correspondence between 

the extracted salient points or deducting the homography that transforms the 

coordinate system of one of the images to the other. Bipartite (BP) [9], or a new 
version called Fast Bipartite (FBP) [10] [11], is one of the most important algorithms 

used to find a correspondence between points or between graphs, especially if the 

second order relations between points are considered. This algorithm obtains the point 

correspondences but it does not deduct the homography, and it uses the features 

located at each point (for instance SIFT or SURF) or even the second order features 

(the relations between points). It is based on reducing the current problem to a linear 

assignation problem, and applying a linear solver such as the Hungarian method [12] 

or the Jonker-Volgenant solver [13]. Conversely, Iterative Closest Point (ICP) [14] is 

an algorithm employed to minimize the difference between two clouds of points. ICP 

is often used to reconstruct 2D or 3D surfaces from different scans. It only uses the 

position of the points but not the local features. Nevertheless, it has as advantage that 
it does not only obtain the correspondences, but a homography as well. It is usual to 

use ICP together with RANSAC [15], a method which discards points that do not fit 

on the deducted homography, thus eliminating the spurious correspondences. Those 

are considered as noise in the images or sensors. Most novel algorithms consider the 

features of each point and also the homographies, such as [16]. Finally, the Hough 

transform [17] [18] [19] is a technique used to find imperfect instances of objects 

represented by sub-sets of salient points within an image by a voting procedure. This 

voting procedure is carried out in a parameter space, from which object candidates are 

obtained as local maxima in an accumulator space that is explicitly constructed by the 

algorithm for computing the Hough transform. 

In the literature, we find several examples that intend to solve the partial to full 
image registration problem, considering that the compared sets of salient points do not 

represent a unique coordinate system or set of characteristics. That is, they 

acknowledge that the salient points are grouped in several sets of points, since they 

assume different transformations or homographies are applied to each point set [20]. 

In [21], the method explicitly considered some different levels of occlusion and noise 



in the object’s contour. Moreover, some methods have been presented which register 

several images at a time [22] to increase the probability of finding successful matches. 

The main drawback of all of these methods is that their ability to obtain a 

trustworthy correspondence set strongly depends on the reliability of the tentative 

correspondences. In some image-registration based applications (forensic palmprint 

recognition, satellite images …), it is more usual to detect a tiny partial image rather 

than a full sample. In these cases, the tentative initial correspondences returned by the 
first step fail due to the great amount of outliers that have to be detected while 

comparing a tiny image to a full image. Thus, the second step (usually highly 

dependent on these initial correspondences) is not able to recover neither the correct 

correspondences nor the transformation matrix from the tiny image to the large one. 

Previous work has been developed exclusively for partial to full palmprint 

identification in high-resolution images. These methods differ from the general partial 

to full image scenario mainly because of the methods to pre-process the image and the 

features that can be extracted from palms. While the general applications extract 

image features (e.g. corners [7], SIFT [6] or SURF [8]), in the case of palmprint, 

minutiae are extracted. The main features of minutiae are the type of minutiae 

(terminal or bifurcation) and the directional angle. 

A first approach of partial to full palmprint matching was presented by Jain & 
Demirkus in [23]. The method consists of three major components: 1) Latent region 

of interest detection, which is only applied to the full palmprint image. 2) Feature 

extraction applied to both images. 3) Feature matching applied to both sets of 

features. Since it is generally know that the partial palmprints come from specific 

regions of the palm (i.e. thenar, hypothenar and interdigital), these regions are 

automatically detected, and features from these regions are utilized in the matching 

phase. The feature extraction phase obtains the SIFT features and the minutiae as 

well. In the feature matching phase, minutiae and SIFT matchers are used in parallel 

to obtain two different match scores; the score-based fusion is utilized to obtain the 

final match score. They reported an accuracy of 96% when performing a weighted 

fusion of minutiae and SIFT matching for synthetic partial palmprints of 500x500 
pixels. When only using the minutiae features, the recognition rate was around 82%. 

Acknowledging that SIFT features could not be extracted from latent partial 

palmprints, Jain & Feng [24] presented a method exclusively for latent partial to full 

palmprint matching based in minutiae points and orientation field. The alignment is 

rigid and based on most similar minutiae pairs. Since latent palmprints are more 

difficult to match than synthetic palmprints, the accuracy decreased to 78.7% using 

larger partial palmprints (512x877 pixels in average). 
In [25], Dai & Zhou presented a method based in minutiae points, ridge density, 

map, principal map and orientation field. The alignment is rigid and the matching is 

made through the Hough transform.  Even though they achieve a recognition rate of 

91,7% using synthetic partial palmprints of variable size, it is slow in computation. 
One year later, Dai et. al [26]presented a method which uses the average orientation 

field for coarse full palmprint alignment and the Generalized Hough Transform for 

fine segment level alignment, although it needs a manual alignment for partial 

palmprints. It has an accuracy of 91,9% with a slight improvement of the 

computational speed. 



This paper presents a general method to perform partial to full image registration 

that we have called PF-Registration. We have applied different well-known 

techniques such as the Hough transform [17] [18], FBP [10] [11] and ICP [14]. Since 

it is not our interest to develop a method that only applies for palmprint applications 

we present, besides of our experiments on palmprints, a case of tiny area detection in 

large outdoor scenes. 

The outline of our work is the following. In section 2, we describe our method and 
its computational complexity. In section 3, we validate our method using palmprint 

identification and outdoor scene recognition applications. Finally, we conclude the 

paper in section 4. 

2 Partial to Full Image Registration 

Consider we want to align an image 𝑃 that shows a tiny part of another image 𝐹. 

Both images are represented by their salient points, (𝑥𝑃 , 𝑦𝑃) = {(𝑥1
𝑃 , 𝑦1

𝑃),

… , (𝑥|𝑃|
𝑃 , 𝑦|𝑃|

𝑃 )} and (𝑥𝐹 , 𝑦𝐹) = {(𝑥1
𝐹 , 𝑦1

𝐹), … , (𝑥|𝐹|
𝐹 , 𝑦|𝐹|

𝐹 )} together with some features 

extracted at the salient points𝑓𝑃 = {𝑓1
𝑃 , … , 𝑓|𝑃|

𝑃 } and 𝑓𝐹 = {𝑓1
𝐹 , … , 𝑓|𝐹|

𝐹 }. The number 

of salient points is |𝑃| and |𝐹|, respectively. 

The method we propose is based on two main steps. In the first step, 𝑘 positions 
(𝑥1

𝑐 , 𝑦1
𝑐), … , (𝑥𝑘

𝑐 , 𝑦𝑘
𝑐) on the full image 𝐹 are selected as candidates to be the centre 

of the partial image 𝑃. Moreover, the full image 𝐹 is split in sub-images 𝐹1, … , 𝐹𝑘, in 

which the centre of each image 𝐹𝑎 is the candidate position (𝑥𝑎
𝑐 , 𝑦𝑎

𝑐). Each split image 

𝐹𝑎 is represented by their set of salient points(𝑥𝐹𝑎 , 𝑦𝐹𝑎) = {(𝑥1
𝐹𝑎 , 𝑦1

𝐹𝑎),

… , (𝑥|𝐹𝑎|
𝐹𝑎 , 𝑦|𝐹𝑎|

𝐹𝑎 )} and also their corresponding set of features 𝑓𝐹𝑎 = {𝑓1
𝐹𝑎 , … , 𝑓|𝐹𝑎|

𝐹𝑎 }. 

Due to the nature of the method, discrepancies may appear on the number |𝑃|of 

extracted salient points in the partial image and the number |𝐹𝑎| of extracted points in 

the split ones. Moreover, |𝐹| ≤ ∑ |𝐹𝑎|𝑘
𝑎=1 , since the split images can overlap. 

In the second step, the algorithm seeks for the best alignment between the salient 

points (𝑥𝑃 , 𝑦𝑃) of the partial image 𝑃 and the salient points (𝑥𝐹𝑎 , 𝑦𝐹𝑎) of each of the 

split images 𝐹1, … , 𝐹𝑘. To obtain these alignments, not only the salient point positions 

are used, but also their extracted features, more precisely, features 𝑓𝑃  and 𝑓𝐹𝑎. Thus, 

𝑘distances 𝐷1, … , 𝐷𝑘, together with 𝑘 correspondences 𝑙1, … , 𝑙𝑘 and 𝑘 alignments 

(also called homographies) 𝐻1, … , 𝐻𝑘 are computed.  At the end of this second step, 

the method selects the image that obtains the minimum distance 𝐷𝑃,𝐹and returns the 

alignment 𝐻𝑃,𝐹and the correspondence 𝑙𝑃,𝐹between𝑃 and 𝐹thatobtains this distance. 

On the following subsections we will explain in a deeper form each of the two steps 

of our PF-Registration method, which scheme is shown in Figure 1. 

 



 
Figure 1. Diagram of the PF-Registration method. 

2.1 Selecting position candidates 

Figure 2 shows the main structure of the first step of our method. It is based on a 

Generalized Hough Transform [17], [18], [19]. As commented in the previous section, 

we assume the |𝑃| and |𝐹| salient points (positions and features) of both images have 

been previously extracted. 

 
Figure 2. Diagram of Step 1. 

 

The aim of the Candidate Centre module is to fill the|𝑃|𝑥|𝐹| matrix G[i, j].  Each 

cell of this matrix represents the position (𝑥𝑖𝑗
𝐶 , 𝑦𝑖𝑗

𝐶 )on the full image 𝐹 that the centre 

of the partial image (𝑥̅, 𝑦̅) would obtain if the point (𝑥𝑖
𝑃 , 𝑦𝑖

𝑃) on the partial image 

where mapped to the point (𝑥𝑗
𝐹 , 𝑦𝑗

𝐹)on the full image. There are several forms to 

obtain these centres [19], which may use only one or several points, and also some 

information extracted from the features, such us angle information. The aim of this 

module is to detect the spatial relations on both images. If 𝑠 points in 𝑃 and 𝑠 points 

in 𝐹 have the same relative position, then 𝑠 cells of G[i, j]will have the same value. 

When matrix G is filled, then the Voting and Sorting module generates an ordered 

list 𝐶of the positions(𝑥𝑖𝑗
𝐶 , 𝑦𝑖𝑗

𝐶 ) found inG, where 𝐶 = {(𝑥1
𝑐 , 𝑦1

𝑐), … , (𝑥𝑇
𝑐 , 𝑦𝑇

𝑐 )} through a 

clustering and voting process. List 𝐶 is set in a descendent order. That is, the positions 

with the most votes are the first ones. The voting process counts the number of 

centres, and also checks that their features are considered to be similar enough 

(distance smaller than a threshold 𝑇𝑓). To do so, an additional clustering process is 

performed that checks whether two centre points (𝑥𝑖𝑗
𝐶 , 𝑦𝑖𝑗

𝐶 ) and (𝑥𝑖′𝑗′
𝐶 , 𝑦𝑖′𝑗′

𝐶 )have to be 

considered the same since they are close enough. That is, if their spatial distance is 

lower than a spatial threshold 𝑇𝑠. Thus, the Voting and Sorting module counts and 



orders the cells in G such that 𝑑𝑖𝑠𝑡𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ((𝑥𝑖𝑗
𝐶 , 𝑦𝑖𝑗

𝐶 ), (𝑥𝑖′𝑗′
𝐶 , 𝑦𝑖′𝑗′

𝐶 )) < 𝑇𝑠 and 

𝑑𝑖𝑠𝑡𝑓𝑒𝑎𝑡𝑢𝑟𝑒(𝑓𝑖
𝐹 , 𝑓𝑗

𝑃) < 𝑇𝑓. Both distances, that are application dependent, are 

normalised to be independent on the scale, rotation and global feature distortions. 

Finally, with the best 𝑘 candidates to be the centre of the partial image on the full 

image, the set of points (𝑥𝐹 , 𝑦𝐹) and the set of features 𝑓𝐹 are split in 𝑘 point sets 

(𝑥𝐹𝑎 , 𝑦𝐹𝑎), 1 ≤ 𝑎 ≤ 𝑘 and 𝑘 feature sets 𝑓𝐹𝑎 , 1 ≤ 𝑎 ≤ 𝑘. Each point in (𝑥𝑖
𝐹 , 𝑦𝑖

𝐹) is 

included in the set 𝐹𝑎 if 𝑑𝑖𝑠𝑡𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ((𝑥𝑖
𝐹 , 𝑦𝑖

𝐹), (𝑥𝑎
𝐶 , 𝑦𝑎

𝐶)) ≤ 𝑇𝑟 . The threshold 𝑇𝑟 

represents the maximum radius of the set, meaning the maximum distance between 

any point and the centre of the set. Usually, it is determined depending on the radius 

of the partial set (𝑥𝑃 , 𝑦𝑃). Parameter 𝑘 is application dependent and it is usually a 

trade-off between runtime and accuracy. 

2.2 Best candidate selection through multiple correspondences 

Figure 3 shows the second step of our registration method. 

 

 
Figure 3. Diagram of Step 2. 

 

In this second step, the method first seeks for the distances 𝐷𝑎 = 𝑑𝑖𝑠𝑡(𝑃, 𝐹𝑎); 1 ≤
𝑎 ≤ 𝐾 and the  correspondences 𝑙𝑎 between the points in each set, and also the 

homographies 𝐻𝑎 that transform 𝑃 to 𝐹𝑎. Several algorithms can be used to find these 

correspondences and homographies. These algorithms use the positional information 
(𝑥𝐹𝑎 , 𝑦𝐹𝑎) and (𝑥𝑃 , 𝑦𝑃) and also their features 𝑓𝐹𝑎 and 𝑓𝑃 . For example, the 

Hungarian method [12] or its upgrade [13], the ICP [14] (where no outliers are 

considered), the RANSAC method [15] that considers the presence of outliers, the 

Bipartite Graph Matching [9],[10], [11]that considers second order information, and 

more sophisticated ones [16]. Even a greedy algorithm that simply selects the best 

option without considering the other candidates could be used. 

Given the data obtained from the Matching module, we wish to select the set of 

points (𝑥𝐹𝑎 , 𝑦𝐹𝑎) that obtained the minimum distance 𝐷𝑎. This is because we assume 

𝐷𝑎 is agood enough approximation of𝑑𝑖𝑠𝑡(𝑃, 𝐹). Moreover, we also assume the 

correspondence an alignment (homography) between 𝑃 and 𝐹 approximates the 

correspondence 𝑙𝑎 and homography 𝐻𝑎. Therefore, 𝑙𝑃,𝐹 = 𝑙𝑎 and 𝐻𝑃,𝐹 = 𝐻𝑎. 

To conclude, breaking down the full image into a set of candidates instead of 

performing straightforward partial to full comparison has two important advantages. 

On the one hand, the computational cost of obtaining the 𝑘 distances 𝐷𝑎 is lower than 

obtaining directly the value 𝐷𝑃,𝐹. On the other hand, our method obtains a more 



precise local minimum, since we only use a certain amount of salient points for each 

match. In the next sub-section, we discuss the aforementioned statements. 

2.3 Computational Complexity 

In this section we show the computational complexity of each module of our 

method. The first step of the method is the Candidate Centre module, where we seek 

for 𝑘 candidate positions where the partial is found over the full image. The 

complexity cost of this module is 𝑂(|𝑃| ∙ |𝐹|), since the calculation of matrix 𝐺 

depends solely on the number of salient points extracted in partial image 𝑃 and full 

image 𝐹. Afterwards, the Voting and Sorting module generates a list of the centres 

according to the voting frequency. Once again, an 𝑂(|𝑃| ∙ |𝐹|) complexity is derived, 

since this process requires to find the best 𝑘 candidates within matrix𝐺.At the end of 

step 1, we encounter the Splitting module, where 𝑘 partial images 𝐹1,…,𝐾  are created 

from the full one. The complexity of this module is 𝑂(𝑘 ∙ |𝑃|), since this process is 

executed 𝑘 times, and each 𝐹𝑎 has, on average, |𝑃| salient points. 
On the second step, we defined the Matching and Minimisation modules. The first 

one involves the use of a matching method to find the correspondence, the 

homography and the distance between the tiny image and the 𝐾 partial images derived 

from 𝐹.The module’s computational complexity is dependent of the selected 

matching method. For example, the complexity of using the Hungarian method is 

𝑂(𝑘 ∙ (|𝑃|)3). Meanwhile, the Minimisation module has a constant computational 

complexity since the minimum distance𝐷𝑎 with its corresponding 𝑙𝑎 and 𝐻𝑎 is 

selected in parallel with the previous module. 

All in all, the highest computational complexity of our method depends on the 

Matching module. If we use the Hungarian method (one of the simplest methods) the 

complexity is 𝑂(𝑘 ∙ (|𝑃|)3). The computational complexity of a classical registration 

depends on the matching method, and so it is 𝑂((|𝐹|)3) if the Hungarian method is 

used. Since it is usual to have a small value of 𝑘 (for instance equal or lower than 4) 

and considering we assume |𝑃| ≪ |𝐹|, then 𝑂(𝑘 ∙ (|𝑃|)3) ≪ 𝑂((|𝐹|)3). This 

inequality makes us realise that our method has an important speedup with respect to 
a general image registration method.  

3 Experimental validation 

 We have experimentally validated our method on two distinct databases, which 

are a palmprint database and an outdoors database. Moreover, we have tested 

different matching algorithms for the Matching module. In both experiments, we 

considered 𝑘 = 4 (number of tentative centres). 

3.1 Matching Method Selection through a Palmprint Database 

 To evaluate the efficiency of the PF-Registration method in a standalone situation, 

the only modules throughout our method that we have to define are the point extractor 

and the matching algorithm. The other modules are independent of the application. 

On the one hand, we used the extractor presented in [25], [26] to obtain the salient 

points from each image (both in the partial and the full images). On the other hand, 



we used the Hough method proposed in [28], the Iterative Closest Points method 

(ICP) [12] and the Fast Bipartite algorithm (FBP) [10] as the matching algorithms to 

be compared. The first method was considered since it is able to work with few 

salient points and it is a state of the art method used for matching. Nevertheless, it has 

not the ability to reject outliers, thus we are interested in seeing if the difference 

between its performance and the other two algorithms is significant. The second 

algorithm, ICP, was selected since it is a fast and general method used to match 
salient points. Finally, the FBP algorithm was selected since it is a fast and efficient 

matching algorithm, which is capable to deal with outliers. 

 We used images contained in the Tsinghua 500 PPI Palmprint Database [25], [26]. 

It is a public high-resolution palmprint database composed of 500 palmprint images 

of 2040 x 2040 resolution and captured with a commercial palmprint scanner from 

Hisign. We selected the first 10 subjects of the database [27]. From each of these 

subjects, 8 images of the same person are enrolled. Then, we considered the first four 

palmprints belong to the reference set, and the last four belong to the test set. 

Therefore, the full palmprints are the same as the reference set (figure 4.a) and the 

partial palmprints are a circular patch of a palmprint on the test set (figure 4.b). The 

partial palmprints have been extracted given a variable radius from 0.5 to 2.5 cms and 

a random minutia as the centre of the patch. Full palmprints have an average of 800 
minutiae. 

 

Figure 4.a Some images from the reference set, which is composed of 40 
palmprints. 

 

 



 
Figure 4.bTest set composed of 9x40 patches of different radius extracted from 

full palmprints. 

 

To summarise, we have 40 full images on the reference set and other 40 in the test set. 

From the latter set, by cutting the 9 circular patches (radius 0.5,0.75, . . . ,2.25,2.5 
centimetres), we create a total of 360 partial palmprints. We compare every circular 

patch with every image on the reference set, thus computing a total of 

40x40x9=14’440 comparisons (1’600 per radius). This process is repeated per each of 

the three matching algorithms. 

Following the same nomenclature as section 2, two minutiae 𝑚𝑖
𝑃 and 𝑚𝑗

𝐹𝑎 extracted 

from palmprints 𝑃 and 𝐹𝑎 are represented by positions (𝑥𝑖
𝑃 , 𝑦𝑖

𝑃) and (𝑥𝑗
𝐹𝑎 , 𝑦𝑗

𝐹𝑎) and 

two features 𝑓𝑖
𝑃 = (𝜃𝑖

𝑃 , 𝑡𝑖
𝑃) and 𝑓𝑗

𝐹𝑎 = (𝜃𝑗
𝐹𝑎 , 𝑡𝑗

𝐹𝑎). Feature 𝜃𝑖 represents the directional 

angle of the ridge at the minutia point, and 𝑡𝑖 represents the type of minutia 

(termination or bifurcation) [17]. If both minutiae belong to the same type then 𝑡𝑖
𝑃 =

𝑡𝑗
𝐹𝑎 and the distance is defined as 𝑑𝑖𝑠𝑡𝑓𝑒𝑎𝑡𝑢𝑟𝑒(𝑓𝑖

𝐹𝑎 , 𝑓𝑗
𝑃) = 𝑐𝑦𝑐𝑙𝑖𝑐𝑎𝑙_𝑑𝑖𝑠𝑡(𝜃′𝑖

𝐹𝑎 , 𝜃′𝑗
𝑃). 

Otherwise, these minutiae cannot be mapped and so, 𝑑𝑖𝑠𝑡𝑓𝑒𝑎𝑡𝑢𝑟𝑒(𝑓𝑖
𝐹𝑎 , 𝑓𝑗

𝑃) = ∞. 

Minutiae angles have been normalised with respect to the average angle to be, to the 

most, independent of the rotations, 𝜃′𝑖
𝑃 = 𝜃𝑖

𝑃 − 𝜃̅𝑃 and 𝜃′𝑖
𝐹𝑎 = 𝜃𝑖

𝐹𝑎 − 𝜃̅𝐹𝑎. 

The distance between positions is defined as 𝑑𝑖𝑠𝑡𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ((𝑥𝑖
𝑃 , 𝑦𝑖

𝑃), (𝑥𝑗
𝐹𝑎 , 𝑦𝑗

𝐹𝑎)) =

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛_𝑑𝑖𝑠𝑡 ((𝑥′𝑖
𝑃, 𝑦′𝑖

𝑃), (𝑥′𝑗
𝐹𝑎 , 𝑦′𝑗

𝐹𝑎)), where (𝑥′𝑖
𝑃 , 𝑦′𝑖

𝑃) is the position of minutiae 

(𝑥𝑖
𝑃 , 𝑦𝑖

𝑃) in which a translation to the centre of the partial (𝑥𝐶 , 𝑦𝐶) and also a rotation 

has been applied. The angle of this rotation is the average angle 𝜃̅𝑃 of the minutiae in 

the partial palmprint. Similarly, (𝑥′𝑗
𝐹𝑎 , 𝑦′𝑗

𝐹𝑎) is the position of (𝑥𝑗
𝐹𝑎 , 𝑦𝑗

𝐹𝑎) translated to 

the centre of 𝐹𝑎. A rotation of the mean angle 𝜃̅𝐹𝑎 has been applied as well. That is, 

(𝑥′𝑖
𝑃 , 𝑦′𝑖

𝑃) = 𝑟𝑜𝑡𝑎𝑡𝑒𝜃̅𝑃((𝑥𝑖
𝑃 , 𝑦𝑖

𝑃) − (𝑥𝐶 , 𝑦𝐶)) for the partial and (𝑥′𝑗
𝐹𝑎 , 𝑦′𝑗

𝐹𝑎) =

𝑟𝑜𝑡𝑎𝑡𝑒𝜃̅𝐹𝑎 ((𝑥𝑗
𝐹𝑎 , 𝑦𝑗

𝐹𝑎) − (𝑥𝑎
𝐶 , 𝑦𝑎

𝐶)) for the full. 

 The distance between two minutiae 𝑚𝑖
𝑃 and 𝑚𝑗

𝐹𝑎is defined as follows 



𝑑𝑖𝑠𝑡(𝑚𝑖
𝑃 , 𝑚𝑗

𝐹𝑎) = 𝑤𝑓𝑒𝑎𝑡𝑢𝑟𝑒 · 𝑑𝑖𝑠𝑡𝑓𝑒𝑎𝑡𝑢𝑟𝑒(𝑓𝑖
𝐹𝑎 , 𝑓𝑗

𝑃) + 𝑤𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ·

𝑑𝑖𝑠𝑡𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ((𝑥𝑖
𝑃 , 𝑦𝑖

𝑃), (𝑥𝑗
𝐹𝑎 , 𝑦𝑗

𝐹𝑎))                                                                                                                         

(1) 

where weights 𝑤𝑓𝑒𝑎𝑡𝑢𝑟𝑒 and  𝑤𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛  depend on the data. Finally, given two partial 

palmprints, the distance between them is defined as follows: 

𝐷(𝑃, 𝐹𝑎) = min
∀𝑙𝑎

∑ 𝑑𝑖𝑠𝑡(𝑚𝑖
𝑃,𝑚𝑙𝑎(𝑖)

𝐹𝑎 )
𝑚𝑖

𝑃

|𝑃|
        (2) 

Figure 5 shows the recognition ratio of our method given the three selected matching 

algorithms respect to the patch radius (in centimetres). We have used the 3-nearest 

neighbours classification algorithm. Independently of the radius, FBP obtains the best 

results. Note the recognition ratio of FBP and ICP tends to increase when the radius 

increases but this is not the case for the Hough algorithm, which seems to keep the 

same recognition ratio for radius larger than 1.5 cms. 

 

 
Figure 5. Percentage of properly classified patches with respect to the radius (cms) 

 

Figure 6 shows the average runtime (in hours) to compare one tiny patch to the full 
reference set. We performed these tests using a PC with Intel 3.4 GHz CPU and 

Windows 7 operating system. As the radius increases, the gap between the runtime of 

these algorithms increases as well. 

 

 
Figure 6. Runtime to compare a patch in the whole database (in hours) with respect to 

the radius in (cms). 

A specific tiny to full palmprint matching was reported in [17]. They used the 

same database as we did and the experimental validation shows a recognition ratio of 



82% given an approximate radius of 1.75 cms (in fact, they used square patches 

instead of circular ones). They also report that their method does not obtain 

acceptable results given smaller patches. Note our method obtains a recognition ratio 

of 92% using FBP and 83% using ICP given the same radius. Therefore, although our 

method is not palmprint oriented, we obtain similar or higher recognition ratios.  

3.2 Image Recognition in Outdoor Scenes 

In this second experimentation, we used images contained in the “Sagrada 
Familia” database 0. It consists of 364 pictures of 480x718 pixels taken from all 

around the Sagrada Familia cathedral in Barcelona, Spain. These images are stored in 

a sequential order, thus knowing that the first image was taken right next to the 

second image in terms of proximity, and so on. We extract the 800 most important 

features from the top half of each image using SURF [8].The reference set is 

composed of the odd numbered images (figure 7.a). The test set is composed of 

patches extracted from the even numbered images. More precisely, from each even 

image, we selected 9 circular patches with radius from 20 to 100 pixels. The centres 

of the patches are the centres of masses of the salient points of the original images 

(figure 7.b). 
 

 
Figure 7.a Two examples of the reference set images with the extracted salient 

points.  

 



 
Figure 7.b Two examples of the test set images with the extracted salient points 

and the generated patches. 
 

We compared every circular patch in the test set to every image on the reference 
set, thus computing a total of 182x182x9=298’116 correspondences in total (33’124 

per radius). The FBP algorithm was used in the Matching module since it obtained the 

best results in the first experiments. 

Figure 8.a shows the obtained distances of all combinations of the reference set 

(182 original images represented as columns) and the test set (182 patches of radius 

2.5 represented as rows). Although the diagonal of the matrix in general has lower 

distance values, clearly the distance cannot be considered as a good metric to classify 

these patches. This is because there is a large variability on the number of salient 

points in the patches. In a similar way, figure 8.b shows the number of mappings 

between patches and images. FBP algorithm has the ability to discard outliers. Thus, 

figure 8.b shows the number of inliers considered by the FBP algorithm. In this case, 

the diagonal seems to be more visible since it tends to have more inliers than the rest 
of the cells. Finally, figure 8.c shows the obtained distance (figure 8.a) normalised by 

the number of inliers (figure 8.b). That is, we want to know the quality of the obtained 

mappings and we do not want the number of outliers to influence on the metric value. 

In this final metric, the diagonal clearly tends to have lower values than the rest of the 

cells. 

 
a) Distance matrix given the reference set and test set with radius 2.5 cms. 

 



 
b) Number of inliers between the reference set and test set with radius 2.5 cms. 

 

 
c) Distance normalised by the number of inliers given the reference set and test 

set with radius 2.5 cms. 

Figure 8. Three different metrics used to evaluate the quality of the tiny to full 

matching algorithm. 
 

Since images are ordered in the database considering the camera has been moving 

around the cathedral, images from the test set that are more similar to the reference set 

are the ones that are closer in its order. For this reason, in this experiment, we want to 

know how many times the system is able to identify a neighbour of the image 

(considering the order) as the one that obtains the minimum distance. We used the 

distance normalised by the number of inliers as a metric and the FBP as the matching 

algorithm. Figure 9 shows the ratio of images that the closest one is one of their 

neighbours and figure 10 shows the runtime in seconds to compute the comparison of 

one partial image against the whole reference set. We used a PC with Intel 3.4 GHz 

CPU and Windows 7 operating system. The insertion and deletion costs used on the 
FBP method were 0.1, and the whole features were normalized. 

 

 



 
Figure 9. Ratio of images that the minimum distance is achieved by one of their 

neighbours. 

 
Figure 10. Runtime in second to compare a patch against the whole reference set. 

 

Notice that there is practically no difference in accuracy between using the best 100 

salient points instead of the whole 800 salient points in the available dataset. 

Nevertheless, in terms of runtime, the difference is drastically larger. Considering that 

the random chance of obtaining the correct result is 
2

182
≅ 0,11 and that the sample 

sizes are tiny (e.g. a 20 pixel radius derives in approximately 5-10% of the full 

image), we believe that our reported accuracy is good when using a high quality and 

real image database with no previously established oracle. Besides, our tiny to full 

matching is performed between two images taken from different perspectives. 

4 Conclusions 

Several methods have been presented to solve image registration. Some of them 

are general methods applicable to a large spectrum of problems but other ones are 

application dependent. In some cases, image registration is based on finding a tiny 

patch of the image into a larger one. In these cases, most of the methods (general 

methods or application dependent ones) that do not consider this specific feature do 

not obtain optimal results. This paper presents a non-application dependent method 

that specifically considers the case that one of the images is a tiny part of the other 

one. It is based on two main steps that involve a matching and voting process. 

In the experimental section, we have shown the functionality of the method in two 

completely different applications, palmprint recognition and outdoor scenes detection. 



We have deducted the Fast Bipartite Graph is the matching algorithm that has 

achieved a higher accuracy in a reduced runtime. In the specific palmprint 

experiments, we have compared our method to another one that it was designed to 

specifically compare tiny to full palmprints. Results show that we obtain similar 

accuracies although our method can be applied to a larger set of frameworks. 
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