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Abstract
Presentation attacks are becoming a serious threat to one of the most common biometric applications, namely face recogni-
tion (FR). In recent years, numerous methods have been presented to detect and identify these attacks using publicly avail-
able datasets. However, such datasets are often collected in controlled environments and are focused on one specific type of 
attack. We hypothesise that a model’s accurate performance on one or more public datasets does not necessarily guarantee 
generalisation across other, unseen face presentation attacks. To verify our hypothesis, in this paper, we present an experi-
mental framework where the generalisation ability of pre-trained deep models is assessed using four popular and commonly 
used public datasets. Extensive experiments were carried out using various combinations of these datasets. Results show 
that, in some circumstances, a slight improvement in model performance can be achieved by combining different datasets 
for training purposes. However, even with a combination of public datasets, models still could not be trained to generalise 
to unseen attacks. Moreover, models could not necessarily generalise to a learned format of attack over different datasets. 
The work and results presented in this paper suggest that more diverse datasets are needed to drive this research as well as 
the need for devising new methods capable of extracting spoof-specific features which are independent of specific datasets.

Keywords Presentation attack detection · Data aggregation · Unseen attacks

Introduction

Face Recognition (FR) has become one of the most popular 
biometric modalities, having improved significantly over the 
years. However, FR systems are prone to various attacks, 
degrading system reliability and security. Presentation 
Attacks (PA) are ubiquitous among these attacks. Unfortu-
nately, PAs have become a profound threat to FR systems. 
PAs are the imitation of genuine user faces in the form of a 
photo, video, or mask. Imposters attempt to circumvent FR 
systems using such PA variants.

Using these PAs, imposters can either impersonate or 
obfuscate [1]. Impersonation is the process of attaining 
access through FR systems, using the replica of genuine 
facial features. By obscuring a user’s identity, obfuscation 
enables them to pass a security system unnoticed. There are 
two types of PAs: 2D attacks and 3D attacks [2]. Photo and 

video attacks are 2D attacks, whereas 3D masks and make-
up attacks are 3D attacks. Online portals are attacked using 
simple attacks, such as photos or videos. During border con-
trol scenarios, imposters use more sophisticated attacks such 
as silicon masks or make-up to fool security systems.

With a wide variety of existing attacks and an unlim-
ited potential for new ones to emerge in the future, PAs 
are extremely diverse. Photo attacks have different vari-
ants, such as warped, printed, eye-cut, and displayed pho-
tos [3]. Even within each variant of attacks there will be 
differences based on domain-dependent features. These 
domain-dependent features include capturing device, the 
material used for printing, illumination, resolution, dis-
play device, and the physical environment also causes 
variance. Video attacks have variants based on resolution 
and display devices. Manufacturers use distinct materi-
als to make masks. Paper masks and wax masks are rigid 
masks, whereas silicon masks and rubber masks are non-
rigid masks [4]. Flexible masks like silicon masks are much 
harder to detect because of their close similarity to human 
skin texture and appearance. Photo and video attacks are 
effortless to reproduce. The seamless access to personal 
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images and videos through social media also helps in rep-
licating 2D attacks with ease. So much diversity among  
PA techniques presents a significant challenge to PA detec-
tion methods. Successful Face Presentation Attack Detection 
(FPAD) models need to generalise across as many existing 
PA techniques as possible. In addition, these models should 
generalise across various domain-dependent features.

FPAD models employed hand-crafted features in early 
research. These features were classified using traditional 
machine learning techniques such as Support Vector 
Machine (SVM) and Random Forest (RF). Local Binary Pat-
terns (LBP) [5–7], Histogram of Oriented Gradients (HOG)  
descriptors [8, 9], Speeded-Up Robust Features (SURF) [10], 
and Difference of Gaussian (DoG) [11, 12] are all examples 
of hand-crafted features. These methods performed well in  
intra-dataset evaluation with public Face Anti-Spoofing (FAS)  
datasets. However, hand-crafted features, especially textural 
features, can be specific to the conditions captured within 
individual datasets, and the traditional machine learning 
classifiers further accentuated this.

Convolutional Neural Networks (CNN), with their excep-
tional inherent feature extraction capability, improved PA 
detection [13, 14]. CNN-based methods included transfer 
learning, anomaly detection [15], auxiliary supervision [16, 
17], few-shot and zero shot methods [18], and multi-modal 
methods [19]. Within transfer learning, there are two further 
categories: domain adaptation [20] and domain generalisa-
tion [21].

Although CNN-based models demonstrated impressive 
intra-dataset performances, they were not able to gener-
alise against unseen attacks. Existing models might have 
used available public FAS datasets to train the model [22]. 
These datasets have limited variance in terms of attacks and 
domain-dependent features. In contrast, attacks are more 
diversified in real-life scenarios. They differ in attack types 
and domain features. Hence, models trained on existing data-
sets may not generalise against such unseen attacks, or even 
known attack formats in new physical environments. As a 
result, the reliability of the FR system deteriorates in prac-
tical applications. Moreover, emerging novel attacks have 
become a major threat to the generalisation capability of 
deployed FPAD models. This has led to further investiga-
tion of the generalisation problem in FPAD [23]. One way to 
tackle the challenge of generalisation in FPAD is to produce 
a large and comprehensive dataset with many diverse attack 
variants, simply by aggregating existing datasets. Hence, the 
impact of data aggregation is investigated in this article, to 
address generalisation of deep transfer learning models in 
FPAD context.

This article extensively evaluates the performance and 
generalisability of models trained on aggregated data-
sets. Pre-trained VGG-16, ResNet-50, Inception V3, and 
DenseNet-121 models were trained on NUAA, CASIA, and 

Replay Attack datasets and their combinations. The prime 
contribution of this paper is an experimental framework that 
evaluates how publicly available FAS datasets may be aggre-
gated to enhance inter-dataset performance.

The significant contributions of this article are:

– An experimental framework to assess the generalisation 
capability of deep transfer learning models.

– An aggregated dataset combining three popular FAS 
datasets to evaluate PA detection performance of deep 
transfer learning models.

– An extensive evaluation of the experimental framework 
using four FAS datasets and their combinations.

The experimental analysis in this paper opens up new 
research directions to improve generalisation in face pres-
entation attack detection.

The remaining part of the article is as follows: 
the “Related Works” section analyses existing literature 
which has used aggregated datasets and transfer learning 
for face presentation attack detection. The dataset, models, 
and experiments are described in the “Methods” section. A 
detailed discussion of the obtained results is presented in 
the “Results” section. The article is concluded in the “Con-
clusion” section suggesting future research directions.

Related Works

Presentation attack detection has attained significant 
improvement over the years, especially with CNN-based 
models. As described in the “Introduction” section, these 
models showed reduced generalisation capability against 
unseen attacks in real-life scenarios when compared with 
their benchmark statistics. The major cause for this deterio-
rated performance is the limited variance in training data-
sets. Hence, unseen attack detection across a wide range 
of attacks and across different datasets is still considered a 
challenging problem [23]. Public FAS datasets include only 
a few attack variants and domain-dependent features, such 
as illumination, settings, spoofing medium, and recording 
devices. Many of the existing FPAD models used one of 
these datasets for training. Hence, the models showed bias-
ing towards the training dataset, exhibiting reduced gener-
alisation against novel attacks.

There have been several studies exploring the concept of 
data aggregation to address the generalisation problem in 
FPAD. Costa-Pazo et al. [22] proposed an aggregated dataset 
to provide more variance in terms of attack types, lighting, 
recording devices, and resolution. The authors combined  
ten public datasets to build the GRAD-GPAD (Generalisation 
Representation over Aggregated Datasets for Generalised  
Presentation Attack Detection). They also used a uniform 
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protocol to evaluate the colour-based [24] and quality-based 
[25] models. This framework was further extended in [26] 
including demographic bias analysis and finer categorisa-
tion of PAs based on different factors such as resolution, 
spoofing medium, and materials. This enhanced aggregated 
dataset mimicked more realistic scenarios. Thus, the GRAD-
GPAD and protocols facilitated evaluation of generalisation 
capability the-state-of-the-art methods. However, this grand 
dataset did not include multi-spectral datasets because of 
data incompatibility.

Saha et al. [27] also addressed domain generalisation 
using multiple datasets. The authors used four public data-
sets: Replay Attack [5], CASIA [3], OULU-NPU [28], and 
MSU-MFSD [29]. Three datasets were included in the 
training set, whereas the fourth was used for evaluation. 
The model learned the features from the three training data-
sets as single domain features. Thus, the model could use 
more domain-dependent features, leading to better detec-
tion performance. Following the concept of dataset aggrega-
tion to improve domain generalisation, Nikisins et al. [25] 
combined three public datasets to illustrate the drawback of 
binary classification methods in detecting unseen PAs and 
evaluate their one-class classification model. The authors 
also established a specific evaluation protocol for the aggre-
gated dataset, combining Replay Attack [5], Replay-Mobile 
[30], and MSU-MFSD [29]. The train, development, and 
testing sets were disjoint sets in terms of attacks. The aggre-
gated dataset showed lower half total error rate (HTER) with 
image quality measure methods when all the PA samples 
were part of the training set. However, binary classifica-
tion exhibited poor performance on unseen attack detection. 
Authors of [31] used CASIA instead of Replay-Mobile to 
form an aggregated dataset. The authors of [32] and [33] 
used data aggregation in FPAD. Both of these works com-
bined the real faces from the datasets, keeping the attack 
faces from each dataset with different domain features dis-
persed. They adapted this procedure to attain a generalised 
feature space.

Transfer learning utilises learned knowledge from one 
task for other similar ones. It assists in mitigating overfit-
ting due to data limitations. Not only that, transfer learning 
saves computational resources as it avoids training deeper 
networks from randomised initial parameters. FPAD is a 
binary classification problem as it identifies if spoofing is 
present or not, and FPAD datasets are typically visible light 
spectrum, RGB images. Hence, a deep network that was 
trained for image classification with datasets like ImageNet 
[34] can be used to formulate a model to detect PAs. These 
pre-trained networks were used with fine-tuning either only 
top layers or a few convolutional layers with top layers.

In [14], Lucena et al. used transfer learning to address the 
FPAD problem. The authors fine-tuned a VGG-16 model 
that was pre-trained on ImageNet. Evaluation with a face 

spoof detection dataset demonstrated improved results 
over the existing the-state-of-the-art methods. Nagpal and 
Dubey [13] carried out extensive experiments using differ-
ent pre-trained models to detect spoofed faces. The authors 
observed that transfer learning with deep models provided 
better results than using these networks with random weights 
or training from the beginning. Yu et al. [35] proposed a 
face anti-spoofing model using neural architecture search 
and transfer learning. In [36], the authors used transfer learn-
ing and short wave infra-red (SWIR) images for FPAD. A 
pre-trained face recognition network was used for transfer 
learning. Authors of [37] adopted a novel method to detect 
spoofed faces using extracted intrinsic image features and 
transfer learning. ResNet-50 [38] was used for implement-
ing transfer learning which enhanced spoof detection using 
the extracted features from the datasets NUAA, CASIA, and 
Replay Attack. Tu and Fang [39] utilised transfer learning 
using ResNet-50 and the long short-term memory (LSTM) 
to address FPAD. Compared to the state-of-the-art meth-
ods using feature extraction and shallow networks, these 
transfer learning-based methods exhibited better detection 
performance.

George et al. [19] used Light CNN, which is a pre-trained 
FR model and the concept of domain-specific unit (DSU) to 
address FPAD. This method utilised a multi-modal dataset 
with four modalities. The low-level layers were re-trained 
using the new dataset and re-used the higher level weights. 
The extracted features from each modality data were con-
catenated together to form a final feature vector which was 
then passed to a fully connected layer of size 10 followed 
by sigmoid layer for classification. In this way, a pre-trained 
FR model was fine-tuned to adapt to the FPAD task using 
multi-modal data. Authors of [40] fine-tuned the face rec-
ognition CNN model pre-trained on an LWF [41] dataset, 
similar to the aforementioned [19], to address domain adap-
tation of PAs in NIR. The initial two convolutional layers 
and first fully connected layers were made trainable in the 
fine-tuning. This facilitated the pre-trained model adapta-
tion to the PAD task with NIR images. Even though the 
models were pre-trained on RGB data, the authors recorded 
a new NIR dataset with variance in illumination, environ-
mental settings, subject pose, appearance, and attack types. 
The model was able to detect photo and video attacks better 
than mask attacks.

The authors used the pre-trained FR model, Light CNN as 
a backbone/feature extractor to set up patch pooling concept 
to address FPAD, in [42]. Li et al. [43] proposed another 
dual mode method using NIR and RGB data to detect spoof. 
The authors used a light-weight network MobileNet-V3 as 
the backbone of the model. Each branch of the model was 
used to extract features from NIR and RGB data separately 
using this pre-trained model. The selected features were then 
passed to a softmax layer for classification.
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Even though existing literature has explored the concept 
of combining multiple datasets for training the FPAD model, 
they rarely included the NUAA imposter dataset. Various 
handcrafted feature methods and deep learning methods 
were evaluated using NUAA. Either official or customised 
partitions were used to evaluate these methods [44]. This 
article used transfer learning and the concept of data aggre-
gation to address the generalisation in FPAD. The experi-
ments used a combined training set of official training par-
titions from NUAA, CASIA, and Replay Attack. These 
three datasets have distinct 2D attack variants and domain-
dependent features.

Methods

The experimental framework in this article used transfer learn-
ing with binary classification to perform FPAD. Pre-trained 
deep networks, VGG-16 [45], ResNet-50 [38], Inception V3 
[46], and DenseNet-121 [47] were used for transfer learning.

Three widely known public datasets, NUAA [12], Replay 
Attack [5], and CASIA [3], were considered for these experi-
ments and forming aggregated datasets. These three datasets 
and their combinations were used for training. All three datasets 
followed their official train/test split. Real face images from the 
three datasets combined to form a real face class in an aggre-
gated dataset. Similarly, an attack class also was formed using 
attack images from these datasets. The combined train set pro-
vided different attack variants. For cross-dataset evaluation on 
this aggregated training set, SiW [48] test set was also used.

Aggregated Dataset

This experimental framework focuses on examining the 
impact of data aggregation on the generalisation of FPAD. 
To accomplish this task, an aggregate train set was con-
structed with NUAA, CASIA, and Replay Attack datasets’ 
train partitions. NUAA consists of print attacks. Replay 
Attack has video attacks. CASIA includes both photo and 
video attacks. CASIA has warped, print, eye-cut photo 
attack variants. Thus, the resulting aggregated train set has 
both video and photo attacks with variance in attack types 
and domain-dependent features.

The number of images in each class corresponding to 
three datasets and the combined dataset is shown in Table 1. 
In Fig. 1, the distributions of real and fake classes in indi-
vidual and aggregated dataset are presented. NUAA has 
almost equal number of real and fake class images in train 
set. However, CASIA and Replay Attack have more fake face 
images than real ones in train set. The aggregated train set 
includes 3959 real and 8769 fake face images.

Given the unique characteristics of each dataset, such as 
lighting, the spoofing medium, the environment, and the 

recording device, the combination of these datasets produces 
greater variance in both real and fake classes. As a result, 
the model can learn a wider range of features to distinguish 
between real and attack classes. Furthermore, it avoids 
overfitting due to subtle biases within a single dataset. The 
individual training sets from each dataset were combined to 
form a training set, as indicated in Fig. 1. The aggregated 
test set was also constructed in this manner. Each dataset 
was divided following the official train/test protocol. Con-
sequently, no mixing up of train and test set distributions 
occurred in the aggregated dataset. By keeping the distri-
butions consistent with the official protocol, even in the 
aggregated dataset, we maintain the challenges of domain 
generalisation inherent to individual datasets [44].

CNN Models

An FPAD determines the authenticity of detected faces. 
In essence, it involves binary image classification. With 
deep CNN models, FPAD has also achieved significant 
improvement, similar to any other computer vision task 
[13, 14, 49]. It must be noted, however, that deep neural 
networks require a substantial quantity of data to achieve 

Table 1  Number of real and fake images in three datasets and aggre-
gated dataset

Dataset Train Test

Real Fake Real Fake

NUAA 1743 1748 3362 5761
Replay Attack 1689 5261 1928 5645
CASIA 527 1760 824 2471
Aggregated dataset 3959 8769 6114 13877

Fig. 1  Class distribution in aggregated dataset
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desired performance. In order to solve such problems, trans-
fer learning has become increasingly popular. By freezing 
some layers of the network and retraining others on a new 
dataset from the new domain, transfer learning re-purposes 
an already learned network to perform a similar task. In this 
manner, a task may be accomplished with less training data, 
less time, and with higher accuracy. The majority of the FAS 
datasets are restricted in size. As a result, transfer learning 
was used to overcome this limitation.

The experimental framework in this article utilises trans-
fer learning to evaluate the aggregated dataset performance. 
For this purpose, we used pre-trained deep neural networks 
with architecture VGG-16 [14], ResNet-50 [37, 39], Incep-
tion V3 [13], and DenseNet-121 [16]. These models were 
popularly used and experimentally verified for FPAD in 
existing literature [49]. The networks used in the experi-
ments were all pre-trained using ImageNet [34]. Pre-trained 
models were loaded without output layers, freezing the top 
layers. The models used “ImageNet” weights. Top layers 
were fine-tuned using FAS datasets to perform PA detection.

Experiments

Extensive experiments were carried out to evaluate the PA 
detection with the aggregated dataset. The considered mod-
els were trained using three individual datasets, NUAA, 
CASIA, and Replay Attack and their various combinations. 
To assess the generalisation capability, cross-dataset evalu-
ation was also performed using a fourth dataset (SiW) test 
split. Thus, the impact of data aggregation was evaluated 
using this experimental framework and four datasets. The 
FAS datasets, transfer learning models, hyper-parameters, 
and experimental settings are described in the “Datasets” 
section and “Experimental Settings” section.

Datasets

The experiments used three FAS datasets. They were 
NUAA, CASIA-FASD, and Replay Attack. In existing litera-
ture, both traditional hand-crafted feature extraction methods 
and recent deep learning methods in FPAD have used these 
three datasets for evaluation. The different attack variants, 
test protocols, and lighting conditions also assist in creat-
ing more variance within the aggregated dataset. CASIA 
and Replay Attack datasets, as distributed, consist of videos. 
Frames were extracted with a rate of 2 fps and face detec-
tion was carried out on these frames. NUAA was accessed 
as face detected images, which are provided as part of the 
official dataset. These face detected images were resized to 
224 × 224 pixels. Official test/train partitions were used for 
each dataset. The experiments also used an SiW test set to 
perform cross-dataset evaluation on a combined train set 

consisted of NUAA, Replay Attack, and CASIA train sets. 
The facial images were extracted at a frame rate of 1 fps 
from each video to form this dataset. The SiW train set was 
unused. Table 2 shows the number of train and test images 
in each dataset, which were used in the experiments.

The NUAA imposter database contains authentic images 
as well as photo attack and covers samples of 15 individual 
subjects. In contrast to the training set, the official test set is 
considerably larger. The training set contains 3491 images, 
while the test set contains 9123 images. These images were 
extracted from videos recorded at three different sessions 
under different lighting conditions. However, the already 
extracted images after face detection are available to the 
public. In NUAA’s train partition, both classes have nearly 
the same number of images, whereas in the test set the attack 
images are much more numerous than the real face images. 
In terms of attack variants, it consists only of photo attacks. 
Despite these facts, NUAA remains popular among FPAD 
researchers [49–51].

CASIA-FASD has print attacks, warped photo attacks, 
cut photo attacks, and video attacks. Fifty subjects were rep-
resented with fake and real faces. There are three real face 
videos and nine fake face videos for each subject. The train 
set features 20 people. There are genuine and fake videos 
of 30 individuals in the test set. The train and test sets are 
disjoint in terms of subjects. There are three real face videos 
and 9 attack videos corresponding to each subject. Thus, the 
train set has 60 real face and 180 attack videos in total. The 
test set includes 90 real face and 270 attack videos. Like 
NUAA, CASIA lacks ethnically diverse subjects. In addi-
tion, CASIA includes seven test cases, including three attack 
types, three image quality levels, and the entire dataset. In 
this experiment, the entire dataset is used with the given 
partition based on the dataset protocol. As this dataset has 
more attack variants, including video attacks, it is widely 
used for evaluating FPAD models [52–54].

Replay Attack was created by using 50 identities. There 
were respectively 15 subjects for training, 15 subjects for 
development, and 20 subjects for testing. While record-
ing the Replay Attack dataset, printed images, mobile dis-
plays, and tablets were utilised. The three mediums were 
either fixed to a support or held by the operator during 
the recording process. Two types of recording environ-
ments were used to capture the videos, controlled and 
adverse. The controlled setting had a uniform background 

Table 2  Number of train and 
test images in each dataset

Dataset Train Test

NUAA 3491 9123
Replay Attack 6950 7573
CASIA 2287 3295
SiW 40790 34779
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and illumination using incandescent lamps, whereas the 
adverse setting had a non-uniform background and day-
light illumination. There are various PA types in this data-
set. Hence, it is popular among the FPAD researchers [55, 
56]. Both train and development sets have 60 real face 
videos and 300 attack videos. The test set consists of 80 
real face videos and 400 attack videos.

The Spoof in the Wild (SiW) [48] dataset consists of 
165 subjects from a more diversified ethnicity than the 
other datasets. There are 8 real face and 20 attack videos 
corresponding to each subject. Thus, the dataset has 4620 
videos. The dataset was made using 6 spoofing mediums. 
Four different sessions were used varying factors such as 
poses, illuminations, expressions (PIE), and distance-to-
camera. Videos were pre-processed by first using the frame 
rate to extract one image per second. Then, the face area 
was extracted using the annotations provided. To increase 
diversity of facial images, the face area was cropped to 
accommodate some background information. This was 
achieved by multiplying each bounding box with a random 
scaling factor between 1.1 and 1.4. Finally, images were 
resized to 224 × 224.

Experimental Settings

The experiments included intra-dataset and cross-dataset 
evaluations using individual datasets and their different 
combinations. To carry out cross-dataset evaluation on the 
aggregated train set, the SiW test set was used. Thus, each 
model was evaluated using the dataset combinations as in 
Table 3. Models were trained for 10 epochs with a batch 
size of 32. These parameters were the same for all clas-
sification models. A validation split of 20% of the train 
set was used while training the model. To compare the 
performance in binary classification ROC curve, accuracy, 
half total error rate (HTER), precision, recall, F1 score, 
false positive (FP), and false negative (FN) are used. The 
HTER is the average of false acceptance rate (FAR) and 
false rejection rate (FRR).

As presented in Table 1 and Fig. 1, two classes from 
three datasets were combined, and this aggregated train 
set was used to train the four models. For binary clas-
sification, there were real and fake classes irrespective 
of the actual dataset. The output layers in the base pre-
trained model were replaced with one dense layer with a 
size of 1000 and sigmoid activation function followed by 
a softmax classification layer, size 2. Binary cross-entropy 
was used as a loss function. The Adam optimiser [57] was 
used with all four models. The learning rate for VGG-16, 
ResNet-50, and DenseNet-121 was 10−5 . For Inception V3, 
the learning rate was 10−6.

Results

Extensive experiments and analysis were performed to 
investigate the influence of dataset aggregation in face pres-
entation attack detection. Considered pre-trained models in 
the experiments were trained with three public FAS datasets 
and their combinations as in Table 3. Both intra-dataset and 
cross-dataset evaluations were carried out to compare the 
model performance in FPAD. Intra-dataset evaluation results 
using individual and the aggregated datasets are presented 
in Table 4. Receiver operating characteristic curve (ROC) 
comparison of each model with all three datasets in intra- 
and cross-dataset evaluation scenarios is presented in Figs. 2 
and 3. CASIA ( 93.35% ) and Replay Attack ( 95.89% ) showed 
the best intra-dataset performance with DenseNet-121 in 
intra-dataset evaluation. In contrast, NUAA had the highest 
performance ( 82.61% ) with ResNet-50 in the intra-dataset 
evaluation.

The experimental framework also trained models with 
aggregated datasets. These models were then tested with 
individual test sets from CASIA, Replay Attack, NUAA, and 
with an aggregated test. In the aggregated dataset evaluations, 
NUAA datasets exhibited the lowest accuracy with more than 
40% HTER (Table 4). False Positive Rate (FPR) increased in 
the aggregated dataset evaluation on NUAA test sets. This 
increase in FPR caused the lower accuracy and higher HTER 
for NUAA with all four model architectures. On the other 
hand, CASIA and Replay Attack showed a decrease in FPR 
in the aggregated dataset evaluation. ResNet-50 with Replay 
Attack was an exception, where FPR increased from 16.65 
to 18.52% . As the FPR increased, it lowered the accuracy 

Table 3  Test set v/s train set combinations used in the evaluation

No. Train set Test set

1 NUAA NUAA 
2 Replay Attack
3 CASIA
4 Replay Attack NUAA 
5 Replay Attack
6 CASIA
7 CASIA NUAA 
8 Replay Attack
9 CASIA
10 NUAA+CASIA Replay Attack
11 NUAA+Replay Attack CASIA
12 CASIA+Replay Attack NUAA 
13 NUAA+CASIA+Replay Attack Replay Attack
14 NUAA+CASIA+Replay Attack CASIA
15 NUAA+CASIA+Replay Attack NUAA 
16 NUAA+CASIA+Replay Attack SiW
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slightly. With DenseNet-121, both FPR and False Negative 
Rate (FNR) decreased for Replay Attack in the aggregated 
dataset evaluation. These decreased FPR and FNR facilitated 
performance improvement in this specific evaluation. On the 
other hand, for CASIA, despite the decreased FPR, FNR dou-
bled in the same evaluation scenario, resulting only a slight 
improvement in accuracy (93.35% to 93.42%).

Cross-dataset evaluation results are shown in Table 5. 
Evaluation was carried out using individual datasets and 
their combinations for training (Table 3). To evaluate the 
performance of the aggregated dataset, an SiW test set was 
also used. The corresponding ROC is shown in Fig. 3d. 
It is evident from the plot that the cross-dataset perfor-
mance of the aggregated dataset is significantly low com-
pared to both intra-dataset performance and testing with 
other individual test. It would seem that SiW is different 
enough from NUAA, CASIA, and Replay Attack that even 
an aggregate training set will not enhance generalisation to 
any great extent. The FPR in detection is more than 50% 
in most of the testing scenarios regardless of the datasets 
used, which caused higher HTER.

When trained with aggregated train set and tested with 
aggregated test set, the models had FPR more than 40%. 
This FPR value was much greater than the FPR value of 
testing scenarios with Replay Attack and CASIA test sets. 

Adding the NUAA dataset while forming the aggregated 
dataset adversely effected the detection performance. This 
intra-dataset performance using aggregated datasets can be 
clearly demonstrated using the corresponding ROC, as in 
Fig. 2d. Unlike the intra-dataset evaluation on individual 
datasets, aggregated dataset performance diminished, even 
with DenseNet-121 (Table 4). For ResNet-50 and VGG-16, 
this aggregated data intra-dataset performance is near to 
NUAA intra-dataset performance. However, compared to 
the other two datasets, the overall intra-dataset performance 
using the aggregated dataset is low.

It is evident from Figs. 3 and 2 that DenseNet-121 was 
the best model in both intra- and the aggregated dataset 
evaluations for CASIA and Replay Attack. However, it was 
ResNet-50 for NUAA rather than DenseNet-121. NUAA 
performed the best in the aggregated dataset evaluation with 
the VGG-16 model. It is evident from the plots that perfor-
mance on NUAA is not as good as the other two datasets 
in both the evaluation scenarios. The cross-dataset perfor-
mance evaluation using the SiW dataset on the aggregated 
train set was even worse compared to testing the same model 
with other individual test sets. All the models exhibited very 
low detection performance in this specific evaluation. This 
indicates that data aggregation alone does not help generali-
sation against various attacks.

Table 4  Comparison of intra-dataset and the aggregated dataset evaluations. The highlighted values show the best performance, when tested 
with each dataset in intra and aggregated dataset evaluation

Train Test VGG-16 ResNet-50 Inception V3 DenseNet-121

ACC (%) HTER (%) ACC (%) HTER (%) ACC (%) HTER (%) ACC (%) HTER (%)

NUAA NUAA 73.19 28.41 82.61 19.08 67.48 37.00 80.79 17.40
Replay Attack Replay Attack 86.61 20.36 95.34 8.61 81.44 29.43 95.89 6.76
CASIA CASIA 86.97 22.14 92.92 13.61 81.98 27.16 93.35 12.85
Aggregated data NUAA 72.83 31.74 71.18 38.72 67.97 40.40 64.61 42.71
Aggregated data Replay Attack 86.84 18.69 93.72 10.30 79.50 27.64 97.32 4.37
Aggregated data CASIA 86.45 20.16 92.02 11.66 81.69 28.83 93.42 12.21
Aggregated data Aggregated data 79.981 25.770 83.177 26.574 74.584 34.100 81.447 25.528

Fig. 2  Intra-dataset evaluation ROC corresponding to individual and aggregated dataset
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Discussion

The aggregated dataset and cross-dataset evaluation results 
show that detection rates were reduced when tested with 
CASIA, Replay Attack, NUAA, and SiW test sets when com-
pared with models trained and tested on a single dataset. It 
clearly indicates that even though dataset attack variance and 
size improves with the aggregated dataset, it generally does 
not improve the detection performance on any component 
dataset. In fact, combining these datasets led to an increased 
FPR. Training with these combined datasets restricts the mod-
els from identifying real faces correctly. FPAD relies more on 
spoofing patterns and image quality features. As NUAA was 
recorded using a webcam, the image quality is lower compared 
to other datasets in the experiments. Similarly, CASIA also 
has images of three different qualities, including lower quality 
images. This quality variation in images influences the high-
frequency feature extraction while training the model. Regard-
ing transfer learning, the deep networks used in the experiment 
were pre-trained for image classification tasks. They extract 
deep, global features. However, FPAD may require shallow, 
local features to detect spoofing. These pre-trained image 
classification models might have failed to learn spoof-specific 

features to achieve better detection performance, instead rely-
ing on some dataset-specific features.

In all the evaluation scenarios, false positives were more 
significant than false negatives. This shows that even though 
attacks were detected, the models failed in identifying the 
genuine images, particularly those in NUAA. This influences 
the overall performance of these models. CASIA and Replay 
Attack facial images were extracted from raw videos using the 
same pre-processing methods. NUAA is available to the pub-
lic as pre-processed face detected images. These images were 
resized for experiments. This disparity between the NUAA 
dataset and other two datasets images may have influenced 
the classification performance.

The classification was carried out using four deep networks 
with different architectures. However, except DenseNet-121, 
other three models exhibited the same performance trend in 
the aggregated dataset evaluation scenario: the models trained 
and tested on the same datasets performed better than models 
trained on an aggregate dataset. Even DenseNet-121 followed 
the same trend with the NUAA dataset. This implies that com-
bining source domain solely cannot improve the detection per-
formance. The cross-dataset evaluation results presented in 
Table 5 support this.

Fig. 3  ROC of models trained on aggregated train set and tested on NUAA, Replay Attack, CASIA, and SiW test sets

Table 5  Cross-dataset evaluation results. The highlighted values represent the highest cross-dataset evaluation performance, of the model trained 
with the aggregated dataset

Train Test VGG-16 ResNet-50 Inception V3 DenseNet-121

ACC (%) HTER (%) ACC (%) HTER (%) ACC (%) HTER (%) ACC (%) HTER (%)

NUAA Replay Attack 49.95 50.46 56.68 49.81 32.13 45.54 54.38 41.10
CASIA 53.78 41.45 54.48 44.35 54.78 33.43 71.08 30.12

CASIA NUAA 68.39 34.07 59.05 52.94 69.30 37.53 59.37 50.38
Replay Attack 69.51 48.66 67.42 52.14 50.44 47.47 73.17 50.32

Replay Attack NUAA 57.71 52.24 59.26 53.08 63.38 49.68 61.93 50.96
CASIA 30.05 49.03 58.03 57.67 74.48 50.14 68.47 53.18

NUAA+CASIA Replay Attack 65.81 51.62 68.44 49.07 46.36 41.29 68.16 50.37
NUAA+Replay Attack CASIA 66.04 40.64 46.56 51.57 60.36 43.82 68.13 45.23
CASIA+Replay Attack NUAA 61.94 49.30 61.76 51.07 64.69 46.37 53.44 55.76
Aggregated data SiW 50.49 46.06 64.50 48.78 57.96 46.17 62.87 38.79
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With the combination of more datasets, handcrafted 
features were evaluated for generalisation capabilities [22] 
within the context of FPAD. Based on the results of this 
research, it was found that state-of-the-art methods with 
impressive intra-dataset performance are less generalisable 
in cross-dataset evaluation when used with a combination of 
heterogeneous sources. A variety of factors influence their 
performance, including their capture devices, display condi-
tions, and image quality. In contrast to this evaluation, the 
experiments in this article used binary classification using 
four pre-trained deep neural networks to detect PAs. It was 
evident from the analysis of experimental results that even 
deep learning frameworks were not capable of generalising 
to different distributions.

Conclusion

Face presentation attack detection was carried out using 
different publicly available datasets and their combina-
tions. Binary classification using transfer learning was 
utilised to detect attacks. For training, individual datasets 
and their combinations were used. An aggregated training 
set using the official training partitions of NUAA, CASIA, 
and Replay Attack was also formed to investigate the effect 
of data aggregation in FPAD generalisation. On the trans-
fer learning models, both intra-dataset and cross-dataset 
evaluations were carried out. The NUAA dataset exhibited 
lower performance compared to other two datasets in intra-
dataset, aggregated dataset and cross-dataset evaluations. 
The detection performance reduced when the models were 
trained with the aggregated training set and tested with test 
partitions from individual datasets. This shows that combin-
ing various source domains only is not sufficient to attain 
domain generalisation against unseen attacks. Our future 
work will examine how a model can be customised in such 
a way that it extracts the spoof-specific and domain invariant 
features to attain generalisation in this scenario. The results 
of this extensive experimental analysis show that there is 
much yet to be learned from further research in areas such as 
data imbalance, fine-tuning for domain adaptation, compres-
sion, and image quality in FPAD context.
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