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Abstract: Chlorophyll-a (Chl) retrieval from ocean colour remote sensing is problematic for relatively
turbid coastal waters due to the impact of non-algal materials on atmospheric correction and standard
Chl algorithm performance. Artificial neural networks (NNs) provide an alternative approach for
retrieval of Chl from space and results for northwest European shelf seas over the 2002–2020 period
are shown. The NNs operate on 15 MODIS-Aqua visible and infrared bands and are tested using
bottom of atmosphere (BOA), top of atmosphere (TOA) and Rayleigh corrected TOA reflectances
(RC). In each case, a NN architecture consisting of 3 layers of 15 neurons improved performance
and data availability compared to current state-of-the-art algorithms used in the region. The NN
operating on TOA reflectance outperformed BOA and RC versions. By operating on TOA reflectance
data, the NN approach overcomes the common but difficult problem of atmospheric correction in
coastal waters. Moreover, the NN provides data for regions which other algorithms often mask out
for turbid water or low zenith angle flags. A distinguishing feature of the NN approach is generation
of associated product uncertainties based on multiple resampling of the training data set to produce
a distribution of values for each pixel, and an example is shown for a coastal time series in the North
Sea. The final output of the NN approach consists of a best-estimate image based on medians for
each pixel, and a second image representing uncertainty based on standard deviation for each pixel,
providing pixel-specific estimates of uncertainty in the final product.

Keywords: artificial neural network; ocean colour remote sensing; MODIS Aqua; chlorophyll a;
top-of-atmosphere; North Sea; coastal waters

1. Introduction

Retrieval of ocean surface chlorophyll a (Chl, mg m−3) is one of the key targets for
ocean colour remote sensing (OCRS). The concept emerged in 1970 when Clarke et al. [1]
observed the relationship between the colour of the ocean from aircraft measurements
and the Chl concentration of the water. It has since been refined and applied to satellite
sensors developed for the measurement of ocean colour resulting in continuous global
daily coverage since 1997 [2]. The process consists of two main steps: first, removal of the
atmospheric contribution to the top-of-atmosphere (TOA) signal measured by the sensor
to produce a bottom-of-atmosphere (BOA) water leaving signal called the remote sensing
reflectance (Rrs, sr−1) [3,4] and then applying an algorithm to convert the Rrs spectral
signal into ocean surface Chl.
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Starting with the sea-viewing wide field-of-view sensor (SeaWiFS, 1997–2010), modern
ocean colour satellite sensors have been equipped with infrared bands to support atmo-
spheric correction. The so-called standard atmospheric correction algorithm (AC) [5] is
based on the black pixel assumption that water absorption in the near infrared (NIR) is suffi-
ciently high and backscattering sufficiently low that no light emerges from within the water
column. The consequence of this is that, at these wavelengths, measured TOA radiances
can be assumed to result from atmospheric scattering only, and this signal forms the basis
for extrapolation into the visible and removal of the atmospheric signal from measured
TOA readings. It is well known that the black pixel approximation performs poorly in
turbid waters, where particle backscattering can become a significant contributor to the NIR
signal recorded by satellite sensors [6]. A number of alternative AC algorithms [5–8] that
aim to improve retrieval of water leaving signals in turbid or glint impacted waters have
subsequently been proposed. The black pixel approach remains in operation as the default
option for processing NASA ocean colour data due to the fact that 90% of the surface of the
ocean is not coastal. Despite significant efforts and progress with date, atmospheric cor-
rection remains problematic over turbid waters, and there is no single, generally accepted
method that is known to provide good quality BOA reflectances in such conditions.

Natural waters are classified into two optical water types following Morel and Prieur [9],
with the optical properties of Case 1 waters being determined by phytoplankton and as-
sociated materials, and the optical properties of Case 2 waters being further influenced
by non-covarying non-algal particles and coloured dissolved organic material (CDOM).
Several algorithms have been developed to convert the water leaving signal into Chl,
such as the blue-green algorithms OCx (Ocean Colour, using x bands, [2,10]) that were
designed for Case 1 waters using the ratio between the blue and green wavebands. Deriva-
tions of this type of algorithm have been extensively studied recently by O’Reilly and
Werdell [11]. These band ratio algorithms typically perform poorly in optically complex
waters by overestimating the Chl as a consequence of the impact of other materials affecting
the Rrs signals [12]. Coastal-specific algorithms have been developed to overcome the
problem [13–15]. Other approaches have been developed either for developing water-
type specific variants of the blue-green algorithms [16] or by applying other classification
schemes [17,18]. Further algorithms have been proposed for oligotrophic waters, such as
the Colour Index [19] to improve predictions in oligotrophic areas, which is now regularly
used for ocean colour algorithms when the Chl concentration drops below 0.2 mg m−3. It
is worth noting that Hu et al. [20] have recently shown that machine learning, in this case a
technique based on support vector regression, has potential to improve retrieval of Chl for
open ocean, Case 1 waters.

The focus of this work is the optically complex shelf seas off the northwest coast of
Europe including the North Sea, Irish Sea, English Channel and western parts of the Baltic
(see map in Figure 1, which also extends into the oceanic waters of the Northeast Atlantic).
These shelf seas are socially and economically important and are subject to control through
multiple international legislative agreements including the European Marine Strategy
Framework Directive and the Water Framework Directive. As such, nations with territorial
waters in this region are bound to implement effective monitoring programs to determine
environmental status. These monitoring programs have traditionally been focused on ship-
board surveys and deployment of moorings but there is growing interest in the potential to
use satellite observations to extend the spatio-temporal coverage of observations. The key
challenge is to ensure that satellite-derived Chl products are sufficiently reliable in order
to be used for reporting against the legislative requirements. Current state-of-the-art algo-
rithms for European North West shelf seas merge the OC5 [13] and CI [19] algorithms with
different look-up tables (LUTs) for OC5 processed by ACRI-ST through the GlobColour
project or by Plymouth Marine Laboratory (PML), and are available on the Copernicus Ma-
rine Environment Monitoring Service (CMEMS, https://marine.copernicus.eu/ (accessed
on 9 May 2022). The performance of these algorithms is briefly assessed in this paper and
used as a benchmark to compare against the performance of a new NN model.

https://marine.copernicus.eu/
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Figure 1. (a) Map of all matchup points available for the MODIS-Aqua sensor, July 2002 to January
2020, 0–10 m, averaged between 08:00 and 16:00. (b) Histogram of the in situ samples.

Artificial neural networks (NNs) have been proposed to simulate biological
neurons [21,22], and single artificial neurons have been trained to learn how to estimate
a target relying on different information using perceptrons by Rosenblatt in 1958 [23].
They consist of an input signal transformed into an output using an activation function
with weights associated with each connection. Connections between multiple neurons
and the definition of backpropagation of the error were added later [24,25]. As a result
of increased computation power availability, modern neural networks, especially deep
learning networks, can contain up to billions of parameters and handle complex problems
such as natural language processing [26]. NNs were initially used in ocean colour for water
classification [27]. The idea of using NNs for inverse modelling the light signal for Chl
estimation emerged in 1994 [28]. Buckton et al. [29] applied NNs on modelled data and
discussed the possibility of including non-light information in network training. NNs
were applied for Chl retrieval for Case 1 waters using either above surface measurements
by Keiner and Brown [30], simulated data [31] or a mixture [32], with Keiner and Brown
showing that NNs outperformed state-of-the-art algorithms at that time. Over optically
complex waters, Schiller and Doerffer [33] used NNs with simulated Rayleigh-corrected
reflectances, while D’Alimonte and Zibordi [34] applied the technique to a real coastal
data set. In both cases the NNs returned promising results and/or better performance
than state-of-the-art algorithms. NNs have been applied as operational products for Case 2
water constituent retrieval for the Medium Resolution Imaging Spectrometer (MERIS, [35])
and the Ocean and Land Colour Instrument (OLCI) [36] radiometer sensors. Hieronymi
et al. [37] proposed a network trained on modelled data using the method developed
in [38] applied to real satellite images with neural networks developed for classified water
types being the key feature. Pahlevan et al. [39] trained NNs for lakes with Sentinel 2
and 3 satellite data using above surface measurements showing good performance, while
Cao et al. [40] showed that NNs can outperform current state-of-the-art algorithms for
Chl predictions in Chinese lakes. NNs have also been used to retrieve other parameters,
such as photosynthetically available radiation [41], other pigments [42], inherent optical
properties (IOPs) [43,44] and the spectral diffuse attenuation Kd [45]. Recently, NNs have
been applied to retrieve surface temperature and salinity using TOA visible bands from the
high resolution satellite Sentinel-2 [46,47]. Top of atmosphere signals have seldom been
directly used by the OCRS community, with only a few publications describing techniques
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relying on it [48–51], largely resulting from the fact that <10% of the signal in the blue is
coming from the ocean for Case 1 waters. It is clear that NNs have significant potential
to improve retrieval of Chl and other important water quality and light field parameters
from ocean colour signals in optically complex coastal waters. A review of the use of deep
learning methods (i.e., more than one hidden layer) developed for Earth observation can
be found in Yuan et al. [52], with a dedicated section to ocean colour.

Established, reliable and comprehensive data are essential for reporting against na-
tional and international water quality standards. Limited performance of existing ocean
colour Chl algorithms in optically complex coastal waters is a major inhibiting factor in
take-up of the technology by national environmental monitoring agencies. Many of the
algorithms for coastal Chl are restricted in scope either geographically or through optical
water type classification or by restricting application through extensive use of flags to
eliminate the most challenging conditions, many of which are regularly found in northwest
European shelf seas. This problem has persisted for over twenty years and there is little
scope to believe that further development of blue-green reflectance ratio algorithms will
significantly advance the issue [11]. However, satellite data have the potential to provide a
degree of spatial and temporal coverage of Chl concentrations that is highly challenging
or most likely impossible with alternative present-day in-situ observational technology,
particularly in open sea or offshore areas [53]. The recent advancement of machine learning
techniques suggests that it is time to develop a new framework for exploiting their strengths
in OCRS. Whilst NNs have been discussed in the ocean colour literature since as far back
as 1997 [29], they remain a new and unfamiliar territory for many researchers operating in
OCRS, and whilst there is a small but growing body of literature in this area (see above),
understanding of the mathematical techniques involved and how to properly implement
them remains confined to a relatively small element of the ocean colour community.

In this paper we aim to provide a detailed guide on how to develop a simple NN to
derive Chl from OCRS data and to demonstrate that this approach is capable of providing
estimates of Chl that are of similar quality to that provided by in situ sampling efforts. We
illustrate the steps taken to identify appropriate architectures that optimise performance in
terms of accuracy of Chl retrieval and focus on how this translates into ability to produce
realistic mapped distributions of data. Building on work by Medina-Lopez [47], we explore
the potential to estimate Chl by applying NNs to TOA data directly. This approach would
obviate the need for determination of appropriate ACs and effectively allows NNs to
handle atmospheric signal impacts by inclusion of more bands than have been used before
in the literature. Finally, we compare performance of the resulting NNs against current
state-of-the-art Chl products in terms of both data accuracy and data availability for a large
set of matchup data covering northwestern European shelf seas and coastal waters.

2. Materials and Methods
2.1. Study Area and In Situ Data

The study area for this work is shown in Figure 1 and extends from 25◦W to 13◦E and
48◦N to 65◦N, including samples from the North Sea, Irish Sea, English Channel and the
western Baltic Sea. These are predominantly optically complex Case 2 shallow shelf seas
with many areas presenting high sediment and or CDOM loads [54] that influence OCRS
signals either persistently or seasonally/episodically. There are also stations, e.g., in the
NE Atlantic sector or from the northern North Sea, Arctic and Norwegian area, that are
deeper and further from land and which would satisfy the Case 1 classification but are
clearly under-represented with respect to our data set (Figure 1a).

A Chl matchup data set covering the years 2002–2020 was assembled from dif-
ferent sources of in situ samples: CMEMS (https://marine.copernicus.eu, accessed on
9 May 2022); International Council for the Exploration of the Sea (ICES, www.ices.dk,
accessed on 9 May 2022); and data from countries included in the area that were directly
provided by different institutions. For Danish marine waters, chlorophyll data were
derived from the ODA database (DCE, 2021) and provided by the Department of Eco-

https://marine.copernicus.eu
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science, Aarhus University (Denmark) [55]. Data from the Norwegian and Barents Seas
were provided by the Plankton Research Laboratory at the Institute of Marine Research
(Bergen, Norway). For the Scottish waters and Stonehaven station, data were provided
by Marine Scotland Science [56–58]. Data from the waters of England and Wales were
provided by the Centre for Environment, Fisheries and Aquaculture Science (CEFAS,
https://www.cefas.co.uk/, accessed on 5 May 2022) and the Plymouth Marine Laboratory
(PML, https://www.westernchannelobservatory.org.uk/, accessed on 9 May 2022). The
data set contains a mixture of Chl measurements produced using different methods [59],
including high performance liquid chromatography [60], fluorescence [61] and spectropho-
tometry [62]. Usually samples with volumes typically ~1 L are collected and filtered onto
25 mm GF/F glass fibre filters and frozen. The Chl pigments are generally extracted
with 90% acetone, and one of the methods specified above is applied to measure their
concentration. Additionally, this data set includes data from in situ fluorometry. Such a
diverse data set naturally suffers from a range of complicating factors, including differ-
ences between in vivo and extracted Chl concentration estimates due to factors such as
solar quenching and also due to practical constraints such as pigment extraction efficiency.
Round robin exercises have previously demonstrated uncertainties in HPLC concentrations
up to 40% [63], and this more diverse data set could easily demonstrate errors of 50%
or more depending on the measurement conditions [59]. Note that the CMEMS data set
includes a large volume of data from ferrybox systems operating along the Norwegian
coast. Unfortunately, this data set had to be eliminated from our analysis due to unresolved
data quality issues. Other than these data from the Norwegian coast (approx. 60–65◦N),
no data were removed from the data sets identified above. Approximately one million
in situ Chl samples were available initially, but this number includes duplicates between
different data sets, samples at different depths and Norwegian ferrybox data that were
removed prior to averaging. The focus of this work is an attempt to establish satellite Chl
products that provide equivalent quality data to that currently used by organisations like
CMEMS and ICES. As such, we note that this validation data set is subject to unquantified
and potentially significant uncertainty and that this should be considered in our analysis of
satellite algorithm performance.

2.2. Satellite Data
2.2.1. MODIS Aqua

The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on board
the Aqua spacecraft has produced images since early July 2002. For this study, all MODIS-
Aqua images available between 48◦N and 65◦N, 25◦W and 13◦E during daylight from July
2002 to January 2020 were downloaded as L1A products from the National Aeronautics
and Space Administration (NASA) ocean colour servers (https://oceancolor.gsfc.nasa.gov/
cgi/browse.pl, accessed on 9 May 2022), using the R2018 calibration. The Aqua satellite
has an ascending node orbit crossing the equator at 13:30. The MODIS sensor, with a
swath of 2330 km and a pixel resolution of ~1 km at nadir, observes approximately 80% of
the specified area each day. In order to maximise the information content for the NNs to
operate on, the following bands were saved for this study: 412, 443, 469, 488, 531, 547, 555,
645, 667, 678, 745, 859, 869, 1240 and 2130 nm. Their characteristics can be accessed from
the NASA website (https://modis.gsfc.nasa.gov/about/specifications.php, accessed on
10 March 2022). Bands 17–19 at 905 nm, 936 nm and 940 nm were not processed due to their
high correlation to cloud cover. Band 6 (1640 nm) has malfunctioned since 2006 [64] and
therefore was not used for this study, which leaves 15 bands. The inclusion of Bands 5 and
7 (1240 and 2130 nm) follows the study of Wang and Shi [65] who used these SWIR bands
to perform enhanced atmospheric correction in coastal waters with MODIS Aqua. L1A files
were downloaded, processed using l2gen and converted into L3 mapped files with a plate
carrée projection using SeaDAS 7.5.1 (Greenbelt, MA, USA) following implementation of
the NASA standard atmospheric correction using only the ‘ATM FAIL’ flag from the l2gen,
with the “fudge option” set to 3. The ATM FAIL flag is responsible for the masking of most

https://www.cefas.co.uk/
https://www.westernchannelobservatory.org.uk/
https://oceancolor.gsfc.nasa.gov/cgi/browse.pl
https://oceancolor.gsfc.nasa.gov/cgi/browse.pl
https://modis.gsfc.nasa.gov/about/specifications.php
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of clouds, stray light, glint and land when they are properly detected. Images available
from the same day were not merged in order to enable access to the temporal information
and to provide optimal matchup conditions. This permissive approach, whereby flags
that are usually applied by other data producers are not applied in this study, is intended
to produce as broad a data set as possible in order to provide a test bed for assessing the
potential for NNs to accommodate the most challenging optically complex waters. This
has the added benefit of maximising the number of potential matchups, which is the main
limiting factor in NN development.

The total radiance measured at TOA by satellite sensors can be described as the sum
of contributions from multiple physical effects:

Lt(λ) = LR(λ) + La(λ) + LaR(λ) + Lg(λ) + Lwc(λ) + Lw(λ) (1)

with Lt the total radiance at TOA measured by the sensor. The terms on the right hand side
of Equation (1) are TOA radiances due to: LR total Rayleigh scattering by air molecules,
La scattering by aerosols only, LaR aerosol-Rayleigh scattering, Lwc whitecaps and foam,
Lg sun glint, and Lw the water leaving radiance. Three different reflectances were obtained
as outputs of l2gen process. The TOA reflectance, Rhot:

Rhot =
π · Lt

F0 · µ0
(2)

The Rayleigh corrected reflectance, Rhos:

Rhos =
π ·
((

Lt
tgsen·tgsol

)
− Lr

)
F0 · µ0 · tsen · tsol

(3)

The BOA remote-sensing reflectance, Rrs:

Rrs =
Lw

Ed
(4)

with F0 the extra-terrestrial irradiance, µ0 the cosine of the solar zenith angle, tgsen and tgsol
the solar to sensor and surface to sensor gaseous transmittances, tsen and tsol the solar to
sensor and surface to sensor diffuse transmittances and Ed the downwelling radiance at
the sea surface. While Rhot or Rhos can be used for quasi true-colour image generation,
Rrs is the apparent optical property used for most of the ocean colour algorithms.

The fourth-order polynomial ocean colour algorithm designed for Case 1 waters for
MODIS Aqua sensor (OC3M, [2]) was applied to available Rrs from MODIS Aqua matchups
following Equation (5):

log10(chlora) = a0 + ∑4
i=1 ai

(
log10

(
Rrs(λblue)

Rrs
(
λgreen

)))i

(5)

with a0 = 0.2424; a1 = −2.7423; a2 = 1.8017; a3 = 0.0015 and a4 = −1.2280 and where Rrs blue
is the maximum Rrs value between 443 and 488 nm, and Rrs green is the Rrs at 547 nm.

2.2.2. Copernicus Products

A European Space Agency satellite product merging MODIS Aqua, SeaWIFS, MERIS,
the Visible Infrared Imaging Radiometer Suite (VIIRS) and OLCI sensors created by the
OC-CCI group is available for download on the CMEMS website. Rrs spectra of each sensor
are realigned to MERIS wavebands at 412, 443, 490, 510, 560 and 665 nm and provides
a daily merged and bias-corrected product for European shelf sea waters. It is available
from 1998 to the present period. The NASA standard and polymer atmospheric corrections
(respectively [3,7]) are applied depending on the sensor and area of study. One surface
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Chl product is available for download on the CMEMS website based on this merged daily
Rrs product, named OC5-CCI, and uses the OC5 algorithm [13] in coastal waters. This
algorithm was developed by IFREMER in collaboration with PML. It is available as a
daily observed product and applies extra masking in certain conditions to avoid failure
of the algorithm in coastal waters (see the latest Quality Information Document for this
product, [66]). This algorithm will be referred to here as OC5-PML.

Another product is available from CMEMS using a similar approach (OC5 algorithm),
provided by ACRI-ST, known as the European Space Agency GlobColour project, and is
available as a daily interpolated product, with a +/−30 days sliding window to create
“cloud free” surface Chl maps [67]. This version will be referred to as OC5-ACRI. Rather
than using OC-CCI merged Rrs data, it averages chlorophyll from each sensor separately
and creates an averaged version from multiple sensors afterwards.

Both of these algorithms (OC5-PML and OC5-ACRI) use a similar method, apply-
ing the OC5 and OCI algorithms in optically complex and clear waters, respectively,
and therefore relying on classification. The OC5 algorithm was initially designed with
5 wavebands at 412, 443, 490, 510 and 550 nm and was developed to work for complex
Case 2 waters impacted by constituents other than Chl, such as coloured dissolved or-
ganic matter (CDOM) or total suspended sediments (TSS, [13]). The 412 nm band is
used to take into consideration the CDOM absorption and the 550 nm band alone as a
normalised water leaving signal to highlight the impact of sediments in water. It was
initially trained with English Channel data. In open ocean waters, OC5 returns values
close to the blue-green OC3 or OC4 algorithms [2]. The Colour Index (CI) algorithm,
developed by Hu et al. [19], is a three band algorithm (443, 555 and 670 nm) used for
oligotrophic waters with very low values of Chl (<0.2 mg m−3), where blue-green algo-
rithms can lead to failure because of different effects such as glint and stray light, among
others. It was trained with oligotrophic to mesotrophic matchups. CI is used if the value
returned by OC5 is below a threshold, usually around 0.15 or 0.20 mg m−3. If the out-
put falls between 0.15 and 0.2 mg m−3, an average between both OC5 and CI results
is returned. OC5 products used by both algorithms were developed using their own
specific LUTs and available wavebands. The OC5 algorithm cannot return values above
65 mg m−3 due to its design being based on LUTs not including values greater than
65 mg m−3. OC5-PML (OCEANCOLOUR_ATL_CHL_L3_REP_OBSERVATIONS_009_067)
and OC5-ACRI (OCEANCOLOUR_ATL_CHL_L4_REP_OBSERVATIONS_009_098) were
downloaded from the CMEMS website in Aug 2020 and Feb 2021, respectively.

2.3. Generation of Matchups between In Situ and Remotely Sensed Observations

The formation of matchup data sets between in situ Chl concentrations and satellite
data must take into consideration both spatial and temporal components. For comparison
convenience, the same conditions were used for all three products. The temporal window
considered all in situ data sampled from the first 10 m between 8:00 and 16:00 GMT + 0 as
a candidate. If multiple in situ samples were available for a given pixel at different depths,
the median value was saved as a unique pixel matchup, with a priority for duplicate
removal given to data available from the larger ICES data set to increase consistency. The
OC5-PML and OC5-ACRI products were reprojected using the MODIS Aqua grid as a
standard to allow comparison over the exact same pixels.

The final matchup matrix consists of geo coordinates of the satellite pixel’s centre, the
three different reflectances (Rhot, Rhos, Rrs) at the 15 wavebands and the median of the
0–10 m Chl averaged between 08:00 and 16:00. Data duplicates from different sources (ICES,
MSS and CMEMS) were removed before calculation of median Chl values. All the available
matchups for the MODIS Aqua sensor are presented in Figure 1. The process was repeated
for the OC5-PML and OC5-ACRI algorithms, with different number of matchups available
for each product. Final matchup numbers are determined by the details of processing
for each algorithm tested later but vary from 4757 for OC5-PML to 39,331 for OC5-ACRI,
with a total of 15,765 matchups being available for the NN approach developed here using
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MODIS Aqua data, and with 15,763 available when applying OC3 algorithm to MODIS
Aqua Rrs.

The MODIS Aqua matchup data set is dominated by coastal waters, with the vast
majority of the data sampled close to the coast. The final distribution is close to a normal
distribution, with spikes at exactly 1 and 2 mg m−3 and a median of 1.7 mg m−3, which
could come from sensor or human rounding. Over the 15,765 matchups available for the
MODIS Aqua sensor, 13,246 are unique observations for different time and locations, while
2519 matched at least two different MODIS Aqua images, usually within a 1 h interval due
to the temporal window used and areas being seen twice by the satellite during the same
day at these latitudes. These data were not merged and kept as unique matchups in order
to add noise to the NNs as this has been shown to help NNs generalize [68]. There are
approximately 1300 matchups per year between 2003 and 2006, 800 between 2007 and 2016
and less than 600 for each year afterwards. Seasonal coverage for the data set is not even,
with approximately 1200–1400 matchups for months between February and September,
less than 1000 for November and January and less than 500 during December, mainly due
to the increase in cloud cover during winter.

2.4. Artificial Neural Networks
2.4.1. Neural Network Structure

An artificial neuron consists of the application of an activation function associated
with weight and bias that transforms an input signal coming from multiple sources into a
predicted/estimated output. A feedforward neural network is a sum of neural network
layers and composed of three main compartments. The first is an input layer including all
the information available that could be useful to solve a problem, such as the 15 different
wavebands available for this work. The second is a number of hidden layers, each of
which can have multiple neurons that are initialised with random weights and connected to
adjacent layers. Finally, an output layer returns results based on the information produced
by the final hidden layers. For each matchup, an error is calculated between the output
produced by the network and the target, the in situ median of Chl. The error is back
propagated and the weights of each neuron are adapted to minimise it until the network
converges at a global minimum, if possible. It takes approximately 30 epochs to reach
optimal performance.

For our study, all the layers are fully connected to the adjacent ones (Figure 2), with
random weights used for initialisation. The input layer consists of the first 15 MODIS Aqua
bands, using either Rhot, Rhos or Rrs. They were normalised using the min-max algorithm
from Matlab’s “mapminmax” function:

y = (ymax− ymin)
(x− xmin)

(xmax− xmin)
+ ymin (6)

with the limits used being 0 and 1. The matchups data set is randomly divided into
three sets: 70% for the training set that will affect the weights evolution, 15% for the
validation set that is used to stop training when the network is no longer improving and
the remaining 15% for the test set, which are used to independently test the network.
Backpropagation of the error measured between the in situ data and the prediction of the
model is performed and training processes are repeated until the network converges and
meets a global minimum, if possible, or a local minimum otherwise. The NN can fail to
converge when the number of neurons or layers is inappropriate, which is usually easy
to diagnose as independent data (the test set) show unrealistic behaviours such as over
representation of specific concentrations (predicting it as a line).

In NN development, it is important to obtain an optimal architecture that produces
good quality output data on both training and test sets, and there is often a trade-off
between the network complexity and the prediction accuracy. Selecting a small network
structure may be computationally efficient, but this can lead to under-fitting, where there
are too few connections to adequately resolve a complex signal. On the other hand, an
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overly big network is likely to be computationally inefficient and may introduce overfitting
whereby the network uses a complex curve to predict a simple signal. In this case, the
network may produce excellent results with the training set because it remembers the
data set rather than learn from it, but it gives poor results with independent data. This is
guarded against by testing the trained network against an independent test set. For this
study, the whole process was conducted using Matlab R2020b’s “fitnet” function from the
deep learning toolbox to create the network and the “train” function to train the network,
which is later applied to either the matchups or an image. We used the same number of
neurons per layer each time (example in Figure 3), the Rectified Linear Units activation
function for every node (y = x if x > 0, else y = 0), and the Levenberg–Marquart function to
minimise the error based on the mean squared error. Scripts used in the production of data
presented in this paper are available from the link in the reference section.

Figure 2. Simplified diagram of a fully connected multilayer perceptron neural network showing,
for this example, 2 hidden layers of 5 neurons each. Each arrow is associated to a weight, while the
white circles (neurons) apply an activation function. A bias neuron (not shown) is also included for
the input and hidden layers and connected to the layer on the right only.

One of the more significant challenges of constructing a successful NN for this appli-
cation is the need to be able to operate over a wide range of Chl concentrations. Our data
set extends over ~3 orders of magnitude. In order to spread weights more evenly across
the data set and following previous observations [69], the target (Chl) was log-transformed
(Chl becomes log10(Chl)) prior to training, and the inputs (15 reflectances) were normalised
between 0 and 1 using the min-max method (Equation (5)). Log transforming the target
both improves network performance and prevents the network from returning negative
values that would be unrealistic. Normalizing the inputs prevents the NN from relying
too much on a dominant signal. Application of NNs to remote sensing images requires
knowledge of the normalisation parameters used (the min and max values used for the
normalization prior to training) and output values need to be back-transformed from log10
to obtain Chl concentrations.
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Figure 3. Mean absolute difference heat maps applied to the test set for neural networks operating
on Rrs (a), Rhos (b) and Rhot (c).

2.4.2. Performance Metrics

Determining an optimal network architecture requires the selection of one or more per-
formance metrics, which has previously been shown to be non-trivial for ocean colour appli-
cations [70]. In what follows, we show results for two candidate metrics and consider their
relative merits and demerits. The Pearson correlation coefficient metric R (Equation (7)) is
a common statistical descriptor for assessing algorithm performance but is known to be
impacted by density fluctuations in the distribution of the data set. Seegers et al. recom-
mended use of the mean absolute error (MAE—Equation (8)) as being robust over several
orders of magnitude and, as an absolute metric, avoids being overly influenced by higher
values [70]. Here we describe this metric as mean absolute difference (MAD) to reflect
the fact that there are unknown errors in the in situ data set that mean it should not be
considered as ‘truth’.

R =
∑
(

Mi−M
)(

Oi−O
)√

∑
(

Mi−M
)2

∑
(
Oi−O

)2
(7)
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MAD = 10̂
(
∑n

i=1 |Mi−Oi|
N

)
(8)

where M, O and n represent the modelled value, the observation and the sample size,
respectively. Both M and O were converted into a log10 form prior to application. MAD
was used to determine optimal network architecture, while R is reported to add statistical
information to the matchup evaluations. An MAD of 1.8, as obtained with our study, means
that there is a relative measurement error of 80%. A smaller MAD value implies better
performance of the algorithm.

3. Results

The data set we assembled for northwest European waters is dominated by coastal
waters, as illustrated in Figure 1a. Coastal waters present two important challenges for
the OCRS of Chl. The first is associated with degradation in the performance of standard
blue-green reflectance ratio algorithms caused by absorption and scattering by non-algal
particles and CDOM. This typically leads to overestimation of Chl by variable amounts
which are both spatially and temporally dependent [16]. The second challenge is the impact
of backscattering by non-algal particles causing non-zero water leaving radiance in the
NIR, breaching the initial assumption of the black pixel atmospheric correction [71] and
conducted to new strategies. This leads to production of incorrect Rrs values, which in
turn causes further breakdown of the blue-green reflectance ratio algorithms. Indeed, this
failure of the standard AC in coastal waters would potentially affect the performance of a
NN operating on Rrs values (see later). As a result, here we test NNs operating on both
AC-corrected (Rrs), Rayleigh-corrected (Rhos) and uncorrected top of atmosphere (Rhot)
reflectances.

3.1. Identification of Optimal Network Architectures

Various strategies can be adopted for finding optimal network architectures. It is
reasonably common practice to take at least the same number of neurons as inputs and to
evaluate the impact of adding more hidden layers. Because we do not have an overly large
data set, and since even reasonably priced modern computers have good performance
characteristics, we opted to systematically explore the impact of selecting different network
architectures. MAD scores were obtained for NNs operating on Rrs, Rhos and Rhot inputs.
In each case, we tested NN architectures varying between 1 and 10 layers and 1 and
20 neurons per layer. We repeated the application of each architecture 10 times. The median
MAD value of the 10 runs applied to the test sets (15% of the total data set) is displayed
in Figure 3. Similar performances are obtained with the training sets (not shown). There
is a general tendency to obtain higher MAD scores for architectures using between 6 and
20 neurons per layer, and less than five layers. However, identifying a truly optimal ‘winner’
for each input data type (Rrs, Rhos and Rhot) is probably not meaningful. Rather there are
regions in this space where performance is broadly equivalent, and will be slightly different
each time due to the effect of the random initialisation of the weights. In this case prediction
results are similar once we have at least 6 neurons per layer, which could highlight that
there may be elements of redundancy over the 15 bands available. For this study, we used
networks composed of 3 layers of 15 neurons for the Rrs, Rhos and Rhot reflectances as
they produce nearly optimal results without becoming overly computationally intensive.
Choosing a higher architecture, say eight layers of 20 neurons, was found to give better
performance on the training sets (higher metrics) but poorer performance on the test sets.
At least two layers were required to avoid under-fitting issues, which sometimes happened
when a single hidden layer was used but was not obvious from MAD metrics but was clear
from visual inspection of plots. Differences in performance between test and training data
sets can be a sign of overfitting, i.e., failure of the network to generalise. It is clear from
Figure 3 that having too many hidden layers without enough neurons per layer generally
degrades performance.
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The heat maps in Figure 3 also reveal differences in the level of performance between
NNs operating on different input sources. Interestingly, NNs operating on uncorrected TOA
Rhot input data perform best, slightly better than Rhos, with Rrs showing the poorest per-
formances. NNs operating on fully atmosphere corrected Rrs values produce higher MADs,
though the differences do not appear to be very large, and any of the three reflectance
could still be used effectively. At first glance, it may seem surprising that uncorrected TOA
reflectance inputs, Rhot, produce such apparently stronger results despite the atmospheric
reflectance signal being present within the input. This is examined in more detail later, but
it should be realised from the outset that this effectively means that, in this case, the NN
has to account for the impact of atmospheric scattering and also has to derive Chl for a
wide range of coastal water types. On the other hand, Rrs and Rhos NNs are operating on
reflectance data that is imperfectly corrected for atmospheric effects. As shall be highlighted
later, both the full atmospheric correction and even the Rayleigh correction have potential
to generate unphysical (negative) reflectance data, especially for turbid coastal waters. In
these cases, the NN effectively has to compensate for these AC errors and then derive Chl
for optically complex waters. Taking this into consideration, it is perhaps less surprising
that the TOA Rhot NN performs slightly better than the other two due to the loss on
information during the AC process.

Figure 4 shows the performances of the NNs for both the training (70%) and test set
(15%) applied to the 15,765 matchups available, the last 15% (1459 points) being used as
the validation set (not shown). All three reflectances show similar performances. There
is a slight tendency to overestimate low values (<1 mg m−3) and to underestimate high
values (>10 mg m−3), possibly reflecting limits of representation in the training data set
(not enough training data available for these ranges). Approximately 70% of the points
fall between the 1:2/2:1 dashed line (a ratio of 2 between in situ samples and satellite
estimation), close to the in situ error measurements for such a data set. The gap between
training and test set performances is small, with Rrs showing higher differences than Rhot.
Rhot achieves the best performance for the test set and at this stage is the candidate of
choice for use in the rest of this publication. However, any of the reflectances could be used,
as only some spectra were over corrected by the AC, and thanks to the normalisation of
data prior to training, all show relatively good performance for a coastal data set.

To further support the choice of Rhot, Figure 5a,c,e shows one example of a winter map
that highlights the impact of atmospheric over-correction on NN performances for both Rrs
and Rhos. It is visible as both dark patches some distance off the coast and as high values
associated with image striping in the western North Sea. Features such as these commonly
occur in areas where turbidity is known to be high when using NN based on Rrs or Rhos
but are generally absent using Rhot. This can be illustrated by examining a subset of the
available matchup spectra (Figure 5b,d,f). It is well known that the standard, black pixel
atmospheric correction causes over-correction of Rrs spectra for turbid coastal waters, seen
here most obviously as the occurrence of negative Rrs values (Figure 5b) but potentially
being true even for non-negative data. Intriguingly, negative values are also found for a
smaller amount of Rhos data (Figure 5d), implying that even taking the preliminary step of
applying the Rayleigh correction can sometimes be sufficient to produce unphysical data.
None of these negative Rrs or Rhos values are realistic, and we suspect this is the main
reason why the Rrs and Rhos NNs show slightly poorer performances, with the NN having
to overcome this type of over-correction at the same time as determining the Chl signal.
In contrast, Figure 5f shows TOA reflectance (Rhot) signals which are always physically
plausible, even if they are still obviously impacted by the contribution of atmospheric
scattering. MODIS Aqua striping effects seem to be more visible in winter compared to
other seasons, which may highlight a link with high solar zenith angles and a need for
removal prior to application of any algorithm [72]. Our results suggest that it is marginally
easier for the NN to handle the uncorrected atmospheric scattering signal in Rhot than
it is to undo imperfect atmospheric correction of Rhos and Rrs signals. The combination
of higher statistical metric performances, the training and test set performances being
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closer, and observation of unrealistic oceanic coastal features possibly due to the failure of
atmospheric correction all lead to the choice of Rhot as the preferred data source for NN
development.

Figure 4. Neural network performances for an architecture based on 3 layers of 15 neurons each,
using Rrs (a,b), Rhos (c,d), and Rhot (e,f) for the training set (70% of the total matchups) and the test
set (15% of the total matchups), respectively.
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Figure 5. Winter image of the 31 December 2019, 13:05 from MODIS-Aqua, highlighting the atmo-
spheric correction noise present near the Firth of Forth, western North Sea for the Rrs (a) and Rhos
(c). Absent from the Rhot product (e) and 1000 spectra examples from the matchup data set, for Rrs
(b), Rhos (d) and Rhot (f). Only the first 13 of the 15 bands of MODIS Aqua available for this study
are displayed with dashed lines.

The nature of NNs is such that, each time a network is trained, it produces a network
that is specific to the training data set employed. Randomly re-sampling the available
training data generates subsequent NNs with properties that are not exactly the same
each time. Figure 6a,c displays the results of two NNs using Rhot and that return similar
yet slightly different performances. These differences are even more apparent from their
respective images (Figure 6b,d) for the 23 July 2019 at 12:25 from MODIS Aqua, where a
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coccolithophore bloom near 57◦N and 0◦W is retrieved differently by the two NNs. This
discrepancy is largely due to the fact that coccolithophore blooms are underrepresented in
our matchup data set and performance of the resulting NNs is therefore heavily dependent
on how many such stations are included in the associated training data sets. Elsewhere,
the two NNs produce images that are visually very similar. The obvious solution to this
problem is clearly to attempt to expand the training data set through targeted sampling at
sea. However, this is impractical in the short term. Instead, we must look to develop an
approach that is more robust for any given training data set.

Figure 6. Two examples of the same architecture of a Rhot neural network using 3 layers of 15 neurons
showing slight differences. (a,c) Neural network performances for the whole matchup data set.
(b,d) Image of the 23 July 2019, 12:25 from MODIS-Aqua (same as Figure 7). Notice the difference
around 0◦E and 57.5◦N coming from a coccolithophore bloom returning very low Chl values.

To this end and to minimise the impact of under-sampled features in our training
data set, such as coccolithophores blooms, we decided to use a standard NN architecture
(3 layers of 15 neurons) but resample the training data set multiple times, generating multi-
ple NNs that could subsequently be analysed to produce a single, hopefully convergent,
median data product. This approach has the further merit of being able to provide a mea-
sure of product uncertainty through the standard deviations of the resulting distributions
of Chl values for each pixel. Conversely, the computational effort involved needs to be
considered if the approach is to be used in an operational sense for image processing, so es-
tablishing an optimal number of NN iterations is essential. Figure 7 displays median values
for the same image of the 23 July 2019 using 10 (Figure 7a) and 100 (Figure 7b) networks.
Visual inspection of these panels (and others—not shown—representing different numbers
of iterations) suggest that an ensemble approach using the median of 10 NNs is sufficient
to achieve convergence with a version merging 100 NNs. Figure 7c,d show corresponding
relative standard deviations from the 10 and 100 iteration networks, respectively, expressed
as percentages relative to the median (rather than the mean). Again, there is broad consis-
tency between these two images suggesting that 10 iterations are sufficient to capture the
performance of the NN approach. The standard deviation of NN outputs varies across the
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image, reflecting variable confidence in NN output for each pixel. Figure 7e shows that
this percentage uncertainty varies from ~7% to more than 100%, with the vast majority of
data falling between 10% and 30%. Looking at a worst case scenario, Figure 7f shows the
impact of this uncertainty for a randomly selected single point inside the coccolithophore
bloom near 57◦N and 0.2◦W where NN performance is worst, revealing up to an order of
magnitude uncertainty. N.B. The standard deviations produced by this ensemble approach
provide a measure of product consistency from different iterations of the NN and therefore
provides a useful indication of the confidence that can be attributed to each pixel in terms
of the NN analysis. It does not provide a complete estimate of overall uncertainty as this
would require information about uncertainty in input reflectance data and other factors.

Figure 7. Chlorophyll prediction from the neural networks using (a) 10 networks and (b) 100 networks
averaged (median). Relative standard deviation (relative to the median) for the same image expressed
in percentage using (c) the same 10 or (d) 100 networks. (e) Histogram of the relative standard
deviation of the panel (d) using 100 networks expressed in percentage. (f) Histogram of a random
point inside the coccolithophore bloom.
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3.2. Algorithm Performance Evaluation

In order to establish a baseline for performance evaluation with current mainstream
Chl algorithms, Figure 8 shows results for all the available matchups for (a) OC3,
(b) OC5-PML, (c) OC5-ACRI and (d) MODIS Aqua data processed using the median
of 10 NNs with the same three layers of 15 neuron architecture, using Rhot. The OC3
algorithm was applied to MODIS Aqua matchups Rrs obtained using the permissive
approach and therefore shows a massive spread between measured and retrieved Chl,
with a strong bias towards overestimation. The OC3 algorithm was not designed for
optically complex coastal waters, and initial NASA development of this algorithm re-
lied on application of masks to eliminate pixels with obvious data quality issues; see
https://oceancolor.gsfc.nasa.gov/atbd/ocl2flags/ (accessed on 5 May 2022) to see when
specific flags are applied to levels 2 or 3 or the data. While some data follow the 1:1 line,
most of the matchups are overestimated by the algorithm by varying amounts, by up
to several orders of magnitude. This is likely due to the influence of turbid waters on
both atmospheric correction performance and OC3 algorithm performance, which usually
return very high Chl values over sediment plumes on images. This is not surprising as the
algorithm was developed for clear open ocean waters and is not expected to perform well
in turbid coastal waters, where a good proportion of the available matchups come from. Of
course, it is also worth noting that this algorithm (and others with similar structure and
performance in these waters) remains in common use by unwary end users who perhaps
have less familiarity with the field and who would potentially benefit from more robust
guidance by data providers.

Figure 8. Performance over the matchup data set for (a) OC3, (b) OC5-PML, (c) OC5-ACRI and
(d) NN-Rhot—the median of 10 random neural networks using Rhot with MODIS Aqua data.

https://oceancolor.gsfc.nasa.gov/atbd/ocl2flags/
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The OC5-PML algorithm shows a clear improvement compared to OC3, with overesti-
mation restricted to a maximum of ~1 order of magnitude for Chl between 1 and 10 mg m−3

and possibly a tendency towards underestimation at high concentrations. Importantly, only
4757 matchups were available for this product despite being based on the accumulation of
data from between two and five satellites at any given time. This significant reduction in
data availability comes from: (1) the OC5 algorithm itself, which can only be applied in
certain conditions (based on the signals at 412 and 550 nm), which removes a significant
number of potential matchups, and (2) additional quality control flags which exclude more
problematic waters, such as those with coccolithophore blooms, very coastal or shallow
waters, glint impacted areas, those with low sun angles, etc. It should also be noted that the
maximum value allowed by the OC5 algorithm is 65 mg m−3, which can be problematic
for coastal waters where higher concentrations are possible.

The OC5-ACRI product (Figure 8c), despite using a broadly similar algorithm to OC5-
PML, tells a different story, with many more matchups being available but with significantly
greater ranges of over and underestimations. The increase in data availability is directly
due to use of a +/−30 days sliding window average rather than single, direct observations.
It is likely that the apparently stronger performance of the PML variant is achieved through
use of additional flagging to remove poor quality data rather than actual improvement
in algorithm performance per se. Conversely, while the OC5-ACRI product has a clear
advantage of having almost 100% coverage for the area except in winter, increasing by
~3 times the number of available matchups, this appears to be achieved at the price of data
quality. There is clear potential merit in using this type of merging approach at global scales
that are dominated by Case 1 waters where the algorithm may perform well, but these
results suggest that there may be significant issues in coastal regions.

The proposed ensemble NN-Rhot product (Figure 8d), offers several advantages.
The distribution is clearly better constrained towards the 1:1 line than either OC3 or the
OC5-ACRI product (Figure 8a,c) and is somewhat tighter than the OC5-PML product
(Figure 8b) with R of >0.75 vs. 0.61 and MAD of <1.8 vs. 2.1. To be noted, the slightly
improved performances reaching MAD < 1.73 come from the inclusion of both train and
test set performances together, and similar performances to what have been shown earlier
in Figure 4f should be expected, with the real MAD probably lying between 1.75 and
1.8. The NN approach produces more than twice the matchups available for OC5-PML
(13,246 “daily” matchups for the permissive MODIS Aqua approach against 4757), and
it does not require application of further flags to eliminate optically complex waters or
outliers to reach similar performances. Very importantly, the NN performance is achieved
without requiring the application of any atmospheric correction, even though this contains
a wide variety of optically complex water conditions. The NN product is far from perfect
and there is evidence of a tendency to overestimate at low concentrations and vice versa,
with the range of error remaining at approximately one order of magnitude on a per pixel
basis. However, two-thirds of the NN data lie between the 1:2 and 2:1 lines, broadly
reflecting the level of performance that can be attained for in situ measurement of Chl using
the diverse methods used to generate the training data set. It is worth noting that both
the PML and ACRI algorithms could potentially return higher performances if retrained
using this specific matchup data set. That said, the NN approach appears to offer a useful
combination of high quality performance and maximal data availability.

To avoid data availability bias between the different products used above as compara-
tors, we repeated the analysis but this time restricted the comparison data set to matchups
that are available for all four algorithms. As the most restrictive algorithm examined here,
this second data set is largely constrained by the flagging procedures adopted by the OC5-
PML algorithm. However, the process of establishing clean matchups for each algorithm
means that there are fewer common matchups than were originally available even for
OC5-PML. Therefore, only samples commonly available for OC5-PML, OC5-ACRI and
the permissive MODIS Aqua data set are shown in Figure 9. The vast majority of OC5-
ACRI matchups following this approach should come from direct observations due to the
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requirement of data being available from the MODIS Aqua and OC5-PML daily observa-
tions; 3896 points met the requirements of being available from all products at the same
time. Performances of OC3 and OC5-ACRI products are improved (with a very similar
distribution). While the OC5-PML algorithm returns similar metrics (MAD of 2.09), the
NN-Rhot approach benefitted from flagging data following OC5-PML approach with an
improved MAD below 1.7. For reference, the MAD obtained for Case 1 waters algorithms
such as GSM [73] OCI or OC3 using the SeaBASS data set (SeaWiFS Bio-optical Archive
and Storage System, [74]) reach ~1.6 [70], with best and worst performances reached over
oligotrophic and eutrophic waters, respectively, from the GSM algorithm (MAD of 1.47 and
2.05). It is notable that the NN approach developed in this study appears to achieve per-
formance metrics for optically complex coastal waters that are comparable with standard
algorithm performance in Case 1 waters.

Figure 9. Performance over the exact same matchup data set for (a) OC3, (b) OC5-PML, (c) OC5-ACRI
and (d) NN-Rhot—the median of 10 random neural networks using Rhot with MODIS Aqua data.

Further comparative evaluation of algorithm performance is achieved through analysis
of images from spring (Figure 10) and winter (Figure 11). Figure 10 shows an example
of a spring day at the start of the spring bloom season (20 April 2005). In general, OC3
produces higher maximum values, well beyond the top end of the colour scale used in
the plots, with a maximum of ~4300 mg m−3. In comparison, the OC5-ACRI, OC5-PML
and NN-Rhot products reach maximum values around 62–65 mg m−3 due to OC5 not
allowing any value above 65 mg m−3, while no threshold was defined for the NN. OC3
and OC5-ACRI display broadly similar results across the scene including a patch of high
Chl values off the east coast of Scotland which could potentially be an artefact of image
merging. This observation is consistent with the previous section and Figure 9, where both
products returned similar distributions. OC5-PML and the NN are in broad agreement
with relatively small differences between them in the North Sea area of this image, the main
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difference being in the Baltic Sea where very coastal waters are returned as high Chl values
by the PML product, with no particular feature seen from the NN. It has been previously
observed that the PML product overestimates Chl in the Baltic part of the image due to
presence of CDOM [75]. Another area where we can spot differences, this time between the
NN and the blue-green algorithms, is in the NE Atlantic, where the NN produces higher
values than any of the other products, which generally agree with each other by returning
values below 0.25 mg m−3, largely due to the fact that the OCx, GSM and CI algorithms
are applied for this area, and there is generally only limited difference in performance for
these relatively clear waters. In this case, it is likely that the OCx products are performing
well and the NN would benefit from inclusion of additional training data from oligotrophic
waters. This difference over an under-sampled area like the NE Atlantic highlights a need
for the matchup data set to contain more open Case 1 waters and re-emphasises that this
is a data driven approach. NNs do not have the capacity to make realistic estimations for
under-sampled scenarios (only ~3% of the current data set comes from the NE Atlantic).

Figure 10. Daily Chlorophyll a surface concentration for the 20 April 2005 from (a) OC3, (b) OC5-PML,
(c) OC5-ACRI and (d) the median of 10 neural networks using Rhot applied to MODIS Aqua. For
(a,d), MODIS Aqua images at 12:15, 13:50 and 13:55 were merged. For (c), the image was interpolated
using +/−30 days by ACRI-ST to get a cloud-free product.

Figure 11 shows the daily Chl image from 31 December 2019 (same as Figure 5). Given
the latitude and time of year, this image represents an example of algorithm performance
for high solar zenith angle. Both OC5-PML and OC5-ACRI products apply additional
solar zenith angle flags which limit data availability at higher latitudes in winter, with
the PML product in this case offering no data availability, while ACRI uses a visible solar
zenith angle threshold. In contrast, both OC3 and the NN-Rhot provide data across the
scene having been produced from a more permissive data set using only the ATM FAIL
mask and not applying any solar or sensor zenith angle threshold. The OC3 and OC5-
ACRI algorithms return significantly higher values than NN in many areas in the southern
North Sea and various other coastal waters that are known to present higher sediment
loads at this time of year due to winter mixing in shallow waters or which are generally
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tidally mixed. The NN produces lower values which are more consistent with previously
measured distributions in this region, e.g., usually below 0.5 mg m−3 at Stonehaven [76]
(57◦N, 2◦W) or in the English Channel [77]. Overall, it seems likely that the NN product
is both outperforming and is more available in winter than the other direct observation
algorithms tested here (OC5-ACRI provides more data points through the wide time
frame used but is therefore not an entirely direct observational algorithm). Whilst the
general performance of the NN-Rhot algorithm is reasonably well documented above (e.g.,
Figures 8d and 9d), we note the occurrence of relatively high Chl values (between 1 and
5 mg m−3) in a number of coastal areas, including the Solway Firth, Morecambe Bay and
the Wash. These are regions of known high turbidity and also extensive mudflats at low
tide. Algorithm performance under these conditions remains uncertain. Moreover, winter
and low values are underrepresented in this data set, the main limit for machine learning
algorithm development. Indeed, further direct validation effort is required for the most
optically complex waters and other challenging situations such as areas affected by cloud
shadows or immediately adjacent to clouds and land. Masking these areas may be the best
option at the moment.

Figure 11. Chlorophyll a surface concentration for the 31 December 2019 from (a) OC3, (b) OC5-PML,
(c) OC5-ACRI and (d) the median of 10 random neural networks using 3 layers of 15 neurons for the
Rhot reflectance. Single MODIS-Aqua image at 13:05 for (a,d). Averaged daily image for (b). Daily
image interpolated (+/−30 days) for (c).

One possibility to independently evaluate performance of the NN algorithm for esti-
mating Chl in coastal waters is the use of a coastal time series. Weekly Chl samples have
been collected by Marine Scotland Science since 1997 from the top 10 m of the ocean at
the Stonehaven station (east coast of Scotland). These samples have been co-located with
satellite products. Stonehaven matchups were not used for the training, hence their estima-
tion is totally independent. Performances for this specific coastal time series (Figure 12)
are slightly worse than the global data set for both PML and NN products, but statistical
metrics on such low amounts of data may not be fully representative. The OC5-ACRI
product is not shown as it did not show seasonal correlation at any time and produced
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significant overestimates most of the time. Eightythree matchups are available for the PML
product, and slightly more than 2.5 times more for the permissive MODIS Aqua product
with 220 daily averaged samples. Data availability comparison between both products is
similar to previously observed values for the full data set (2.8 times more data for MODIS
Aqua permissive approach). Compared to the NN, winter data are underrepresented in
the PML product due to application of solar zenith angle flags, with solar zenith angles
commonly above 70◦ during winter at this latitude (57◦N). Matchups for OC5-PML are
available from the middle of February to the middle of November, while they are available
at any time using the NN-Rhot algorithm. Low Chl values (<1 mg m−3), usually sampled
between October and March, tend to be overestimated by both algorithms, but the discrep-
ancy tends to be much lower for the NN-Rhot algorithm. NN-Rhot produces consistent
estimations with independent in situ observations (Figure 12d). General performance
metrics for this independent data set are broadly comparable with the original training data
set (Figures 8d and 9d). Low values are still systematically overestimated, as a result of
under representation of such data from the training data set. This observation is supported
by Figure 12e,f, which respectively display the standard and relative standard deviation for
NN-Rhot estimates of Chl using the ensemble approach. The relative standard deviation is
typically greatest in winter and with values reaching ~50%, whereas values drop to ~20% at
other times of the year. Again, this reflects the scarcity of training data from winter months
due to increased cloud cover, reduced daylight hours and potentially reduced sampling
effort at this time of year.

Figure 12. Chlorophyll estimates for the Stonehaven time series, for (a,b) OC5-PML algorithm and
(c,d) NN-Rhot. Standard deviation and relative standard deviation from the ensemble NN-Rhot
approach (e,f).
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4. Discussion

It has been shown that the performance of several blue-green reflectance ratio al-
gorithms, including the latest versions of the most up to date variants, have variable
performance in the optically complex waters of the northwest European shelf. At the same
time, there is growing interest in the potential use of OCRS to contribute to monitoring
the environmental status of territorial waters, particularly with respect to the impacts of
eutrophication. There is therefore a profound need to understand and quantify the perfor-
mance characteristics of satellite Chl products and, if possible, to improve upon the existing
array of algorithms. There is growing appreciation of the potential for machine learning
approaches to be the key to improved data quality. Here, we have shown that an artificial
neural network is able to return favourable performance compared to existing algorithms
in direct matchup analyses and can produce realistic images of Chl distributions across the
region. It seems likely that efforts of this nature will continue to be developed in coming
years and that there will indeed be significant advances in Chl algorithm performance as
a result.

In developing a new algorithm like this, it is important to appreciate where previous
algorithms have struggled and to understand the limitations of new techniques. It is also
important to understand the quality of data being used for validation. Here we are using
a set of in situ Chl observations including filtered water samples (analysed using HPLC
and fluorometric analyses) and in situ fluorometry. Of these, HPLC is probably the most
accurate source of data. Claustre et al. [60] demonstrated that with suitably stringent
quality control measures in place, it was possible to achieve average uncertainties below
10%. However, this represented a round-robin exercise by leading laboratories rather than
general community capability, and the metric that really matters in this analysis is the range
of uncertainty, which was ~±20% for the [60] study. More recently, Sørensen et al. [63] and
Tilstone et al. [78] have both reported Chl results that suggest greater levels of uncertainty
for HPLC data sourced from across the community, with uncertainty ranges up to ~±40%.
When considering the performance of satellite Chl products, particularly with respect to the
potential for using satellite data to complement in situ observations for reporting against
legislative requirements, it is very important to consider that the quality of the in situ data is
likely to be of the order of±40% at best and that in many cases it may be considerably more
uncertain than that. Results from the NN-Rhot algorithm may well be reaching levels that
are consistent with the quality of data being used to train the networks, at least for scenarios
that have been sampled relatively frequently. That said, there is undoubtedly a need to
target future sampling efforts towards scenarios that are currently under-sampled, e.g., low
Chl in winter, open Case 1 waters and specific events such as coccolithophore blooms.

4.1. Chl Algorithm and Atmospheric Correction Failure in Northwest European Shelf Seas

Northwest European shelf seas are optically diverse, with optical properties ranging
from Case 1 conditions at the margins and in certain summer stratified shelf waters to
highly tidal regions characterised by high sediment loads and areas of freshwater influence
where high concentrations of CDOM impact strongly on reflectance signals [54]. Many areas
show strong seasonal variations, with shallow regions often exhibiting higher sediment
loads in winter associated with increased wind-driven mixing associated with winter
storms [79]. The occurrence of sediment-dominated waters degrades the performance of
standard atmospheric correction algorithms based on the black pixel approximation. At
its extreme, this leads to negative reflectance values in AC-corrected Rrs values, as seen
in Figure 5b. However, it is important to realise that over correction is not restricted to
spectra with negative values and that many of the non-negative spectra shown in that
figure are also poor representatives of the true remote sensing reflectance signal at sea
level. A further measure of the true difficulty of atmospheric correction over these waters
is revealed in Figure 5d, where application of just the first stage of atmospheric correction,
the Rayleigh correction, is sufficient to drive a number of Rhos spectra into negative
values. It is clear that, for an optically complex area such as the northwest European
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shelf seas, atmospheric correction is a potentially limiting step. Variable atmospheric
correction performance will almost certainly have deleterious consequences for subsequent
Chl algorithm performance. Several atmospheric correction methods exist [3,6–8,65,71].
However, there is no generally agreed, optimal choice of atmospheric correction that can
be successfully applied over such a complex area. More recently, similar observations of
higher performance have been made for either temperature estimations from the visible
spectra [47] or land observations [80], promoting the use of uncorrected top of atmosphere
signal until more performant atmospheric correction methods emerge. The fact that the NN-
Rhot algorithm operates successfully from TOA reflectances without requiring selection of
an atmospheric correction algorithm is therefore an attractive feature of the approach.

Moving beyond atmospheric correction issues, it was previously established, using in
situ radiometry (therefore unaffected by AC issues), that the presence of independent and
variable concentrations of sediment and/or CDOM has potential to disrupt the performance
of OCx blue-green reflectance ratio algorithms. As one of many examples in the literature,
McKee et al. [16] demonstrated that the OC4v4 algorithm performed poorly across the Irish
Sea (part of this study area) with notably worse performance in highly turbid, sediment-
rich waters. Thus the second stage of Chl estimation from radiometry, the Chl algorithm
itself, is further challenged by the level of optical complexity found in northwest European
shelf seas. The extremely variable performance of OC3 (Figure 8a) is probably most
associated with the performance of the empirical Chl algorithm rather than the AC (similar
overestimations with the more restricted version, Figure 9a). The more sophisticated OC5
algorithm version from PML reduces error to within an order of magnitude, although some
of this is achieved by masking out identifiably poor quality reflectance data rather than
producing inherently better estimates. Lavigne et al. [81] showed the limitations of this
specific OC5-PML algorithm when used for high Chl coastal waters. In both cases, the
failure of state of the art algorithms is not only due to atmospheric correction but is intrinsic
to the performance of the algorithms for optically complex waters.

There is considerable interest and optimism in the field that machine learning tech-
niques can be used to develop a new generation of ocean colour algorithms that will
perform more robustly in optically complex shelf seas. In this study, we have attempted
to develop a baseline approach where we take into account the issues affecting both at-
mospheric correction and Chl algorithm performance and where we seek to establish
performance characteristics for one of the simplest forms of machine learning techniques.
Here we have attempted to systematically explore the various decisions that go into con-
structing a NN. Notably, this included the option of using any of fully corrected BOA Rrs,
partially corrected Rhos and completely uncorrected TOA Rhot as inputs. Remarkably, we
have shown that similar levels of performance can be obtained with any of these input
data sets, with uncorrected TOA Rhot data providing marginally superior results to the
other two. This otherwise surprising result can be explained by the limited performance
of AC for these conditions. It is true for both NNs and other, more traditional algorithms
that poorly AC-corrected Rrs data are a hurdle to be overcome. In this case it appears that
eliminating AC altogether and operating directly on Rhot facilitates the job of deriving Chl
for the NN.

Advanced algorithms such as OC5 undoubtedly do a more robust job of directly
dealing with optical complexity found in coastal waters than the OCx algorithms designed
for Case 1 waters. However, it is clear from results presented here that a significant portion
of the apparent improvement in performance is derived from the relatively stringent
flagging used to eliminate the most problematic scenarios. The OC5–PML product is a
good example of a trade-off between improved data quality vs. reduced data availability.
Conversely, the NN-Rhot approach has been designed to maximise both data quality and
availability simultaneously. The computational flexibility offered by the NN allows us
to operate directly on TOA reflectances and to accommodate the optical complexity of
north-western European shelf seas. In doing so the NN-Rhot approach is able to improve
both data quality and quantity, and through the ensemble approach it can also provide a
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measure of data uncertainty. At this point in time, the availability and comprehensiveness
of the training data set appears to be the limiting factor for the NN-Rhot approach. Further
extension of the training data set is perfectly feasible through data mining existing historical
data and targeted future sampling.

Another important feature of the NN approach presented here is the use of all relevant
spectral bands. Rather than attempting to find an optimum set of wavebands or trying to
ascribe physical significance to any particular band, our approach was able to provide the
NN with all available wavebands in the Vis-NIR-SWIR range in order to allow it to resolve
the combined problem of dealing with AC and Chl retrieval. The NN approach developed
here effectively ingests all of the available spectral information and the neural network is
free to determine statistically robust relationships free from human intervention or bias.
For example, reducing the number of inputs to the three RGB bands (490, 550, 670 nm)
used by [34] produced significantly poorer quality results (not shown). It is likely that our
approach does in fact carry elements of redundancy, e.g., using the 859 and 868 nm or the 547
and 555 nm bands simultaneously may not be meaningful as the input information content
is presumably almost identical within each pair. This may point to further simplification
that could improve computational efficiency in the future but is unlikely to improve product
quality. We note that El-Habashi et al. [82] and Gilerson et al. [83] identify failure of the
atmospheric correction and resulting impact on blue BOA Rrs wavebands as major limiting
factors in their incorporation in NN to retrieve Chl from satellite data. This is consistent
with our observations in Figure 5 and our interpretation of why the NN operating on
TOA Rhot outperforms the NN operating on BOA Rrs. The inclusion of Red-NIR-SWIR
bands, elsewhere used for AC, has an unresolved but potentially crucial role for successful
exploitation of TOA Rhot as input as they can be directly linked to in water sediment
concentrations. Recent work supports the need for NIR bands for high Chl content that
blue-green reflectance ratio algorithms have problems with [81]. The neural network
approach developed in this study uses a combination of visible and infrared bands and
there is potential for sensitivity to fluctuations in atmospheric signals such as the impacts
of volcanic eruptions [84]. We have not observed such impacts in this study but caution
that there remains scope for this to occur under specific circumstances.

4.2. Incorporation of Non-Optical Information to Improve NN Performance

The ability of NNs and other machine learning approaches to derive statistically
meaningful relationships for seemingly poorly or uncorrelated data is one of the major
attractions of the approach. However, there are potential pitfalls that one must also be
aware of. An obvious source of potentially useful additional information is inclusion of
geo-spatial and temporal information in the training data set to facilitate recognition of
regional and seasonal/inter-annual variations. Inclusion of latitude, longitude, day of year
or season as inputs in addition to reflectance signals was attempted and found to produce
significantly improved matchups (+10%). However, whilst the associated statistical metrics
were improved, it rapidly became clear that the resulting NNs were much weaker in terms
of generalisation, with resulting images showing much less spatial detail than would be
expected for this region, for example, predicting smooth features over large areas in the
Atlantic hiding the mesoscale features associated with surface Chl.

It seems likely that inclusion of geospatial and temporal data as inputs to the training
data set allowed the NN to identify key features of the data set but reduced the weighting
put onto the directly observed light data. Inclusion of geospatial data, in particular, is
likely to overstate regional attributes and to seriously impinge on performance away from
areas of dense in situ sampling. The NN presented in this paper is a regional algorithm
as a consequence of the nature of the training data set used to develop it. However, as
an all-optical algorithm, the methodology we have presented has scope to be scaled up
to global scale simply by accumulating a sufficiently extensive and robust training data
set. When this is attempted, it will be interesting to test the effect of including geo-spatial
information as an additional input (potentially attractive if the training data is truly global).
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Based on our experience to date, we expect that such an approach would also result in
a loss of spatial resolution in resulting images, and that future NNs should focus on use
of all-optical inputs to maximise generalisation capability. Inclusion of solar and sensor
zenith angle or log transformation of inputs prior to normalisation were also tested but only
returned slightly improved performances (<2%) and were not used. They could potentially
be more impactful at a global scale.

4.3. Benefits and Limits of Neural Networks

NN approaches are generally assumed to be computationally intensive. However,
modern computing power is such that all of the work presented here was easily achieved
on a relatively modest computing platform. Testing of all the architectures presented in
Figure 3 took approximately 1 day using a desktop PC with 16 Gb RAM and Matlab R2020a.
On the same computer, applying the 10 iteration NN to the image shown in Figure 7a took
~3 min. Whilst the computational requirements should not be underestimated, it seems
quite feasible that the NN approach developed here is practically implementable due to
their low dimension.

In this study we used the NN as a black box, deliberately avoiding introducing user
bias into the production of the NN though noting that there are inevitable elements of
user choice in the design of the NN, e.g., normalisation method [85], choice of activation
function, choice of error metrics used to assess performance that do in fact impact even-
tual NN performance. Unfortunately, the resulting statistical relationships that emerge
from NN development are not amenable to physical interpretation. The three layers of
15 neuron architecture adopted in this study, despite being relatively small, still represents
approximately 736 weights connecting the neurons and is therefore essentially impossible
to interpret physically. It should be noted that there is tremendous potential for further
refinement of the NN structures, for example, with inclusion of dropout layers [86], use
of more complex activation functions such as leaky ReLU [87] or different neural network
architectures (e.g., long-short term memory networks, [88]). The simple feed forward
networks used here provided good performances, and whilst further complexity is possible,
there is perhaps merit in minimising the complexity of NN structures used and addition of
further complexity should be based on demonstrated merit only.

Whilst the NN approach presented here operates on TOA reflectance data with min-
imal flagging, masks are still applied for clouds, ice, glint, saturation and stray light. It
is interesting to note that neural networks have already demonstrated good potential to
identify these areas [89] and could replace current threshold methods in the near future.
The TOA NN does not require additional ancillary data products and is therefore inde-
pendent of availability of other data sources. However, there is an opportunity to include
these ancillary data that impact the light signal of the atmosphere and could lead to further
improvement.

A novel feature of our approach is the development of a bootstrap-like, iterative
approach to produce distributions of Chl estimates for each pixel rather than a single value.
The resulting descriptive statistics are potentially useful for providing end users with
estimates of confidence in each pixel and for identifying water quality scenarios that are
under-represented in training data sets. This can be used to direct future in situ sampling
efforts to maximise impact on development of future versions of NN algorithms.

NN performance is ultimately determined by how representative the training data set
is. For example, in this study, there are only a few hundred samples available for the NE
Atlantic and NN performance is currently questionable for that region and for open ocean
waters more generally. The focus of this work was to develop an algorithm that worked well
in optically complex shelf seas rather than open waters, where standard algorithms such as
OC3 and CI are expected to work reasonably close to the mission target of +/−35% [90],
with MADs of 1.4 for oligotrophic to 1.6 for general Case 1 waters usually reached by
these algorithms [70]. More generally, the training data set assembled for this study has
relatively small numbers of data outside the 1–10 mg m−3 range (Figure 1b) with potential
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implications for NN performance towards both extremes of the data range (Figure 8d).
Further expansion of the training data set is imperative, particularly if the NN will be used
for open ocean waters, even inadvertently as we have in this paper. Recent work by Hu
et al. highlights the potential for machine learning approaches to simplify Chl retrieval in
open ocean Case 1 and oligotrophic waters [20]. However, it is less clear if the NN will be
able to recover very low values in more turbid waters, a scenario that our current data set
does not properly encompass. It is possible that the contribution to reflectance of a low
concentration of phytoplankton amongst a high concentration of sediment is sufficiently
small that it is not identifiable, even using a NN (e.g., [28]). Moreover, adjacency effects
from land is significant in coastal waters [91]. Development of machine learning–enhanced
OCRS algorithms is likely to increase rather than decrease demand for in situ validation
data, with particular emphasis on directing effort towards novel and rare features that are
underrepresented in existing training data sets.

As it currently stands, the NN developed here is unashamedly a regional algorithm,
with our focus being on establishing a methodology that can in future be scaled up to global
levels. Testing NNs performances on independent data sets is a major limit as matchup
data sets created in the past for other studies typically did not use Rhot nor the full set of
bands used for this study. Here we tested the NN-Rhot approach on an independent coastal
time series, with the NN returning encouraging results across the annual cycle. Providing
satellite chlorophyll during winter near the solstice may be critical to understand the start
of the spring bloom season [92]. This study highlights the need for agreed matchup data
sets to be shared and used by the community for algorithm development, including top,
middle and bottom of atmosphere reflectances and the full set of flags. OC5-PML and
OC5-ACRI products would benefit from having access to the data gathered for this study
to further refine their LUTs, and could potentially return higher performances. However,
there would still be limits associated with the nature of the OC5 algorithm and reliance on
flagging to eliminate the more difficult scenarios.

Restricting NN inputs to optical signals only is potentially key to ensuring translation
of the NN approach beyond current geographic confines. However, there is also a limitation
on applicability to a particular satellite sensor, in this case MODIS Aqua. This is partly
due to the availability of specific bands for each sensor but also reflects specifics of sensor
calibration. Directly translating the current NN to another sensor is unlikely to be easy and
is likely to require collation of a suitable matchup data set for that instrument followed
by repetition of the methodology outlined above generating another instrument-specific
NN. Development of a long term, consistent TOA time series, incorporating data from
multiple satellites along the lines of the OC-CCI project, is essential and in this case may
be key to developing a global data set for exploiting the capabilities offered by machine
learning data analysis techniques in this field. Introduction of hyperspectral OCRS data
in the future, e.g., the forthcoming Plankton, Aerosol, Cloud, Ocean Ecosystem (PACE
mission, https://pace.gsfc.nasa.gov, accessed on 5 May 2022), has potential to support
development of improved NNs that may be able to exploit enhanced spectral resolution to
improve accuracy of Chl retrieval.

The NN developed here proceeds straight from TOA Rhot to estimates of Chl, effec-
tively bypassing the need for production of atmospherically corrected BOA Rrs values.
Whilst this is efficient, it precludes the possibility of applying the NN to reflectance signals
measured in situ. Ironically, the Rrs NN discussed in Figure 4 might not work well with
in situ Rrs data as a result of having been trained on poorly AC-corrected satellite Rrs
values. Whilst there is clearly merit in avoiding the need for atmospheric correction, there
is undoubtedly interest in generating accurate BOA Rrs values, not least because it is a
Global Climate Observing System established essential climate variable, but also because it
facilitates functional links between satellite and ground truth optical observations. The NN
methodology development proposed here is translatable to deriving surface Rrs values
instead of Chl, but requires provision of an adequate training data set. Extensive efforts
to produce global sets of in situ optical, and biogeochemical data have been made by the

https://pace.gsfc.nasa.gov
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community (e.g., NOMAD [93]; MERMAID [94]) and it is likely that future AC algorithms
will be developed using neural network techniques such as the NN approach discussed
here [36,95]. Again, there will be increasing value to be had from future in situ optical
sampling, with increasing focus on the use of sensors deployed on moorings and other
autonomous platforms providing an efficient means of generating necessary matchups
with satellite data.

5. Conclusions

A methodology has been developed to find optimal artificial neural network architec-
tures for the estimation of Chl in coastal waters from the MODIS Aqua ocean colour sensor
using all available visible and short infrared bands related to ocean or atmospheric features.
The use of top-of-atmosphere uncorrected reflectance, Rhot, is shown to be feasible using
neural networks. For northwest European shelf seas, the neural network algorithms clearly
outperformed state-of-the-art ocean colour algorithms for a matchup data set covering
the whole MODIS-Aqua era, from July 2002 to January 2020. They returned significantly
higher Pearson correlation (R > 0.7 compared to 0.61) and lower mean absolute difference,
<1.8 against 2.10) without application of additional data quality flags, thus simultaneously
increasing the number of available matchups and the number of pixels per image. As
a result, the networks presented here are capable of producing promising quality data
in winter when other algorithms are masked out. By operating on Rhot, the network
eliminates the need for atmospheric correction, which is shown to perform poorly in many
instances for this region. Chlorophyll maps are therefore produced with minimal data
processing steps, although the application of only a small number of masks to remove
non-water or atmospherically impacted areas is still required. Iterative re-sampling of the
training data set was used to produce an ensemble of NNs that in turn provide both median
best estimates and uncertainty distributions for each pixel. The addition of geo-spatial and
temporal information is discussed but was found to harm neural network performance
by transforming them into statistical modelling tools rather than observation tools. The
current version of the algorithm is restricted in geographical scope by the extent of the
available training data set, but the methodology presented has potential to be upscaled
to a global algorithm upon generation of a suitably extensive training data set. There is
further potential to adapt the methodology to produce a future neural network that can
be applied to merged ocean colour data sets and to use the technique to develop other
useful products, including a more robust atmospheric correction algorithm. In all cases,
the advent of machine learning–based ocean colour algorithms means there is a strong
imperative to continue, and if possible expand, in situ observation programs that will
provide the training data sets needed to update and further improve this type of algorithm.
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