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Abstract: This is a review focused on advances and current limitations of computer vision (CV) and
how CV can help us obtain to more autonomous actions in surgery. It is a follow-up article to one
that we previously published in Sensors entitled, “Artificial Intelligence Surgery: How Do We Get to
Autonomous Actions in Surgery?” As opposed to that article that also discussed issues of machine
learning, deep learning and natural language processing, this review will delve deeper into the field
of CV. Additionally, non-visual forms of data that can aid computerized robots in the performance
of more autonomous actions, such as instrument priors and audio haptics, will also be highlighted.
Furthermore, the current existential crisis for surgeons, endoscopists and interventional radiologists
regarding more autonomy during procedures will be discussed. In summary, this paper will discuss
how to harness the power of CV to keep doctors who do interventions in the loop.

Keywords: artificial intelligence surgery; autonomous actions; computer vision; deep learning;
machine learning

1. Introduction

Unlike AI “in” surgery which consists of radiomics, enhanced imaging analysis and
decision making in the pre- and post-operative period, artificial intelligence surgery (AIS) is
becoming known as the potential fusion of current surgical robots with artificial intelligence
(AI) that could theoretically lead to autonomous actions during surgery [1]. AIS is different
from AI in other medical fields because surgery by definition is an interventional field.
As time goes by, other interventional fields are increasingly becoming fused with some
clinicians able to do surgery, endoscopy and interventional radiologic procedures. Because
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of this perpetual evolution, we chose surgery as the umbrella term to incorporate all
interventional fields. Surgeons, endoscopists and interventional radiologists (IR) have
historically relied on their sense of touch and vision, but since the minimally invasive
revolution sight has come to the forefront. This is probably best seen by the observation
that all robotic surgeons who use complete surgical systems that require a console (da Vinci
Surgical System, Intuitive Surgical, Sunnyvale, CA, USA), only have visual information to
go by and must operate without any haptics/sense of touch [2].

This review article will address the current advances made in the field of computer
vision (CV) as it pertains to autonomous actions during surgery. Additionally, it will
discuss the existential crisis for surgeons as to whether or not the safest and most effective
way towards more advanced autonomy in surgery should require less or more physical
distance between surgeons and their patients. Fundamentally, should we be striving for
true robotic autonomy during interventional procedures, are collaborative robots (cobots)
the safest way forward or will it be a combination of both? Although robots and computers
may be able to effectively “see” through traditional concepts of CV such as instrument
priors and motion analysis to create the third dimension, non-visual data points such as the
interpretation of audio signals and light intensity readings may also be used. This review
is a follow-up to a previously published article that, in addition to CV, also expanded upon
the other pillars of AI such as machine learning (ML), deep learning (DP) and natural
language processing as they pertain to autonomous actions in surgery [3].

2. Methods

Search terms included combinations of autonomous actions in surgery/autonomous
surgery/autonomous surgical robots with CV, ML, DL, augmented reality (AR), segmenta-
tion, phase recognition or navigation. Additional search terms included less traditional con-
cepts of CV such as instrument priors and audio-haptics. Articles discussing autonomous
actions in interventional healthcare disciplines were then sought. The term “surgery” was
utilized in the manuscript to encompass the fields of surgery, endoscopy and interventional
radiology. The fields of surgery studied included open and minimally invasive approaches.
Minimally invasive approaches were defined as encompassing endoscopic and robotic-
assisted approaches. Endoscopic approaches were defined as including, but not limited to
laparoscopic, thorascopic-assisted and arthroscopic procedures. Only studies carried out or
meant for human subjects were considered. Studies that were not in English were excluded.
Virtual reality (VR) was not included in this review as it was not considered precise enough
in its current form to offer safe autonomous actions during interventions.

Articles that were included were chosen and approved by the first 2 authors (A.G.
and V.G.). This review article is meant for medical doctors that perform interventional
procedures. The review attempts to familiarize doctors with the basic concepts of artificial
intelligence with an emphasis on the most relevant advances in CV that are enabling more
autonomous actions during interventional procedures. Review articles and studies about
simulating interventions were excluded.

3. Results

This review article was registered on PROSPERO on 6 June 2022 and is pending ap-
proval. The PRISMA checklist was used to format and organize this article. A total of 1687
articles were identified by searching PUBMED, GOOGLE SCHOLAR and REASEARCH-
GATE (Figure 1).

A total of 1499 articles were off topic and were excluded. An additional 67 were
duplicates. Of 121 articles initially identified, an additional 33 were not in the English
language. Of the 88 articles remaining, 3 could not be retrieved. Of these, an additional 13
were found not to describe an autonomous action, leaving 72 articles for this review.
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3.1. Console Surgical Robots

The manufacturer, Intuitive Surgical, has the most experience in the world. The first
human instance where the da Vinci was used in 1998, and the first robot was available
to buy since 2000. The da Vinci has three components: a console, the laparoscopy tower
and the robotic arms. Unlike the Versius robot, all of the robotic arms are on one base
weighing approximately 700 kg. Alternatively, each robotic arm of the Versius is on a
separate base weighing only 100 kg. Because of this weight difference, the da Vinci is much
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stronger, which is fundamental when dealing with inflammatory tissue. However, this
added strength may lead to more iatrogenic injuries when the da Vinci is used, especially
early in one’s learning curve. Because of the fact that the da Vinci robot is on a solitary
base that weighs more, it has become the dominant force in pelvic surgery. Unlike surgery
in the abdomen that can easily be carried out from the side of the patient or by operating
in-between the legs, during pelvic surgery there is no comfortable position for a surgeon
to stand. As a result, the da Vinci will probably always be the dominant type of robot
for pelvic surgery. Namely, remote surgery carried out at a console, which is also known
as tele-manipulation. Unlike its competition, the da Vinci also has an energy device and
powered stapler that can fit onto the robot.

The main advantage of other complete console surgical systems (Versius, CMR, Cam-
bridge, UK) is that it costs almost 1

2 the price of the da Vinci to buy. In addition, the
disposable instruments that are needed for every procedure also cost approximately 1

2 the
price. The fact that each robotic arm has a separate base also increases the positions that the
arms can be placed. Theoretically, this can lead to more complex robotic approaches and
procedures. However, early in a surgeon’s career, this may lead to difficulties with set-up
and could lead to some surgeons becoming frustrated with the robot and abandoning its use
altogether. Another potential advantage to the Versius that was mentioned above is that the
fact that the Versius robotic arms weigh less and can thus create less force may lead to fewer
iatrogenic injuries, at least, early in a surgeon’s learning curve. Technically, the Versius
robot has the ability to enable haptics; however, the computer is so sensitive that it senses
the surgeon’s resting tremor rendering its activation more deleterious than beneficial.

Future robots that are being developed to involve the use of handheld robotics and
enable the surgeon to maintain contact with their patients. These robots may cost even less
than the Versius system, but they are currently not available on the market [1]. The two
different visions for robotic surgery, namely, tele-manipulation with a surgeon sitting at
a console or handheld robotics with surgeons standing right at the operating room, are
crucial to understanding which is the best method towards more autonomous actions in
surgery. To better understand the significance of these two approaches, the difference
between automatic and autonomy must be understood.

3.2. Automatic vs. Autonomous Actions

In contrast to autonomous actions, automatic actions involve no interpretation of
data prior to the action. Autonomous or intelligent actions involve the interpretation
of sensor data and/or utilization of ML algorithms to decide whether or not to do the
proposed action (Figure 2). Additionally, autonomous actions may enable devices to alter
how actions are carried out. In essence, ML enables devices to make decisions for which it
was not necessarily programmed. These two different types of actions can maybe be best
understood by comparing two kinds of commercially available straight gastrointestinal
anastomotic (GIA) powered staplers. One of these powered GIA staplers (Echelon Stapler,
Johnson & Johnson, New Brunswick, NJ, USA) does not have any sensor or interpretation
capabilities, it is just activated and fires. Alternatively, another powered straight GIA
stapler has a sensor and once activated it will ascertain the thickness of the tissue before
firing (Signia™ Stapling System, Medtronic, Dublin, Ireland). If the tissue in the stapler’s
blades is too thick it will not attempt to fire, or once the tissue becomes too thick it will stop.
Additionally, if the tissue is not thick enough, it will not even begin stapling. It is hard to
imagine that this type of sensing technology is a form of AI that results in decreased staple
line and anastomotic leaks.

There is a profound lack of understanding in the surgical community as to what
constitutes autonomy and what AI even is. AI is not a zero sum game and to help explain
the varying shades of grey of AI and autonomy, the concept of strong and weak AI has
been created [3]. Strong AI being the traditional understanding of AI where a robot is
independent and essentially does everything. Using this definition, it is easy to see why so
many surgeons are skeptical as to the viability of full autonomous actions in surgery.
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Figure 2. Artificial intelligence (AI) in computerized visualization involves machine learning (ML),
which encompasses deep learning (DL). Computer vision (CV) is made possible through the neural
networks of DL. Computers and robots may be able to attain autonomous surgical actions through
a combination of traditional CV, but also through instrument priors, motion analysis and other
non-visual data points.

As researchers have grappled with the intricacies of autonomy, six levels of surgical
autonomy have been designated. Notably, these six levels follow closely the schema devel-
oped for self-driving cars [4]. Level 0 is no autonomy with levels 1 through 4 being examples
of weak AI/autonomy. More specifically, level 1 corresponds to the tele-manipulation that
we see with current complete robotic surgical systems. Level 2 involves some interpretation
of data by the machine and corresponds to the intelligent-powered stapler discussed above.
Level 3 autonomy is when the surgeon has several autonomous actions that can be chosen.
Energy devices that have multiple sealing settings that independently determine the time
of sealing via algorithms and indicate the failure or success of sealing could be an example
of this example of weak AI.

Level 4 autonomy would be when a device actually makes medical decisions but is
still controlled by a physician. Percutaneous ablation of arrhythmias with devices placed
inside the heart by interventional cardiologists, but robots on cardiac catheters that sense
electrical myocardial misfirings and then autonomously do ablations are a modern day
example of this level of autonomy [5]. A true example of strong AI or level 5 autonomy
where a robot or device acts completely independently does not exist in surgery; however,
an example does exist in healthcare. An automatic implantable cardioverter-defibrillator
(AICD) autonomously diagnoses an arrhythmia and potentially gives a life-saving shock
treatment to the patient without any input from a human [6].

3.3. Computer Vision (CV)

Enabling a robot to have the ability to see, CV, has become the main obstacle to the
development of truly autonomous actions in surgery. Organ segmentation, the ability to
differentiate organs and structures within organs, and phase segmentation, the ability for
computers to recognize which part of the procedure is being carried out, are remarkably
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complex tasks to teach surgical robots (Figure 3). In the non-healthcare fields, this limitation
of modern-day CV has been resolved by having humans control some aspects of a robot’s
actions. These collaborative robots or “Cobots” are increasingly used in the business world
to enhance productivity during manufacturing. The current limiting factors for a robot
to function autonomously are elucidated when see the trials and tribulations of getting
a robot to reliably and securely help a neurologically affected patient to drink a glass of
water without the aid of another human [7].
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Figure 3. Computerized visualization in artificial intelligence or autonomous surgery hype cycle
with potential steps necessary in-between the peak of inflated expectations, trough of disillusionment,
slope of enlightenment and plateau of productivity.

3.4. Machine Learning (ML), Deep Learning (DL) and Computer Vision (CV)

As discussed above, ML incorporates both weak AI (autonomy levels 2–4) where the
mind’s ability to make decisions is only partly mimicked, and strong AI (level 5) where
the more complex decision functions of the human brain are emulated. Deep learning
(DL) algorithms were created to more closely imitate the anatomical structure of the brain
in an attempt to attain higher decision-making capacity. DL falls within the umbrella of
ML and employs multiple neural networks (NNs) structures such as dee, recurrent and
convoluted NNs in an attempt to attain a higher level of sophistication during decision
making, resulting in the potential for more complex actions. It is through the more recent
improvements in DL mathematical and geometrical models that have resulted in reliable
and functioning CV.

3.5. Detecting and Classification of Objects in Images

Ultimately, it is possible that the greatest contribution of laparoscopic surgery to
healthcare will be that it resulted in the ease of a computer being placed in-between the
patient and surgeon [8]. This innovation has enabled images to be classified on either
static or video images. This image classification has been carried out via the labeling of
images and the creation of training sets that can be tested and adjusted as needed until the
computer can reliably and effectively act upon CV data.
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Many advancements in object detection have come from attempts at facial recognition,
such as techniques created by Michael Jones and all Viola (Figure 2). Their approach
utilizes a ML algorithm known as a Haar Cascade that has a classifier that learns by
interpreting positive and negative images. Notably, existing literature suggests that Haar
cascades can outperform convolutional neural networks (CNNs) in some specific tasks
such as localizing surgical instruments [9]. Model libraries containing images of surgical
instruments have to be used to train the algorithms to differentiate the different instruments.
Vast databases containing videos of surgical procedures such as for colon surgery [10],
gallbladder surgery [11] and obesity surgery [12] already exist and are used to analyze
different methods of object detection [10].

Advanced deep-learning-based methods such region-based CNN (R-CNN) [13], single
shot detectors (SSD), region-based fully convolutional networks (R-FCN), YOLO (You
Only Look Once) [14] and others in recent years showed superior performance over other
traditional methods in detecting and recognizing objects from images and video footage.
Each of these methods can be utilized successfully in certain medical situations and are
subject to the context. For example, YOLO is considered one of the fastest object recognition
methods; however, faster R-CNNs may have better performance [15]. Typical successful
application of these methods include the work in for the detection and localization of
tools in robot-assisted surgery (RAS) [16]. Detailed review of the application of DL-based
methods for autonomous surgery can be found in the journal Artificial Intelligence Surgery.

Automated bounded boxes, which are boxes that are placed around objects in images
are utilized to permit the detection of objects. The more objects that there are in an image,
more boxes will be created and appear (Figure 4). The necessary libraries are downloaded
and coding programs can be devised that can learn how to classify and identify the objects
of interest. For surgical instrument detection, the algorithm is first taught how to identify
one instrument and then how to detect and identify various surgical instruments. This
is carried out by giving each different instrument a specific and precise label. The labels
are then converted into a digital output that can be read by a neural network that can
ultimately differentiate each surgical instrument. In general, 80% of the image library is
required to train the model with only 20% used for testing the model. If the accuracy is
not adequate, then the mistakes need to be studied and the algorithm altered to enhance
the NN.
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Figure 4. (a) Image of the common bile duct (CBD) (green) during minimally invasive major liver
resection and (b) bounded boxes around surgical instruments. Notice that the left and right hepatic
ducts are not labeled.

3.6. Current Optics Used in Minimally Invasive Surgery

Three different colors, red, green and blue (RGB), that are visible to the human eye are
used to make color images and each pixel has a specific value and a well-defined range.
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Digital endoscopes and laparoscopes mimic each of these three RGB light wavelengths.
Additionally, strong white light is needed to create illumination. The ability of the human
eye to perceive things is currently being enhanced during surgery via biophotonics such as
indocyanine imaging and narrow band imaging (NBI) [17]. A form of functional imaging,
indocyanine imaging works on the principle that some molecules that can be absorbed in
the human body can re-radiate fluorescent light. During hepatobiliary surgery, specialized
hardware can detect fluorescent indocyanine that binds with bile, which is a yellow-colored
pigment that peaks in the blue-green spectrum. When complex algorithms are used to
interpret this information, specialized images can be generated that can enhance the visual
identification of anatomical structures, tumor location and lymph node drainage and blood
flow. This blue-green spectrum is also ideal for the generation of NBI, which can also
augment the identification of blood vessels resulting in the enhanced detection of cancers
and pre-cancers [18].

Surgical spectral imaging (SSI) is another modality that is still in the experimental
phase and includes multi-spectral imaging (MSI) and hyper-spectral imaging (HSI). As
opposed to more traditional imaging that utilizes the RGB spectrum, spectral imaging also
uses a third data point for each individual pixel. However, unlike a traditional geometrical
third dimension, spectral imaging relies on a data point derived from the reflectivity of the
tissue being imaged and currently only relies on images that have two spatial dimensions.
The resulting data cube is more specific than standard two-dimensional imaging and this
enhanced imaging is believed to be superior at the differentiation of organs and has been
utilized in space exploration and marine studies [19]. MSI measures spectral bands on a
factor of 10 and HSI measures spectral bands on a scale of 100. HSI “fingerprints” have
been created in an animal model that studied the differentiation of up to 20 different
internal tissues and organs with an accuracy superior to 95%. It is hoped that HSI could
lead to computers ultimately being able to accurately and reliably differentiate organs in
real-time [19]. The difficulty of organ identification pales into comparison of the algorithms
needed to give computers the ability to differentiate the different parts of an organ, this task
is known as organ segmentation. Once you factor in the need for a third spatial dimension
for the realistic development of autonomous surgery, the computational challenges that
have to be overcome become clearer. Because of this complexity, we will focus on two-
dimensional static images first, then discuss the interpretation of video and lastly touch
upon some of the issues of grappling with three-dimensional spaces.

3.7. Semantic Segmentation

Semantic segmentation, also known as image segmentation, is stratified into four over-
all phases [3,15,20,21]. Phase one is classification, phase two is localization and classification,
phase three is object detection and phase four is considered true semantic segmentation.
Classification is when something is correctly identified within an image. Localization and
classification are when an object is localized correctly within a bounding box. Object detec-
tion is the proper identification and differentiation of something in a picture when there
are multiple objects within the image. Semantic segmentation occurs when the computer
can properly localize and identify objects even when the object is over-lapping other things
within the picture. This is accomplished by having every pixel in the image classified
and differentiated based on predictions, this process is termed deep prediction. Semantic
segmentation is needed for the computer to determine how instruments are oriented and
will be needed so that the trajectory of instruments can be predicted.

Currently, limitations in adequate segmentation are perhaps the main rate-limiting step
for future innovations and progress. Although virtual bronchoscope navigation (VBN) for
radial end-brachial ultrasound and ultra-thin bronchoscopy (UTB) has been available since
2008, clear advantages have been limited. For example, a randomized-controlled multi-
center trial did not demonstrate a statistically significant superiority of VBN compared to
unassisted UTB. On the other hand, when nodules in the distal 1/3 of the lung or nodules
that were not seen on fluoroscopy were analyzed separately, the patients that had VBN had



Sensors 2022, 22, 4918 9 of 21

a statistically significant improvement in nodule detection [20]. Other centers also showed
a non-significant tendency for superior diagnostic yield in patients that underwent UTB
with VBN when compared to standard UTB alone (47% vs. 40%, respectively). However, of
note, when cases with optimal segmentation were analyzed separately, diagnostic yield
was found to be significantly better, with diagnostic yield increasing to a rate of 85% [21].

In perhaps some of the most interesting examples of available AI in healthcare, al-
gorithms utilizing clinically functioning semantic segmentation has enabled real-time
diagnosis of suspicious lesions during endoscopy and even assistance with classification
of anatomy during laparoscopy [22–26]. Various CNNs have been created to successful
allow for this level of semantic segmentation and include the deep learning algorithms
ENet, UNet, SegNet and ErfNET. When a data set of laryngoscopy images were analyzed,
improved segmentation of laryngeal tissue was noted when UNet and ErfNet were used,
but better efficiency was noticed when ENet was used [22]. The reality that alternate
algorithms are better at solving different aspects of CV elucidates the degree of complexity
that is necessary for computers and ultimately surgical robots will need to see as well as
the human eye.

3.8. Instance/Video/Surgical Segmentation

Instance segmentation involves the differentiation/identification of an object, when
more than one of the same objects is in an image frame, for example, when two identical
laparoscopic graspers are in the same image. In short, a more sophisticated level of
segmentation is needed. The complexity of this task becomes clearer when we understand
that the different parts of the same instrument must also be accurately identified, this
type of segmentation is termed multi-class segmentation. Linknet and TeranusNet are
neural networks that have been used to accomplish this task [27,28]. Color pixel analysis
combined with analysis of reflective capacity or texture to create an additional degree of
differentiation has been used with these DL algorithms to create functioning instrument
segmentation during robotic-assisted and laparoscopic surgery [29].

Trying to differentiate the various organs and then parts of each organ is another
particularly difficult task that is encompassed in multi-class segmentation. The complexity
and difficulty of this task is easier to understand visually. In this example, a patient
undergoing a laparoscopic radical cholecystectomy with excision of her common bile
duct for an invasive gallbladder cancer (Figure 5a) also happened to have a vascular
anomaly, specifically, a replaced right hepatic artery (Figure 5b). One bounded box is
placed over all of the arteries and the various arterial branches are not correctly labeled
and it is not clear that the patient has a right hepatic artery coming off of the superior
mesenteric artery instead of the common hepatic artery (Figure 5c). To account for this
anomaly, an additional layer of segmentation, organ segmentation, is required. Notably,
this extra layer of identification/segmentation should probably be referred to as vascular
segmentation (Figure 5d).

Another method to allow for instrument segmentation consists of a pre-trained en-
coder and UNet neural network decoder that utilizes nearest-neighbor interpolation [30].
As opposed to standard laparoscopy, robotic-assisted surgery that uses complete robotic
surgical systems has the capacity to record and interpret data regarding instrument location
into DL algorithms. These types of data are referred to as instrument priors can enhance a
robots ability to accurately identify robotic surgical instruments and even their respective
parts [31]. As instrument segmentation has evolved, researchers have shown that algo-
rithms can be developed that can even correctly interpret datasets that are publicly available
and not only datasets obtained locally under controlled environments. Fortunately, even
images only annotated every 10 frames per second have been shown to be adequate to
obtain accurate instrument segmentation [32]. Instrument segmentation has even been
realized in real-time via the utilization of multi-scale feature fusion [33].
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Figure 5. (a) Raw footage of the portal triad during a minimally invasive radical cholecystectomy and
common bile duct excision for a patient with gallbladder cancer; (b) bounded boxes showing instance
segmentation of the surgical instruments; (c) bounded boxes of instruments and entire arterial supply
without multi-class segmentation of the different arteries; (d) patient has a replaced right hepatic
artery that is not identified by lower-level segmentation.

The development of surgical segmentation has been pioneered by the group from
Strasbourg, France, with early studies focusing on cataract surgery and minimally invasive
gallbladder removal [34]. Although the primordial limitation is the difficulty in obtaining
sufficient amounts of datasets of the procedures, an even more time-consuming limitation
is the fact that surgeons are needed to annotate these vast repositories of video datasets. In
an effort to overcome this limitation, the team from France has proposed the utilization of
temporally constrained neural networks (TCNN), which are semi-supervised methods that
may facilitate the process of annotation and thus surgical segmentation. This is possible by
analyzing both temporal and spatial signals via auto encoder networks [34,35]. The goal
of this review article is to highlight advances in CV, future review articles will focus on
sensors and sensor fusion [36].

3.9. Navigation, Augmented Reality (AR) and Mixed Reality (MR)

It is apparent that future surgeons will be astonished by how we had to operate while
being effectively blind. This is easy for older surgeons to understand when we remember
how we used to access central lines blindly or the days of endoscopy prior to endoscopic
ultrasound or solid organ surgery prior to intra-operative ultrasound. Some lesions in solid
organs are only seen on cross-sectional imaging and only in limited instances have surgeons
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been able to operate with the aid of more sophisticated imaging. Augmented reality or AR
has been available in the research setting for over a decade, with commercially available
devices only recently coming onto the market. AR that can locate and differentiate blood
vessels from other tubular structures such as the bile ducts, lymphatic vessels and ureters
is a difficult task that can be carried out with AR, but this is only reliable and accurate with
non-mobile and non-elastic structures such as bones and retroperitoneal structures. AR uses
cross-sectional imaging that is usually obtained pre-operatively, but theoretically, a similar
level of organ segmentation could be obtained with the abovementioned segmentation
techniques (Figure 6A,B).
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Figure 6. (A) Augmented reality (AR) during a minimally invasive extended right liver resection.
(B) Organ segmentation is possible with the aid of pre-operatively obtained images. Common bile
duct (CBD) in green, right portal vein branch (RPV) in blue, clipped and cut anterior and posterior
right hepatic arteries in red.

Because of the limitations of the algorithm’s ability to take into account flexibility
(Figure 7), AR has been adopted more diffusely in neuro- and orthopedic surgery. This
is an active area of research with the top teams currently engaged in the registration of
deformable organs, estimations of the deformation and tracking in real-time of the degree
of deformation of organs [37–40]. Workflows also exist for tumors of the gynecological tract
(Figure 7) [38,41], urinary system (Figure 8) and hepatobiliary system (Figure 9) [42–46].
Some studies have combined AR with VR to create a mixed reality (MR); however, current
technology does not permit the safe creation of autonomous actions during surgery using
this approach and is limited to guiding the surgeon [47].

Other limitations of autonomously functioning robots in healthcare have been on
movements created by the actions of the heart and lungs. This obstacle was overcome
in the 1990s by the CyberKnife system that used sensors placed directly on the patient’s
chest so that damage to neighboring healthy tissue during external beam radiation could
be minimized [1]. Although autonomously driving cars and prostheses for artificial vision
have many of the same problems as CV during procedures, the fact that the human body
is elastic, deformable and frail with certain parts that are in constant motion render CV
during surgical, endoscopic and interventional radiological procedures infinitely more
complex [48].

Prior to the development of more autonomous actions during interventional proce-
dures, in addition to a reliable and rapid ability for the computer to identify organs and
instruments, the robot also needs to know how to safely navigate inside the body. This
magnitude of this task is best comprehensible when we study the complexity of navigating
only a static image. Virtual reality (VR) has been touted as a modality that could give
surgeons useful information on anatomic anomalies, location of vascular structures and
other critical structures resulting in improved and safer navigation. One key benefit of VR
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is that for things such as the simulation of operations and virtual endoscopy, lower image
resolution is used, as a result, less data are analyzed and computations of algorithms can
be carried out faster [49]. Realistically however, it is doubtful that less CV resolution will
be a viable option during something as complex as autonomous surgical actions. Neverthe-
less, VR may have a role during the autonomous screening of lesions during diagnostic/
screening endoscopies.
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A form of unsupervised DL known as deep Q reinforcement learning (RL) is value-
function based and is being used to enable autonomous endoscope navigation. Appropri-
ately, researchers have first attempted to render autonomous the first task of endoscopy, the
initial intubation. During diagnostic laparoscopy, the initial intubation is usually carried
out in a relatively blind fashion by using feel. By using images obtained during this initial
part of the bronchoscopy and not any images obtained pre-procedure, researchers were
able to use deep Q RL in a CNN known as DQNN (deep Q reinforcement learning neural
networks), to safely get the bronchoscope into the breathing tube [50]. Q-learning RL
calculates the optimal policy or skill, which is the best value for a pre-defined task. This
form of RL is based on the concept that an exact value for an action can be determined that
corresponds to a precise situation and environment. A carefully determined balance must
be walked between exploration and exploitation for this to function. The importance of
the task being carried out successfully is paramount during exploitation; however, during
exploration a higher degree of error is tolerated by the algorithm so the robot/computer
can learn better, resulting in superior future actions [51].

4. Challenges and Open Areas of Research in CV and Artificial Intelligence Surgery

It can be said that deep-learning-based methods have significantly advanced research
and development in the area of robotic surgery, across various tasks including objects
detection and recognition, classification, navigation and construction of 3D representation
of the environment. However, one of the key requirements for successfully implementation
of DL-based methods is the availability of large volumes of carefully annotated datasets.
In the surgical environment, this can be very expensive and labor-intensive tasks [3,52].
More importantly, in some scenarios, it can be even impossible to acquire such data, for
example, when you consider the need for estimating depth information for endoscopic
surgery images, which is an important task to facilitate navigation in a surgery setting
using a robot or a semi-autonomous device. In the deep learning era, if we can obtain large
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volumes of good quality videos with the corresponding depth maps, then such a task may
be very possible [53].

However, this is quite impossible in a surgical setting due to the dynamic and diverse
nature of such an environment. A closely related challenge is the ability to register 3D
images (once constructed) especially in such a surgical, dynamic and changing environment
(organs deformation, light variations and others). Additionally, there is a need to develop
methods that can generalize better to unseen scenarios and this might require training
models to learning from multimodal data sources, as well as creating new methods for
fusing and integrating these data modalities to inform the learning process. It has to be also
said that the quality of the data continues to challenge state-of-the-art deep learning models.
Existing literature suggests that deep learning models’ performance, despite their superior
performance over human’s across many tasks, becomes similar to human performance on
lower-quality data [54].

4.1. Dexemes/Surgemes/Situation Awareness

Surgical maneuvers have been classified into smaller gestures termed surgemes, us-
ing hidden Markhov models (HMMs), data from these various movements during tele-
manipulation robotic surgery can be registered and analyzed [55]. These HMMs have been
found to be able to stratify surgeons according to where they sit on the learning curve by
analyzing the precise tissue–tool interactions [56]. Additionally, analysis of torque and force
data has been able to successfully classify skills when using the complete robotic surgical
systems [57]. Subsequent studies calculated kinematic measurements with more dimen-
sions via linear discriminant analysis, and Bayes’ classifiers were used to increase to four
dimensions so that the quality of surgical gesture segmentation could be maximized [58].

Accuracy of surgical maneuver segmentation was further enhanced by again using
HMMs to analyze even smaller parts of surgical maneuvers called dexemes [59,60]. What
this approach to the analysis of surgical gestures shows us is that the computer can, in
essence, see and process surgical movements that the human body and eye may not even
notice or register. The ability of computers to analyze the movements of surgical robots
that are tele-manipulated and that robotic devices create autonomously may be as relevant
as the analysis of more studied and traditional forms of CV.

For instance, an anastomosis of the small intestine would be divided into several steps
or surgemes, specifically, the placement of the two ends of intestine next to each other,
the placement of sutures to fix the orientation of the two ends together, the creation of
the two enterotomies, the creation of the stapled anastomosis with linear staplers or with
sutures and if indicated the mesenteric defect closure. Dexemes would be the different
hand gestures of the tele-manipulator that are needed to perform each one of these various
steps/surgemes. A sum of the different dexemes would make one surgeme and the sum
of a set of surgemes would make up an entire procedure such as cholecystectomy, minor
liver resection all the way up to more complicated procedures such as a total gastrectomy
or major hepatectomy [61].

Other examples of AI surgemes/dexemes are robots that can autonomously create
cochleostomies and others that can carry out knot tying [62,63]. Another interesting effort
to create an autonomous action was the development of an independently functioning
robot that was created to be able to autonomously accomplish a peg and ring task via
the analysis of motion trajectories that can adapt in real-time [64]. To accomplish this
task, the research team used the da Vinci Research Kit and dynamic movement primitives
and answer set algorithms to develop a working framework. This framework works by
imitating the movement of each dexeme, but with the added enhancement of situation
awareness that enabled the robot to constantly adapt to a changing environment with new
obstacles to overcome. The authors believe that this may be the first time that situation
awareness was combined with an autonomous robotic action with a documented ability to
correct errors and recover in real-time in a surgical environment [64].
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4.2. Phase Recognition

Phase recognition can help in hospitals by managing workflows, for example, other
healthcare providers can be alerted to ongoing progress in the endoscopy suite or operating
room. It can help alert providers during interventions to abnormalities such as hemorrhage
or missed injuries. Theoretically, phase recognition may be easier to obtain than some of the
other tasks that are mentioned above. This is because it may be easier to create algorithms
that can teach the computer to identify steps during cholecystectomy such as clipping of
the cystic duct and differentiate them from visually different steps such as dissecting the
gallbladder off of the liver bed. Alternatively, differentiating more similar steps such as
cystic artery clipping from cystic duct clipping may prove more challenging especially
when anatomic variations are present. Furthermore, more complex cases that have more
anatomic variability, locations in the abdomen and steps will stress the system even more.
For example, during total colectomy, all four quadrants of the abdomen are involved, and
during pancreatic head resection, the surgeon may go back and forth between operative
fields and by definition, between operative phases rendering useful autonomous phase
recognition a difficult task indeed.

A review article on ML published in the Annals of Surgery in 2021 noted a significant
increase in publications on AI with 35 articles dedicated to resolving the task of phase
recognition [65]. Research in this field is not limited to HMMs, there is also a lot of
interest on the viability of artificial neural networks in creating reliable and effective phase
recognition. Most of the datasets analyzed are from feature learning of videos of surgical
procedures with the annotation of instrument utilization carried out manually by a trained
expert, often a surgeon in training or fully trained surgeon [65].

As mentioned above, large datasets are used for the detection of objects, but they
are also fundamental to the development of phase recognition models. Some datasets of
minimally invasive cholecystectomy are publicly available and include, EndoVis workflow
challenge dataset, Cholec8 and MICCAI 2016 that are available for training and testing [65].
In summary, standardized procedures such as cholecystectomy and sleeve gastrectomy
are ideal minimally invasive surgeries to study when developing phase recognition AI
architectures, but for less standardized operations such as hepatic-pancreatic and biliary or
colorectal surgery this will take much more sophisticated algorithms. Currently, the main
obstacle is the relative dearth of usable surgical videos of these procedures and the fact that
these procedures are significantly longer when compared to more routine procedures such
as gallbladder removal and restrictive bariatric surgery.

4.3. Robotic-Assisted Surgery and Autonomous Actions

The daunting task of realizing more autonomous actions in robotic-assisted surgery is
highlighted by the fact that the first complete robotic surgical system on the market (da
Vinci Surgical System, Intuitive Surgical, Sunnyvale, CA, USA) was initially conceived as
a tele-manipulator that was supposed to allow surgeons to remotely operate on soldiers
injured during conflicts via open surgical techniques. At the same time, as the research team
began to realize the complexities involved in making robotic tele-manipulation viable, safe
and effective, the laparoscopic revolution was in full swing and the company completely
shifted focus to become a tool for minimally invasive surgery [66]. To date, AI in so-called
complete robotic surgical systems is limited to simulator training and evaluating surgical
skills, and the only true differences to standard laparoscopy are the added degrees of
freedom and ability to intermittently control a third arm [51]. Both of these historical
advantages are now also available during so-called traditional laparoscopy [3].

Just as with the human body, CV is not only dependent on visual cues, but also
information on position and proprioception. Similarly, one of the most useful forms of data
for analyzing surgical movements, skills and tasks is motion analysis. Before the era of DL
and HMM, surgical skill could only be evaluated by real-time observations of surgeries
or by reviewing recorded videos of surgical procedures [67]. Due to the vast amount of
data created during procedures that can take several hours, a useful way to hasten the
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analysis and evaluation of surgical videos is the utilization of time action analysis. This
technique only analyzes data from non-continuous fixed intervals so that analysis can be
carried out quicker. It is likely that this type of solution may not be safe for the creation
of more complex autonomous actions in surgery such as dissection, but may be useful for
simpler tasks such as the placement of surgical clips. Because of motion priors analysis
with HMMs, algorithms have been developed that can automatically calculate gesture and
skill metrics without using any visual information [51]. Next steps will be to combine data
from both non-visual time action analysis with visual data, but the massive amount of data
that has to be analyzed is currently a significant barrier.

To date, one of the most exciting examples of autonomous actions in surgery is the
autonomous creation of a gastrointestinal anastomosis [68]. Accomplished via the Smart
Tissue Autonomous Robot (STAR) in an animal model, this robot was able to perform an
autonomous, but supervised surgeme via an open approach. To do this, the computer was
able to create useable CV by combining a plenoptic three-dimensional tracking system with
near-infrared fluorescence (NIRF) imaging. The fact that this was successfully carried out
is especially impressive because this task was implemented on soft tissue, which is flexible
and malleable. The research team also found that the robot had better skill metrics when
compared to surgeons with a minimum of 7 years of experience.

The STAR has a vision system, surgeon interface, robotic arm and a force sensor. To
generate a working CV, the cut intestine has to first be injected with biocompatible NIRF
markers until a “point cloud” is fashioned around the edges of the cut porcine intestine so
that the robot can know where to place the sutures. It is clear that even though this robot
can carry out some actions autonomously, it is still completely reliant on a human placing
fluorescent markers for working CV to be a reality. Nevertheless, this shows that once
a robot can see sufficiently, even complex surgical tasks such as sutured gastrointestinal
anastomoses can be carried out autonomously. It should be noted that although the robot’s
performance was deemed to be superior to humans, this was based on movement criteria
and not on clinical criteria such as stenosis or anastomotic leak rates. This emphasizes
the dangers of evaluating autonomous actions in surgery on short-term mathematical
movement criteria alone.

The aspiration of blood is a crucial task during surgery and the CV needed to ac-
complish this task autonomously is surprisingly difficult [69]. The initial obstacle that
researchers had to overcome was the reliable and accurate detection of the blood contour.
After this was carried out, a mask R-CNN method was used to create a robotic prototype
that was able to aspirate blood. Known as the Blood Removal Robot (BRR), this system
needs a robotic arm, two cameras, an aspirator, a suction tip and tubing. The BRR has been
used in an animal model created to simulate skin and then craniotomy. The best trajectory
for the aspiration is calculated using a CNN; however, the robot does not yet have the
ability to “see” any other instruments in the surgical field and cannot yet take into account
the existence of more than one area of bleeding [69].

Dissection around scar tissue created by inflammatory tissue from benign or malignant
disease, infection or previous disease is the most difficult task for surgeons and will certainly
be the most daunting task for AIS. Companies have already begun to gather as many data
of surgical gestures and movements created by the arms of complete robotic surgical
systems [70]. It is important to know that every time a procedure is carried out with the da
Vinci robotic system, the motion data of the robotic arms are being recorded and transmitted
to the manufacturer. Engineers and computer scientists hope that the sheer quantity of
these data will permit the generation of functioning algorithms that will ultimately result
in more autonomous actions by surgical robots [71]. Although it is tempting to wonder
whether or not this is possible, perhaps this is not the most important question. However,
maybe we should be asking ourselves which is the best way forward, more specifically,
are complete robotic surgical systems with tele-manipulation really the best way forward?
Maybe the surgeon needs to be kept in the loop by keeping the surgeon at the bedside and
developing more handheld collaborative robots [6,72].
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Haptics vs. Audio-Haptics

AI has become a reality thanks to advances in ML and DL, which is a kind of ML ap-
proach using multi-layer neural networks. Both of these models can be used in supervised
and unsupervised tasks. CV, which is the field of AI that enables computers to interpret
images, in turn has become a reality because of advances in DL. However, similar to the
human body, the concept of sight and interpretation of digitized visual inputs by computers
does not fully define all the ways that a computer can interpret its surrounding, gather
information and act effectively and safely on that information. In addition to analyzing
pixel data, computers can also incorporate non-visual data such as motion analysis and
instrument priors. These types of additional data highlight the potential significance of
haptics in the future development of more autonomous actions in surgery. An insightful
description of the utilization of random forests to track microsurgical instruments dur-
ing retinal surgery was published in 2018 in a book entitled Computer Vision for Assistive
Healthcare [73].

The analysis of sound or audio-haptics may also be an interesting tool in the quest for
more autonomy. Computer scientists and engineers have been studying sound waves to see
if algorithms can be developed that will give surgical robots even more information [74–76].
Because sound waves may require less memory, it is hoped that the analysis of sound waves
will give computers more sensitive ways to obtain the relevant information with less data
crunching. This may enable more useful information for the robot to have and less time lost
during the analysis, resulting in more AI that can actually be used in real-time. Additionally,
these types of data could give pixel data another dimension and theoretically improve
computers and robots ability to safely perform autonomous tasks [76,77]. Alternative
techniques devised to allow for the differentiation of tissues during surgery involve the
utilization of electrical bio-impedance sensing and analysis of force feedback, but are still
in the prototype phase [78].

5. Discussion

Regardless of the varying forms of haptics that may augment a computer’s ability
to effectively see and work safely, digitized visual information is still the dominant data
type that is being studied in the field of CV. Initial steps in CV involve object detection
and classification that is being carried out with either AR with analysis of cross-sectional
or sonographic imaging or with bounded boxes and real-time segmentation. Different
types of segmentation include, but are not limited to, instance, semantic, organ, multi-class,
video and surgical. Neural networks are the main models used to accomplish both AR
and segmentation. The existence of standard laparoscopic and robotic-assisted platforms
that can enable surgeons to better visualize anatomy and highlight anomalies is to date
the most credible aspect of CV. The hope is that as imaging of the body improves, not only
will robots be able to navigate the human body more safely, but that surgeons will also
benefit from the AR. Improved imaging will allow both the robot and surgeon to operate
more safely, which should translate into better patient outcomes and encourage further
development of increasingly less invasive procedures.

The path towards autonomous actions in surgery will take many innumerable small
steps before we arrive, but this should not generate disillusionment with AI, in fact, an
improved understanding of the principles of AI should result in more surgeons embracing
its future promise. By separating surgical procedures into its smaller surgemes and even
dexemes, any advancement will be more easily appreciated as the only way towards
improved outcomes for patients. Even though prototypes of phase recognition and situation
awareness already exist, we must constantly ask ourselves, what is truly the best way to
AIS? Is surgery with a complete robotic surgical system necessitating tele-manipulation and
the surgeon in no contact with the patient, or as in the manufacturing world, are handheld
cobots the best way forward? What we do know is that the technology and know-how
exist and are growing at an exponential rate. The ability for computers to see is constantly
improving. Unfortunately, unless more surgeons learn about AI, we must begin to wonder
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if surgeons will also continue to improve at what they do best, or if they will become a
victim of their own hubris.
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