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Abstract: Face presentation attacks (PA) are a serious threat to face recognition (FR) applications.
These attacks are easy to execute and difficult to detect. An attack can be carried out simply by
presenting a video, photo, or mask to the camera. The literature shows that both modern, pre-trained,
deep learning-based methods, and traditional hand-crafted, feature-engineered methods have been
effective in detecting PAs. However, the question remains as to whether features learned in existing,
deep neural networks sufficiently encompass traditional, low-level features in order to achieve
optimal performance on PA detection tasks. In this paper, we present a simple feature-fusion method
that integrates features extracted by using pre-trained, deep learning models with more traditional
colour and texture features. Extensive experiments clearly show the benefit of enriching the feature
space to improve detection rates by using three common public datasets, namely CASIA, Replay
Attack, and SiW. This work opens future research to improve face presentation attack detection by
exploring new characterizing features and fusion strategies.

Keywords: face presentation attacks; deep learning; feature-fusion

1. Introduction

Face recognition (FR) is one of the most popular biometric technologies as it is user-
friendly, cost-effective, and non-intrusive. Face-presentation attacks (PA) remain a serious
concern for the resiliency of FR systems. Imposters gain illegal access bypassing FR systems
by using forged facial artefacts, reducing the reliability of these systems. Therefore, face
presentation attack detection (FPAD) has been gaining significant attention among the
research community [1].

PAs in the form of a photograph, video, or mask of an authorised user can deceive the
FR system. These attack images may be reproduced on various media. In addition, video
and photo attacks can be displayed on many types of digital devices [2]. A mask attack can
be made from different types of materials. Masks can either be flexible, as in silicon masks,
or rigid, as in wax masks. Even within a particular type of attack, the spoofing mechanism
used will vary [3]. Moreover, technology and social media facilitate the development of
novel, sophisticated attacks.

Early FPAD models utilized hand-crafted features such as texture, image quality, and
motion, combined with standard classifiers, such as SVM and Random Forest, to determine
whether the detected facial image is real or not [4]. Convolutional neural networks (CNN)
took the place of these classical feature engineering models. Hand-crafted feature-based
FPAD methods are shown in Figure 1a. Figure 1b shows deep learning-based FPAD
methods. CNN-based FPAD models benefited from their exceptional inherent feature-
extraction capability to some extent. Yet these deep learning-based models failed to reach
adequate generalisation against emerging, unseen attacks [5].

There are multiple reasons for the low generalisation capability of FPAD models.
The majority of FPAD models were either designed for the detection of specific types of
attacks or were trained by using the existing face anti-spoofing (FAS) datasets. However,
these FAS datasets have limited variance in size, attack types, and subjects. Moreover,
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datasets were recorded in a controlled environment that lacked sufficient variation in
illumination, recording devices, settings, and the environment [6]. As a result, even if these
models detect some specific attack types, they are not reliable in detecting unseen attacks
in real-life scenarios. This necessitates the development of more generalised FPAD models
to detect PAs [7].
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(a) FPAD using handcrafted features (b) FPAD using deep learning

Figure 1. Face presentation attack detection (FPAD) methods: (a) The hand-crafted feature method
has a feature-extraction module followed by a classifier. Manual feature extraction is carried out in
this FPAD method. (b) In deep learning-based FPAD, extracted features are passed to the classifier
following an end-to-end learning method. Unlike hand-crafted feature methods, CNNs facilitate
automatic feature extraction in deep learning based FPAD.

Some recent efforts to improve FPAD have leveraged features from models pre-trained
on large datasets designed for object recognition [8,9]. These datasets have high variance
across multiple factors. This led to the models performing well in object detection, recog-
nition, and captioning tasks that incorporated deep features from the images. The spoof
detection problem does not have large, labelled datasets, unlike these computer vision
tasks. Rather, FAS datasets are often collected in controlled environments by using specific
types of attacks and a smaller number of subjects. Detecting presentation attacks involves
detecting spoof-specific features, such as specular reflection, deformations, glare, spoof
patterns, and Moire effects [10]. These features are not always present in high quanti-
ties in the common datasets designed for image-classification tasks. Hence, relying on
deep models, which were pre-trained on image classification datasets, when the data does
not exhibit the necessary features, may not be optimal for improving FPAD performance.
Meanwhile, traditional feature extraction methods make use of shallow features. In this
approach, the challenge is to select a suitable descriptor that is invariant to factors such as
illumination, light, skin type, recording device, and environment. These descriptors should
also effectively represent the spoof-specific patterns [5].

PAs, especially 2D attacks, are either printed on different materials or displayed on
digital devices [11]. Mask attacks also can be created by printing the genuine face on suitable
materials [12]. Such recapturing processes introduce distortions in PAs. The distortions are
the cues to distinguish between real and fake faces [13,14]. Texture methods (LBP, HOG,
and DOG) were used to extract these cues for PA detection. A good number of texture-based
methods used grayscale images, discarding colour feature-related cues. However, colour
distortion cues provide significant information for identifying PAs [15,16]. Hence, colour
texture analysis was considered in this work to combine with deep features to perform
PA detection.

This article proposes and evaluates a fusion method that takes advantage of both
handcrafted and deep features. In this study, colour texture features, which provide spoof
specific cues, were combined with deep features extracted by using pre-trained image
classification models through concatenation. As a result, both the local features and the
deep global features were used together as the input to the classifier to determine the
authenticity of the facial images. Even though deep feature extraction through transfer
learning, colour texture analysis, and their fusion for FPAD are already established methods
in the related literature, those methods used traditional machine learning classifiers such
as SVM. The fusion method presented in this article takes advantage of neural network
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based classifiers. Instead of using any of the commonly used pre-trained models, this
study compares the fusion method by using three commonly used pre-trained models
and a custom CNN model trained from random initialisation. A comparative analysis
of computational speed corresponding to baseline and fusion method is also included in
this article.

Pre-trained VGG-16, ResNet-50, and Inception V3 and one custom CNN models were
used to extract deep features. Before classification, these deep features were combined
with the colour texture feature (Colour Local Binary Pattern—CLBP). The baseline models
included transfer learning by using VGG-16, ResNet-50, and Inception V3. These pre-
trained models were fine-tuned for binary classification by using the FAS datasets CASIA,
Replay Attack, and SiW. A custom CNN model was also trained by using the FAS datasets.
The CLBP features were combined with deep features from VGG-16, ResNet-50, Inception
V3, or the custom CNN model to compare PA detection performance. The key contributions
of this are article are:

• A fusion method combining both hand-crafted, colour texture features and deep
features from pre-trained CNNs.

• An experimental framework to evaluate face presentation attack detection by using
deep CNN models and the fusion models.

The remainder of this article is organised as follows: Section 2 explains the existing
literature on fusion strategies for face presentation attack detection. The feature extraction
and fusion methods are described in Section 3. Section 4 includes details of the experimental
settings and datasets. The results are presented in Section 5 and discussed in Section 6.
The paper concludes in Section 7 with possible future directions.

2. Related Work

Regardless of the notable advancements in FR systems, they are still vulnerable to PAs.
Emerging new PA variants also pose a serious problem to the generalisability of existing
FPAD models [7]. Consequently, the research community has been investigating various
techniques to improve generalisation in FPAD by using distinct techniques.

Local binary patterns (LBP) and its variants have been extensively used in handcrafted
feature methods for FPAD. The authors of [3] proposed a novel fusion model to reduce
training parameters by using the similarities between CNNs and LBP extraction. This
fusion network reduced the number of network parameters by using a statistical histogram.
Nevertheless, the model failed to detect some specific types of attacks. Chen et al. [17] fused
colour texture features with deep features from the images. Colour texture features were
extracted by using rotation invariant local binary pattern (RI-LBP). These location features
were fused with the global features extracted by using a ResNet model for classification.
An SVM, with RBF kernel, classified these fused features to detect whether the face was
authentic or spoofed. The experiments considered YCbCr and HSV colour spaces. In a
comparison of grayscale, RGB, YCbCr, and HSV, the texture features, combined from the
YCbCr and HSV colour spaces provided better detection results. The authors also presented
a cross-dataset evaluation to show the generalisation capability of the method. The authors
of [18] combined different handcrafted features including LBP, GDP, GLTP, LDIP, LGBPHS,
and LPQ. These extracted features were classified by using the K-NN classifier. However,
the model exhibited very low real-face detection accuracy regardless of the high (98.39%)
fake-face detection accuracy. Moreover, this method only combined handcrafted features.
Deep global features were not considered in this model.

Liu et al. [19] adopted a multi-modal data fusion strategy to identify fake faces.
The model combined both low-level and high-level features from RGB and IR images
for FPAD. This model exhibited generalisation against different conditions such as dim
light, realistic face camouflage, static or motion pattern, etc. Because a nonlinear fusion
method was used with multi-modal data, the generalisation was enhanced to some extend.
The authors of [20] followed a dual cue fusion method to mitigate the error in FPAD.
The framework had two streams. The first stream used facial images with background and
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the second stream used face images after facial area only. Fast Fourier Transform (FFT)
was extracted from the facial images with background and these images were used to train
CNN model for FPAD. Simultaneously, the second stream carried out a colour space (HSV)
transformation on facial area RGB images. Texture features were extracted from these
images as an input to SVM classifiers for FPAD. The decisions from both streams were
combined to identify the PAs.

Younis and Abuhammad [21] proposed a hybrid fusion framework to address PAs by
using multiple biometric modalities. The authors combined transfer learning and hand-
crafted feature methods by using discriminant correlation analysis (DCA) and canonical
correlation analysis (CCA). On the images, contrast adjustment was carried out to control
intensity distribution. Histogram of gradient (HoG) features were extracted from these
images. A multi-level fusion strategy was followed to incorporate multiple biometric
modalities. In a dual stream fusion model, Fang et al. [22] used frequency domain features
and complementary RGB features. This model included a hierarchical attention module
as well as a multi-stage fusion strategy. A special attention module at the lower layers
of CNN enabled extraction of texture features. Similarly, a channel attention module at
the higher layers extracted deep semantic features. Because both of these features are
essential for better detection of attacks, this fusion model addressed generalisation through
decomposition of multi-level frequency.

Unlike other fusion models existing in the literature, the authors of [23] combined
deep learning with serial fusion, as parallel fusion models have a longer response time.
This multiple biometric modalities-based method used Siamese neural networks. Deep
networks were used for deep feature extraction and match score generation. Daniel and
Anitha [24] proposed a new FPAD method, combining texture and image quality features.
The image colour space was changed to HSV. Entropy-based colour texture features and
image quality features were extracted from these HSV images. Later, these extracted
features were concatenated and then classified. Even though this model combined different
handcrafted features, it did not consider deep feature extraction to address PAs.

Xu et al. [25] used two lightweight networks to learn motion and texture cues in order
to improve PAD. An element-wise weighing fusion strategy was followed in this model.
In [26], the authors used camera-invariant feature learning while focusing on generalisation
in FPAD. This framework learned both high-frequency and low-frequency information.
A module in the framework carried out high-frequency domain camera-invariant feature
decomposition. Another module in the framework performed image re-composition of
both high- and low-level information. Classification results of both modules were fused
together by using a weighting strategy to perform final classification. Sharifi [27] proposed
a decision-level fusion strategy to address FPAD. The author carried out feature extraction
with a Log–Gabor filter. By using a nearest neighbors classifier, the scores were classified.
Simultaneously, feature extraction and classification was performed by using a CNN model
too. By using the OR rule, the decisions from the two modules were fused to get a final
decision on the genuineness of the facial image.

Cai et al. [28] used metapattern learning, instead of hand-crafted feature extraction,
to create a hybrid model to address FPAD. By using the hierarchical fusion module (HFM),
RGB image and metapatterns were combined and passed to a CNN for further classification.
Song et al. [29] proposed FPAD by using least squares weight fusion (LSWF) of channel-
based feature classifiers. The authors utilised colour, texture, spatial domain, and frequency
domain features extracted from different channel spaces along with convolutional features
in this fusion method. To assign the optimal weights of classification score fusion, a least
square weight fusion strategy was used.

Anand and Viswakarma [30] proposed a fusion method combining deep features
and colour texture features. Extracted features were classified by using SVM separately.
The probabilities from each model were fused to get the final probability. The authors of [31]
utilised dynamic texture features and shape cues in a fusion method, to address 3D attacks.
Geometric information used in this method were either extracted by the depth sensors



Sensors 2022, 22, 5196 5 of 16

or reconstructed from the RGB images. It also made use of multi-modal dynamic fusion
network and 3D model-guided data augmentation. This data augmentation facilitated data
in different poses, which in turn assisted in training the network fully.

3. Method

An experimental framework is used to detect PAs by fusing deep and hand-crafted
features. For the evaluation, three publicly available datasets, CASIA [2], Replay Attack [32]
and SiW [33] were used. For this fusion method, texture was extracted from the images
by using colour texture analysis (CLBP) [16]. By using pre-trained deep learning models,
VGG-16 [34], ResNet-50 [35], and Inception V3 [36], deep features were extracted. These
high level features from deep models and low level features from colour texture analysis
were then concatenated and passed to the classifier. The classifier consisted of a dense
layer with 512 units and a sigmoid layer. Additionally, a custom CNN model was trained
only on each dataset individually in order to compare with the pre-trained networks. The
resultant features were combined with the colour texture features and passed to a classifier
as before. The fusion method used deep features from pre-trained and custom CNN models
in different evaluation scenarios to compare the impact of fine-tuning and fully training
models on FAS datasets.

The experiments also consisted of baseline methods. The pre-trained and custom CNN
models were trained for binary classification. As in the fusion methods, the baseline classi-
fier also consisted of a dense layer with 512 units size and sigmoid layer. All the evaluation
scenarios used binary cross entropy as the loss function and Adam as the optimiser.

3.1. Pre-Trained Models

FPAD is conventionally treated as a binary image-classification problem. Hence, FPAD
also takes the advantage of transfer learning to address dataset limitation. VGG-16 [8]
and ResNet-50 [37] have been used previously to address FPAD by using transfer learning.
Lucena et al. [8] fine tuned the VGG-16 model by changing the top layers for detecting
PAs by using binary classification. Nagpal and Dubey [9] used Inception-V3 and ResNet-
50 models for the PA detection. According to the authors, transfer learning with these
pre-trained models facilitated better detection performance than training from a random
weight initialisation. The authors of [37] also used ResNet-50 for the FPAD task.

Pre-trained models, VGG-16, ResNet-50, and Inception V3 were used for binary
classification as well as feature extraction in the presented experimental framework in
this work. These deep network models were pre-trained for image classification [38]. The
features were extracted by removing the output layer from the models. VGG-16 feature
vector size was 4096. Feature vectors of size 2098 were extracted from ResNet-50 and
Inception V3. For binary classification, the top layers were replaced with a fully connected
layer of size 512 and sigmoid layer in these pre-trained models. Thus, transfer learning was
applied in the baseline methods.

3.2. Convolutional Neural Network (CNN) Model

Evaluation was also performed by using a custom CNN model. The model has five
convolution layers, each followed by a max-pooling layer. The classification block in
this model is formed by using a dense layer of size 512 and a sigmoid layer (Figure 2).
From block 1 to block 5, the number of filters varied from 32 to 512. A kernel size of 3 × 3
was used in each convolutional layer. The models were trained by using a corresponding
FAS dataset used in the experiments. The weights from these models were also used for
feature extraction in the fusion method.

Similar to pre-trained models, the custom CNN model was also used to extract deep
features by removing the output layer. This provided a feature vector of size 512. Compared
to the deep models, VGG-16, ResNet-50, and Inception-V3, this CNN architecture was
shallow, with only 8 layers. The CNN model used for feature extraction was shallower
compared to the pre-trained models.
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Figure 2. Custom CNN Model: A custom CNN model was trained on CASIA, Replay Attack and
SiW training sets for the evaluation using each respective test set.

3.3. Colour Texture Analysis

Presentation attacks include photos printed on different mediums, video or photo
displayed on digital devices, and masks. The spoofing medium varies in resolution and
display quality. Grayscale image-based texture analysis facilitates identification of high-
quality PA. The grayscale-based methods (e.g., LBP) cannot provide sufficient difference
in textural cues when the quality of the PAs diminishes [15]. A PA image or video passes
through at least two cameras and a printing or display medium. Hence, many PAs have
a recapturing effect. Compared to an authentic capture, the colour reproduction of these
spoofing mediums would be limited. Hence, PA will have the colour features corresponding
to the printing or displaying medium gamut. Moreover, the recapturing camera and the
entire recapturing process to perform PA can cause colour disparities and imperfections.

Human eyes are more sensitive to luminance than chrominance. Hence, the colour
reproduction mapping in printing or display process preserve luminance variation in the
source image rather than chrominance. Thus, the PAs may contain chrominance variations
which are largely invisible to human vision. These chrominance variation cues can be
utilised to distinguish between real and fake facial images. The majority of the available
FAS datasets provide RGB images or videos. On the other hand, RGB colour space has high
correlation between the colour components. The RGB colour space does not adequately
separate luminance and chrominance information. Recapturing introduces chrominance
variation in PAs, while sustaining luminance variation. It is unlikely that RGB colour space
would be able to determine spoof-specific chrominance cues. Thus, alternative colour
spaces should be used to extract such discriminatory cues [16].

By analyzing the chroma channel colour texture, the local colour disparities discussed
above can be identified. Luminance and chrominance are represented in YCbCr colour
space. The chrominance component of YCbCr reveals disparities which are presented
in PAs. HSV colour space represents hue, saturation, and brightness. HSV colour space
contains a chrominance component, which is complementary to that in YCbCr colour space.
Both of these color spaces provide chrominance components that can be used to identify PA.
Hence, colour texture analysis was used to extract the hand-crafted feature in this proposed
fusion method. Although deep networks provide global features, extracted features include
the local (chroma) cues. Colour texture analysis [16] addresses these variations, extracting
LBP from individual channels from the images. Hence, RGB images were converted to HSV
and YCbCr colour spaces to extract related features to identify PAs. Figure 3 presents the
process of colour texture analysis. To extract the colour texture features, the channel-wise
components were separated after conversion to each colour space. An LBP histogram for
each channel was calculated. The histograms from these 6 channels (H, S, and V in HSV
colour space and Y,Cb,Cr in YCrCb colour space) were then combined to form the final
feature vector of size 354.
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Figure 3. Colour texture analysis: RGB images were converted to YCbCr and HSV colour spaces. LBP
histograms for each channel in these colour spaces were calculated individually. These 6 histograms
were concatenated to obtain a final feature vector of size 354.

3.4. Fusion Method

The experimental framework extracted and combined high-level deep features and lo-
level local color texture features. Deep features were extracted by using transfer learning
and custom CNN models. VGG-16, ResNet-50, and Inception V3 were used to get features’
vectors of size 4096, 2048, and 2048 respectively. As mentioned in Section 3.1, these models
were pre-trained on ImageNet. On the other hand, custom CNNs were trained on three
FAS datasets and used to extract feature vectors of size 512. Because the RGB image was
converted into HSV and YCbCr colour spaces, there were six channels in total. As the
texture feature extraction using LBP was carried out on each channel, these channels
provide a feature vector of length 59. Thus feature vectors from these six channels forms a
low-level feature vector of size 354.

Concatenation is an effective way to combine different features for use in machine
learning. Extracted CLBP features were concatenated with features either from pre-trained
models or a custom CNN model. Thus, by concatenating sets of deep and handcrafted
features, a final feature vector was created. Let FDeep be the deep feature vector with size m
and FCLBP be the colour texture feature vector with size n. Then the final feature vector
FFusion can be represented [39] as

FFusion = FDeep ∪ FCLBP.

Thus FFusion will have the size (m + n). Here FCLBP had size 354. m, the size of FDeep

feature vector, held different values according to the pre-trained or custom CNN models,
which was used for feature extraction. Hence the size of FFusion, m was determined based
on the deep model used for feature extraction.

Figure 4 illustrates the structure of the proposed framework. It consisted of a deep
feature extraction module and a hand-crafted feature extraction module. The resultant
feature vectors from these modules were the input of the fusion module. Fusion simply
involved concatenation. This combined feature vector was then passed to the classifier. The
classifier consisted of a dense layer of size 512 followed by a sigmoid. However, the input
size of the classifier was different according of the different feature vector size.
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detection. The classifier consisted of a fully connected layer of size 512 and a sigmoid layer.

4. Experiment

This experimental framework evaluated baseline models and proposed a fusion
method using three FAS datasets, namely CASIA, Replay Attack, and SiW. The pre-trained
models were fine-tuned to carry out PA detection. The customised model was trained
by using the aforementioned three FAS datasets. The datasets and experimental settings
including hyper-parameter tuning are explained below.

4.1. Datasets

By using three widely used public FAS datasets, CASIA, Replay Attack, and SiW,
the proposed fusion method was evaluated. These FAS datasets mainly include print
and replay attack PA types. The datasets differ from each other in terms of size, gender
ratio, ethnicity, recording devices, spoofing medium, illumination, and settings. Figure 5
shows both real- and fake-face samples from three datasets. The top row in Figure 5a–c has
genuine facial images. The lower row shows the corresponding fake facial images.

(a) (b) (c)

Figure 5. Real and fake facial image samples from (a) CASIA, (b) Replay Attack, and (c) SiW. Upper
row in each figure contains the real-face samples, whereas the lower row has the PA samples.

CASIA has fake- and real-face videos from 50 subjects. The dataset contains photo
attack variants including print, warped photo, and cut photo. Video attacks are also part
of this public dataset. Corresponding to each subject, there are 3 real-face and 9 fake-face
videos. Thus a total of 600 videos are included in the CASIA dataset. The training set is
made of videos of 20 subjects. The remaining videos from 30 subjects are included in the
test set. The train and test sets are disjointed in terms of subjects. CASIA has videos of three
qualities; low, normal, and high. This dataset was recorded in natural scenes. This process
did not use any kind of artificial unification while recording the dataset. Because cut photos
attacks were included in CASIA, eye blinking was also incorporated in the videos. Print
attacks with better quality were reproduced by using copper papers. However, CASIA
includes only subjects from a single ethnicity, i.e., Asian. Even though 10% of the subjects
were females, the training partition is devoid of female subjects. Hence there is no gender
variance in the training partition.

In the Replay Attack dataset, videos from 50 subjects are distributed among training,
development, and test sets. The training and development sets have 15 subjects each,
whereas the test set has 20 subjects. Fake faces were displayed as printed photos, on mobile
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and tablet displays. During the recording process, these three mediums were either fixed
or held by the operator. Both controlled and uncontrolled settings were used. Uniform
background with illumination using incandescent lamps was used in controlled settings.
An uncontrolled setting made use of non-uniform background and natural light for illumi-
nation. The Replay Attack dataset also had a female-to-male subject ratio 1:9. However,
unlike CASIA, this dataset has both gender in all the data partitions. This dataset also has
variance in terms of ethnicity.

SiW is the third dataset used for the evaluation of fusion method. Compared to
the other two public datasets used for experiments, the SiW dataset includes variance in
terms of ethnicity, poses, illuminations, expressions, and distance-to-camera. A total of
4620 videos from 165 subjects include 8 real face and 20 attack videos corresponding to
each subject. A total of 27% of the subjects in SiW datasets are females. It has subjects
belonging to different ethnicity: 35% Asian, 35% Caucasian, 7% African American, and
23% Indian people are included in the dataset, giving much more variance in ethnicity.
Among the subjects, 44% have glasses and 20% have beards. Unlike the CASIA and Replay
Attack datasets, which have only a frontal pose range, SiW has pose ranges of [−90, 90].
Moreover, SiW used artificial illumination. Table 1 shows a comparison of the three datasets
in different aspects.

Table 1. Comparison of FAS datasets used in the evaluation of fusion method.

Dataset Subjects Live Videos Attack Videos Attack Types Display Devices

CASIA 50 150 450 2 Print, Replay iPad
Replay Attack 50 200 1000 Print, 2 Replay iPhone 3GS, iPad

SiW 165 1320 3300 2 print, 4 Replay iPad Pro, iPhone 7,
Galaxy S8, Asus MB168B

4.2. Experimental Settings

Three FAS datasets, CASIA, Replay Attack, and SiW were used to evaluate the fusion
method. These datasets are available in video format. Frames from CASIA and Replay
Attack were extracted at a rate of 2 fps and faces from these frames were detected. For the
SiW dataset, frames were extracted at 1 fps and, by using given annotations, face detection
was carried out. In addition, some random scaling of the bounding box for SiW was
performed in order to provide some background information and improve facial image
diversity. Facial images from three datasets were resized to 224 × 224 pixels. Rather than
using customised data partitions to address generalisation [1], the official train-test split
was maintained. Table 2 shows the number of training and test images in each dataset.
Figure 6 shows the data distribution corresponding to each dataset.

Table 2. Datasets used in experiments and their sample size in train and test partitions.

Dataset CASIA Replay Attack SiW

Class Train Test Train Test Train Test

Real 527 824 1689 1,928 14,733 12,390
Fake 1760 2471 5261 5645 26,057 5645
Total 2287 3295 6950 7573 40,790 34,779
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Figure 6. Test and train class distribution after image extraction from CASIA, Replay Attack, and
Spoof in the Wild. (a) CASIA, (b) Replay Attack, (c) SiW.

Intra-dataset evaluation was conducted for the baseline and fusion methods. Images
of 224× 224 size were used in the evaluation. In the baseline method, the training used
10 epochs and 32 batch size with CASIA and Replay Attack. Training with SiW was carried
out with a batch size of 512. The Adam optimiser [40] with different learning rates were
used in the experiments. VGG-16 as well as ResNet-50 used a learning rate 10−5 whereas
Inception V3 used 10−6. A customised CNN model used different learning rates while
training with different datasets. Learning rates of 10−6, 10−5, and 10−4 were used while
training with CASIA, Replay Attack, and SiW respectively. The Python programming
language was used for implementing experiments by using Keras with TensorFlow on
the backend. Experiments were conducted on NVIDIA DGX-1 machine, using a single
GPU system.

The results are reported in terms of accuracy, half total error rate (HTER), precision,
recall, F1 score, false positive rate (FPR) and false negative rate (FNR). HTER is the average
of FPR and FNR. The equations to calculate FPR, FNR and HTER are given below.

FPR =
FP

FP + TN

FNR =
FN

FN + TP

HTER =
FNR + FPR

2
where FP is false positive, TN is true negative, FN is false negative, and TP is true positive.

5. Results

Fusion and corresponding baseline methods were evaluated by using CASIA, Replay
Attack, and SiW datasets. For deep feature extraction, pre-trained models, VGG-16, ResNet-
50, and Inception V3 were used. Custom CNN models trained on the three FAS datasets
were also used for deep feature extraction. The fusion method combined deep features
from each model with CLBP features and then classified by using a neural network-based
classifier. This classifier had an input layer, one dense layer of size 512 units, and a
sigmoid layer. Evaluations were carried out to compare PA detection accuracy, HTER, and
computational speed for both baseline and fusion methods.

PA detection performance of baseline models are presented in Table 3. Binary classifi-
cation using pre-trained and custom CNN models were considered as the baseline methods.
Table 4 represents the results of fusion methods. A graphic representation of accuracy
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comparison is also presented in Figure 7. Figure 8 shows the ROC curve corresponding to
baseline and fusion models.

Transfer learning using ResNet-50 had the highest accuracy among the baseline models
for CASIA (93.36%), Replay Attack (95.57%), and SiW (98.78%). A custom CNN model
performed better than VGG-16 and Inception V3 with Replay Attack, and SiW. However,
with CASIA, all three pre-trained models had better detection rate than the custom CNN
model in baseline evaluation (Table 3). However, ResNet-50 (98.78%) and custom CNN
(98.16%) models exhibited very close detection accuracy in baseline evaluation with SiW.

Table 3. FPAD results using deep CNN models.

Dataset Model ACC
(%)

HTER
(%) Precision Recall F1score FNR

(%)
FPR
(%)

CASIA

VGG-16 85.85 24.01 0.87 0.96 0.91 4.29 43.69
ResNet-50 93.36 12.60 0.92 0.99 0.96 0.69 24.51
Inception V3 86.74 24.39 0.86 0.98 0.92 2.10 46.60
Custom CNN 86.42 14.84 0.94 0.88 0.90 12.34 17.35

Replay Attack

VGG-16 84.25 23.05 0.88 0.92 0.90 8.18 37.91
ResNet-50 95.57 8.07 0.95 0.99 0.97 0.66 15.51
Inception V3 88.78 19.94 0.88 0.98 0.93 2.18 37.71
Custom CNN 94.39 6.75 0.97 0.96 0.96 4.43 9.23

SiW

VGG-16 93.02 7.92 0.94 0.95 0.95 4.33 11.04
ResNet-50 98.78 1.57 0.98 1 0.99 0.38 2.75
Inception V3 94.35 6.53 0.95 0.97 0.96 3.48 9.57
Custom CNN 98.16 2.24 0.98 0.99 0.99 0.85 3.63

From the fusion method results in Table 4, it is evident that the detection improved
for almost all the datasets, regardless of the models used for deep feature extraction. Thus
fusing colour texture features with deep features improved PA detection in intra-dataset
evaluation. Among the models used, the combination of colour LBP (CLBP) with ResNet-50
features showed the best performance (Table 4).

Table 4. Fusion methods results.

Dataset Model ACC (%) HTER
(%) Precision Recall F1score FNR (%) FPR (%)

CASIA

VGG-16 + CLBP 92.33 13.26 0.92 0.98 0.97 2.06 24.39
ResNet-50 + CLBP 94.65 8.68 0.95 0.98 0.96 1.74 15.29
Inception V3 + CLBP 88.31 18.54 0.90 0.95 0.92 4.82 32.28
Custom CNN + CLBP 89.34 15.47 0.92 0.94 0.93 5.87 25.12

Replay Attack

VGG-16 + CLBP 90.18 15.14 0.92 0.96 0.94 4.30 25.99
ResNet-50 + CLBP 98.56 2.64 0.98 1.00 0.99 0.19 5.08
Inception V3 + CLBP 90.38 16.19 0.91 0.97 0.94 2.82 29.56
Custom CNN + CLBP 93.64 8.51 0.96 0.96 0.96 4.13 12.91

SiW

VGG-16 + CLBP 92.65 8.47 0.93 0.95 0.94 4.59 12.34
ResNet-50 + CLBP 99.60 0.48 1.00 1.00 1.00 0.20 0.76
Inception V3 + CLBP 98.61 1.57 0.99 0.99 0.99 0.95 2.20
Custom CNN + CLBP 97.96 2.42 0.98 0.99 0.98 1.13 3.70

A graphic comparison of detection performance of pre-trained and custom models is
shown in Figure 7. It shows that fusing CBLP features with CNN-extracted features largely
improves detection performance across the board. The main exception is the model us-
ing a custom CNN to extract the features. For Replay Attack, the detection performance
was slightly reduced when the deep feature extraction was carried out by using the cus-
tomised CNN model. However, with pre-trained models, the Replay Attack dataset also



Sensors 2022, 22, 5196 12 of 16

improved PAD performance. In the evaluation with SiW, both VGG-16 + CLBP and cus-
tomised CNN + CLBP exhibited hardly any improvement. Nevertheless, ResNet-50 + CLBP
and Inception V3 + CLBP improved compared to networks without CBLP. Comparing both
Tables 3 and 4, it can be seen that FPR and FNR were reduced in the proposed method com-
pared to the baseline method. The decreased FPR and FNR resulted in a lower HTER than the
baseline in fusion methods, which in turn improved PA detection.

(a) CASIA (b) Replay Attack (c) SiW

Figure 7. Accuracy comparison for CASIA, Replay Attack, and SiW.

Figure 8 shows the ROC curve analysis corresponding to three datasets for baseline and
fusion models. In the baseline method, which uses binary classification using CNN, the best
performance was exhibited by the ResNet-50 pre-trained model. The customised CNN
model also showed a very close performance to ResNet-50 in the baseline method. However,
this CNN model performed better than VGG-16 and Inception-V3 with all three datasets
despite having far fewer layers. Among the fusion models, the combination of colour
LBP with ResNet-50 features provided the highest detection performance. With CASIA,
the customised CNN model features led to a performance very close to Inception-V3,
but lower than ResNet-50 and VGG-16. However, with Replay Attack and SiW, this
model features performed even better than VGG-16 and close to ResNet-50 in combination
with CLBP.

Table 5 presents a comparison between the computational speed of the baseline
and fusion methods for each dataset. Computational speed decreased substantially with
VGG-16 and custom CNN model features in the fusion method. Training times of the
fusion models reduced to a value of less than 50% of the baseline training time for these
two models, with three datasets. At the same time, the PA detection accuracy increased
by a value of 6% for CASIA and Replay Attack when VGG-16 features were combined
with CLBP features. SiW showed slightly lower accuracy in fusion method with VGG-
16 deep features. Even though the custom CNN model-based evaluation scenario had
improved computational speed in the fusion method, it did not facilitate improvement
in PA detection compared to the corresponding baseline model for Replay Attack and
SiW. Only CASIA showed better accuracy when combining the shallow features with
the custom CNN. For ResNet-50 and Inception V3, computation speed deteriorated in
fusion methods, regardless of the improved accuracy. The times taken for training ResNet-
50 and Inception V3-based fusion models were much higher than the corresponding
baseline values. However, in ResNet-50-based evaluation scenarios, the largest dataset,
SiW, exhibited slightly better accuracy and computational speed in the fusion method
than the baseline. The SiW/ResNet-50 combination shows that the fusion method has a
slightly faster training time and this implies that, with even larger datasets, the fusion
method might have some advantages over the baseline method in both speed and accuracy.
However, it should be noted that the fusion feature extraction method has not been fully
optimised in these experiments, and it might be possible to improve fusion method training
times with some simple software optimisation.
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(a) CASIA Baseline (b) Replay Attack Baseline (c) SiW Baseline

(d) CASIA Fusion Model (e) Replay Attack Fusion Model (f) SiW Fusion Model

Figure 8. ROC curve analysis for CASIA, Replay Attack, and SiW. The performance of FPAD using
pre-trained and custom CNN models is shown in (a–c). Fusion method performance for respective
datasets is presented in (d–f).

Table 5. Computation speed V/s accuracy comparison between baseline and fusion methods (train-
ing times).

Dataset Model
Baseline Fusion Method

Computational
Speed (s)

Accuracy
(%)

Computational
Speed (s)

Accuracy
(%)

CASIA

VGG-16 785.86 85.85 339.76 92.33
ResNet-50 545.66 93.36 746.637 94.65
Inception V3 229.47 86.74 457.27 88.31
Custom CNN 2166.59 86.42 408.91 89.34

Replay
Attack

VGG-16 2388.57 84.25 945.32 90.18
ResNet-50 1611.92 95.57 2261.05 98.56
Inception V3 663.67 88.78 1366.84 90.38
Custom CNN 6643.48 94.39 1228.12 93.64

SiW

VGG-16 16,045.91 93.02 5468.71 92.65
ResNet-50 14,703.66 98.78 13,382.73 99.60
Inception V3 5711.11 94.35 7979.04 98.61
Custom CNN 34,430.00 98.16 7185.88 97.96

6. Discussion

Presentation attack detection performance exhibited an overall improvement by using
the proposed fusion method. Combining local texture features, extracted from different
channels with deep features was largely effective in reducing the error in identifying real
faces from fake faces. This caused the increment in accuracy and reduction in FPR and FNR.

For CASIA, the fusion method with pre-trained models, reduced FPR, and increased
FNR. However, customised CNN, which was trained by using the FAS dataset shows the
opposite behaviour with CASIA. FNR deceased and FPR increased. Consequently, features
extracted by using pre-trained models as well as the customised CNN model in combination
with hand-crafted features provided improvement in PA detection when evaluated with
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CASIA. A similar performance was given by the Replay Attack dataset. SiW showed a
different performance to that of CASIA and Replay Attack because the SiW dataset is
“in the wild”. Hence, it might not exhibit dataset biases that can be easily exploited by
networks trained only on that dataset (i.e., the custom CNN). The other two datasets were
recorded under more controlled settings. That is why the results indicated a higher level of
capture bias in CASIA and Replay Attack datasets. ResNet-50 and Inception V3 models
with colour texture analysis substantially decreased FPR and FNR when evaluated with
this dataset. However, for VGG-16 and customised CNN, the FPR and FNR increased
slightly, reducing the performance in fusion method.

The custom CNN models used in the experiment were trained and tested by using
corresponding FAS datasets. In fact, the features extracted by using this model, when
concatenated with CLBP features, in general increased either or both of FPR and FNR. This
clearly shows that the model needs further tuning to improve the PA detection performance.
The performance analysis also shows that feature extraction by using ResNet-50 is most
effective for FPAD among the considered pre-trained models. The fusion models also
illustrate the suitability of colour texture analysis in this strategy.

From the ROC analysis curves, it is evident that CNN model trained with the corre-
sponding dataset performed very close to or better than the deep networks considered
in the experiments. ResNet-50, Inception-V3, and VGG-16 have 50, 48, and 16 layers,
respectively. The customised CNN model has 13 layers, making it shallower than the other
models. However, these deep models were trained on the ImageNet dataset, whereas each
custom CNN model was trained on the respective FAS dataset training set. This implies
that a small dataset and shallower network can achieve comparable or better performance
than deep, pre-trained networks.

The computational speed presented in Table 5 included the time required to extract
deep features and hand-crafted features, and train the classifier model. For each dataset,
the hand-crafted feature extraction time is the same. Moreover, the classifier training period
is significantly less than the time taken for feature extraction. The variation in the recorded
computational speeds relies upon deep feature extraction speed. Hence, a pre-trained
model with depth equal to or less than VGG-16 could be used to extract deep features to
improve the performance of this fusion method by using CLBP. From the results, it is also
evident that the performance of shallow models trained on FAS datasets was not improved
by fusion. This implies that the features that emerge in these shallow models may already
encompass the shallow, engineered features. Other suitable hand-crafted features could
also be combined with the custom CNN models trained on FAS datasets to investigate the
impact of custom CNN model deep features. A challenge is extracting suitable handcrafted
features which can provide spoof-specific patterns and further increase FPAD performance,
specifically in unseen attack detection.

The comparative analysis using accuracy, HTER, and computational speed which
are presented in Tables 3–5 points to the advantages, drawbacks, and challenges of the
proposed fusion method. The fusion method performed better in PA detection when
deep features were extracted by using pre-trained models than the models which were
trained with FAS datasets. Among the pre-trained models considered for evaluation,
the model with the fewest layers (VGG-16) showed improvement in computational speed
and detection performance. One possible hypothesis for this is that FPAD relies on low-
level, spoof-specific features, rather than complex deep features. Deeper pre-trained models
were able to improve detection performance at the cost of computational speed. However,
for application in real-life scenarios, the best model would exhibit optimal performance
both in accuracy and computational speed.

7. Conclusions

An experimental framework combining hand-crafted and deep features was presented
in this article. For hand-crafted features, colour LBP was extracted after converting RGB
images to YCbCr and HSV colour spaces. For deep features, both pre-trained models and a
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custom CNN model were considered. The proposed method was compared to the binary
classification with deep learning models. A comparison between these two models showed
that hand-crafted features, when combined with the deep features, substantially reduced
the number of false positives in most cases. This indicated that rather than deep features,
spoof-specific features would facilitate better PA detection in FR systems. Moreover, a
fusion method using pre-trained deep models also improves computation speed on some
models and shows promise for experiments with larger datasets.

This experimental framework can be further extended in multiple ways. For future
work, cross-dataset evaluation may be explored to confirm whether these relatively shallow
features exhibit good, generalisable qualities. Alternatively, the fusion method may be
expanded by using more features corresponding to texture, frequency, and image quality
to detect PAs.
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