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Abstract. Early diagnosis and treatment of skin cancer can reduce
patients’ fatality rates significantly. In the area of computer-aided diag-
nosis (CAD), the Convolutional Neural Network (CNN) has been widely
used for image classification, segmentation, and recognition. However,
the accurate classification of skin lesions using CNN-based models is
still challenging, given the inconsistent shape of lesion areas (leading to
intra-class variance) and inter-class similarities. In addition, CNN-based
models with massive downsampling operations often result in loss of local
feature attributes from the dermatoscopic images. Recently, transformer-
based models have been able to tackle this problem by exploiting both
local and global characteristics, employing self-attention processes, and
learning expressive long-range representations. Motivated by the superior
performance of these methods, in this paper we present a transformer-
based model for skin lesion classification. We apply a transformers-based
model using bidirectional encoder representation from the dermatoscopic
image to perform the classification task. Extensive experiments were car-
ried out using the public dataset HAM10000, and promising results of
90.22%, 99.54%, 94.05%, and 96.28% in accuracy, precision, recall, and
F1 score respectively, were achieved. This opens new research directions
towards further exploration of transformers-based methods to solve some
of the key challenging problems in medical image classification, namely
generalisation to samples from a different distribution.

Keywords: Computer aided diagnosis - Skin lesion classification -
Deep learning - Convolutional neural networks - Transformers

1 Introduction

Skin cancer is the most common type of cancer worldwide, responsible for 64,000
fatalities in 2020 [16]. The majority of skin cancers can be treated if diagnosed
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early. However, visual inspection of skin malignancies with the human eye dur-
ing a health screening is prone to diagnostic errors, given the similarity between
skin lesions and normal tissues [12]. Dermatoscopy is the most reliable imag-
ing method for screening skin lesions in practice. This is a non-invasive tech-
nology that allows the dermatologist to acquire high-resolution images of the
skin for better visualisation of the lesions, while also enhancing sensitivity (i.e.
accurate identification of the cancer lesions) and specificity (correct classifica-
tion of non-cancerous suspicious lesions) when compared with the visual inspec-
tion. Nonetheless, dermatologists still confront hurdles in improving skin cancer
detection, since manual assessment of dermatoscopic images is often compli-
cated, error-prone, time-consuming, and subjective (i.e., may lead to incorrect
diagnostic outcomes) [12]. Thus, a computer-aided diagnostic (CAD) system for
skin lesion classification that is both automated and trustworthy has become
an important evaluation tool to support dermatologists with proper diagnosis
outcomes to finalise their decisions.

Over the last decades, several Convolutional Neural Network (CNN) based
methods have been presented, delivering better CAD systems that identify the
melanoma and non-melanoma skin lesions accurately. Deep neural networks are
being used to classify skin cancer at the dermatological level. Examples include
[9] using GoogleNet’s Inception v3 model, which achieved 72.1% and 55.4%
accuracy of the three and nine class respectively, on a Stanford Hospital private
dataset. In [22], a fully convolutional residual network (FCRN) is proposed and
evaluated on the IEEE International Symposium on Biomedical Imaging (ISBI)
2016 Skin Lesion Analysis Towards Melanoma Detection Challenge dataset. This
model obtained the 1%¢ place on the challenge leaderboard, yielding an accuracy
of 85.5%. Moreover, an attention residual learning convolutional neural network
(ARL-CNN) was introduced by [23] and evaluated on the ISBI 2017 dataset,
achieving an average area-under-curve (AUC) of 91.7%.

Ensemble-based CNN models have also shown superior performance on med-
ical image analysis [5,6] and skin lesion segmentation [15] and classification, as
shown in the International Skin Imaging Collaboration (ISIC) datasets 2018 [3],
2019 [10], and the HAM10000 dataset [1]. However, these methods require train-
ing several deep learning models to create the ensemble, which requires huge
computing power and is not suitable for real-time applications. In summary, it
can be said that most methods used for medical image classification, includ-
ing lesion classification are based on CNN models. However, it was reported
that while such model’s perform very well on datasets, cross-datasets general-
isation is still considered as a key challenge for the computer vision research
community [8].

To this end, we aim to address some of the issues above using a single deep
learning model to classify skin lesions accurately. We propose the development
of vision transformers-based models, as these have proven to be outperform-
ing many image classification tasks [7,14]. In this study, we use a bidirectional
encoder representation from the image transformers model to correctly diag-
nose the skin lesion. The rest of this article is organised as follows. Section 2
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Fig. 1. The architecture of the proposed transformers model, TransSLC, input image,
image patches. A special mask embedding [M] is replaced for some random mask of
image patches (blue patches in the figure). Then the patches are fed to a backbone
vision transformer and classify. (Color figure online)

describes the materials and the bidirectional encoder representation from the
image transformers model in detail. The experimental findings of the CNN and
transformer-based models are compared and examined in Sect. 3. Finally, Sect. 4
draws the research conclusions and suggests some future directions.

2 Methods and Materials

2.1 Image Transformer

In this work, we propose a bidirectional encoder representation from image trans-
formers motivated by BEIT [2]. Figurel provides a schematic diagram of the
proposed method.Initially, the input skin lesion 224 x 224 image is split into an
array of 16 image patches, with each patch measuring 14 x 14 pixels, as shown
in the top-left corner of Fig. 1. In BEIT, a masked image modelling (MIM) task
to pretrain vision transformers is proposed for creating the visual representa-
tion of the input patches. Therefore, we used a block-wise masking forward by
a linearly flatten projection to get the patch embeddings. A special token [S]
is added to the input sequence for regularisation purposes. Furthermore, the
patch embeddings include standard learnable 1D position embeddings as well.
The input vectors of each embeddings are fed into transformers encoder. We
then use vision transformers encoder as a backbone network of our model. The
encoded representations for the image patches are the output vectors of the final
layer of the transformers, which are then fed into the classification head which
in turn classifies the input skin lesion image. The classification head consists of
two layers: a global average pooling (used to aggregate the representations) and
a softmax-based output layer that produces the classification of the distinct the
categories.



2.2 Model Implementation Setup

As mentioned in the previous section, the proposed TransSLC model design
is based on the BEIT model presented in [2]. In practice, we utilise a 12-layer
transformer encoder, with 768 hidden size and 12 attention heads. A total of 307
feed-forward networks were also implemented for the intermediate size of the
network. For our experiment, the input skin lesion image size is set to 224 x 224
resolution, with the 14 x 14 array of patches having some patches randomly
masked. We trained our proposed model for 50 epochs, using the Adam optimiser
[13] with parameters 61 = 0.5 and B2 = 0.999. The learning rate was set to
0.0001, and a batch size of 8 was used. To ensure a fair comparison with other
CNN-based methods, we have used the same experimental settings. Experiments
were carried out using Nvidia Tesla T4 16 GB Graphics Processing Unit (GPU)
cards, and running the experiment for 50 epochs for all the models below took
on average 24 h of training time.

2.3 Model Evaluation

Standard evaluation metrics were used to evaluate the performance of the models
used in the experiments. These are accuracy, precision, recall, and F1 score.
Definitions of these metrics are presented in Table 1.

Table 1. Model evaluation metrics to evaluate the models.

Metric Formula

Accuracy (AC) | (TP4+TN)/(TP+TN+FP+FN)
Precision (PR) | TP/(TP+FP)

Recall (RE) TN/(TN+FN)

F1 Score (F1) |2.TP/(2.TP+FP+FN)

TP = True Positives, TN = True Negatives,
FP = False Positives, FN = False Negatives.

2.4 Dataset

The public and commonly used HAM10000 dataset was used [1] for evaluation
purposes. The dataset contains 10,015 images. These images are labelled based
on a discrete set of classes representing seven categories: actinic keratoses and
intraepithelial carcinoma (AKIEC), basal cell carcinoma (BCC), benign keratosis
(BKL), dermatofibroma (DF), melanoma (MEL), melanocytic nevus (NV), and
vascular lesions (VASC). As can be seen in Table 2 the samples distributions is
imbalanced. In other words, the number of training images in NV class is 4693
whereas DF and VASC classes have only 80 and 99 images, respectively. This is
a common problem in most medical datasets, as well as health-related data [20]
where various data sampling methods, as well as algorithmic modifications, are



Table 2. The image distribution per class and splits of the HAM10000 dataset.

Splits AKIEC | BCC | BKL | DF | MEL | NV | VASC
Training 228 359 769 | 80| 779 4693 99
Validation 33 52 110 | 12| 111 | 671 | 14
Testing 66 103 220 | 23| 223 |1341| 29
Total (10,015) | 327 514 1099 |115| 1113 | 6705 | 142

employed to handle it [21]. However, for the purpose of this paper, we handled
this problem using a simple data augmentation technique. This includes flipping
the images horizontally and vertically, random cropping, adaptive histogram
equalisation (CLAHE) with varying values for the original RGB images is used to
change the contrast. To generate a range of contrast images, we set the CLAHE
threshold for the contrast limit between 1.00 and 2.00

3 Experimental Results

For comparison purposes with our proposed TransSLC model, we have selected
several state-of-the-art models, including ResNet-101 [11], Inception-V3 [1§],
the hybrid Inception-ResNet-V2 [17], Xception [4] and EfficientNet-B7 [19].
These models are considered state-of-the-art, and commonly used in medical
image analysis. As can be seen in Table 3, TransSLC achieved the top perfor-
mance reaching an accuracy of 90.22%, precision of 85.33%, recall of 80.62%,
and F1 score of 82.53%. It can also be seen that among the selected CNN-based
models, EfficientNet-B7 [19] achieved the best results with accuracy of 88.18%,
precision of 83.66%, recall of 78.64%, and F1 score of 80.67%, respectively. Thus,
our proposed model improves 2.04%, 1.67%, 1.98%, and 1.86% in terms of accu-
racy, precision, recall, and F1 score, respectively, comparing with CNN-based
EfficientNet-B7 [19] model.

Table 3. Comparison of the performance (%) of the proposed transformers-based
model against different CNN-based models in terms of the accuracy (AC), precision
(PR), recall (RE), and F1 score (F1), respectively, on the test dataset.

Methods AC PR |RE |F1
CNN-based

ResNet-101 [11] 83.04 | 68.86 |68.06 | 68.06
Inception-V3 [18] 86.48 | 75.19 | 77.02 | 75.66
Inception-ResNet-V2 [17] | 86.68 | 79.78 | 73.56 |76.29
Xception [4] 86.98 | 79.55 | 74.08 | 76.07
EfficientNet-B7 [19] 88.18 | 83.66 | 78.64 |80.67

Transformers-based
Proposed TransSLC | 90.22|85.33 | 80.62 | 82.53
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Fig. 2. Confusion matrix of (a) CNN-based EfficientNet-B7 Model (b) Transformers-
based proposed model (TransSLC').

Moreover, Fig. 2 shows a confusion matrix of the 7 classes of the HAM10000
dataset with the test dataset. The confusion matrix in Fig.2 shows (a) the
EfficientNet-B7 [19] with the test dataset has some miss classification, particu-
larly in the MEL types, and (b) that the proposed model, TransSLC, with the
test dataset, is able to classify the skin lesion types in most of the classes. The
CNN-based EfficientNet-B7 [19] model performs well in detecting AKIEC, BCC
types of a skin lesion with 5%, and 8% higher than our proposed TransSLC
model. To classify BKL, DF, MEL, NV, and VASC types of the lesions, the
EfficientNet-B7 [19] model performs poorly and significantly fails in MEL types
with 15% lower than our proposed model. This is a crucial flaw, as MEL types
are deadly for patients. Therefore, CNN-based models have a considerable some
limitations when used in real-world clinical settings. In contrast, our proposed
model is capable of overcoming this limitation and could potentially be deployed
in a real clinical setting. Still, TransSLC has some limitations when classify-
ing MEL types, getting this class confused with 1% of AKEIEC, 1% of BCC,
and 5% of BKL, 25% of NV types, respectively. Another drawback of the pro-
posed transformers-based model consists of huge number of the parameters which
requires large memory (computational capacity) in order to implement.

Figure 3 illustrates the comparison between CNN-based EfficientNet-B7 and
proposed model using Receiver Operating Characteristic (ROC) curve. The
EfficientNet-B7 yields the area of AKIEC class is 98% which is 2% higher than
proposed model. The area of the rest of classes, DF, MEL, NV, and VASC
achieved by TransSLC improves 1%, 2%, 2%, and 2%, respectively, compared
with the EfficientNet-B7 model. The remain area of the BCC and BKL classes
are the same for both EfficientNet-B7 and our proposed model. The class-wise
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Fig.3. ROC curve (receiver operating characteristic curve) of (a) CNN-based
EfficientNet-B7 Model (b) Transformers-based proposed TransSLC model.

performance metrics of the proposed transformers-based, TransSLC, model is
presented in Table4. The proposed model yields the 86.00%, 78.90%, 84.77%,
89.47%, 79.60%, 93.70%, and 84.8% of accuracy to classify AKIEC, BCC, BKL,
DF, MEL, NV, and VASC, respectively.

The performance analysis of several ablation experiments is likely insufficient
to assess the benefits and behaviour of the proposed model. Thus, Fig. 4 we depict
the activation maps of the CNN-based and transformers-based model. Notice
that the EfficientNet-B7 rows show the activation maps, where the model can
classify all these images correctly to the corresponding class but activated in over-
all regions of the input skin lesion images. More preciously, the skin lesion types
can be conformed through some lesion areas only on the dermatoscopic image.
The activation maps by the proposed transformers-based TransSLC model can
remarkably overlay with only the lesion regions, which could signify the pres-
ence of lesion type. Finally, we can infer that a transformers-based model would
distinguish between important and non-relevant characteristics of skin lesion, as
well as learning the appropriate features for each given class.

Table 4. The class-wise performance metrics of the proposed transformers-based,
TransSLC, model for the seven classes of skin lesion classification in terms of the
precision (PR), recall (RE) and F1 score (F1), respectively.

Class type PR |RE |F1
Class 1 (akiec) | 86.00 | 65.15 | 74.14
Class 2 (bcc) | 78.90 |83.50|81.13
Class 3 (bkl) | 84.77 | 75.91  80.10
Class 4 (df) 89.47|73.91 | 80.95
Class 5 (mel) | 79.60 | 71.75 | 75.47

(

(

Class 6 (nv) 93.70 | 97.54 | 95.58
Class 6 (vasc) |84.85|96.55|90.32




Fig. 4. Visualisation results of the activation maps. For every column, we show an
input image, the corresponding activation maps from the outputs of EfficientNet-B7
and the proposed TransSLC model.

4 Conclusion

In this paper, we presented TransSLC, a transformers-based model able to clas-
sify seven types of skin lesions. The proposed method was compared with five
popular state-of-the-art CNN-based deep learning models Using the HAM10000
public datasets. Our proposed model achieved the accuracy of 90.22%, precision
of 85.33%, recall of 80.62%, and 85.53%, respectively on the test dataset. The
proposed model shows the transformers-based model outperforms the traditional
CNN-based model to classify different types of skin lesions which can enable
new research in this domain. Future work will further explore transformers-
based methods performances across other datasets, as well as carrying out cross-
datasets evaluation to assess how well the model generalises.
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