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ABSTRACT
Internet of Things (IoT) devices are becoming increasingly pop-

ular and an integral part of our everyday lives, making them a

lucrative target for attackers. These devices require suitable se-

curity mechanisms that enable robust and effective detection of

attacks. Deep Neural Networks (DNNs) offer a promise, but they

require large amounts of computational resources to provide bet-

ter detection, and their detection capabilities can be exploited by

adversarial attacks. Therefore, this paper proposes a method to

train Fully Connected Neural Network (FCNN) for IoT security

monitoring in a robust, effective and resource-efficient way. The

resulting model is assessed against various benchmark datasets

created using commercial IoT devices, such as doorbells, security

cameras, and thermostats. Experimental results demonstrate the

model’s ability to maintain state-of-the-art accuracy and F1-score

while reducing training memory and time consumption by 99.99

and 99.80 percentage points than its benchmark counterpart.

CCS CONCEPTS
• Security and privacy→ Intrusion detection systems; Em-
bedded systems security; • Computer systems organization→
Embedded and cyber-physical systems.
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1 INTRODUCTION
The Internet of Things (IoT) consists of Internet-enabled intelligent
devices that use embedded systems such as processors, sensors and
communication hardware to collect and exchange data. With the
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recent advances in super-cheap computer chips and the ubiquity

of wireless networks, it is possible to make anything as small as

a contact lens or as big as an aeroplane to be part of the IoT. IHS

Markit estimates that 125 billion devices will be connected to the

IoT by 2030 [15]. Most of these devices combine Artificial Intel-

ligence (AI) with IoT infrastructure to enable more efficient IoT

operations, improving human-machine interaction, and enhanc-

ing data management and analytics; therefore can be considered

as Artificial Intelligence of Things (AIoT) [9]. The gradual provi-

sion of such devices is transforming the world into a sophisticated

interconnected domain. This is good as it offers modern user con-

venience, but at the same time it can also open up a broader attack

surface. Attackers can exploit vulnerabilities in software/hardware

or embedded-AI of these devices, especially when they are con-

nected to the external world to create a cyber disaster. In October

2016, for example, attackers launched a wave of IoT botnet attacks.

It used various IoT devices to deny access to high profile websites

like Twitter, Amazon, Github and Netflix [3]. Consequently, IoT

security challenges must be addressed with robust and effective

detection techniques.

Recent research has shown the capabilities of AI technologies

in intrusion detection, particularly Deep Neural Network (DNN)-

based methods, which can outperform most of their counterparts

in cyber security monitoring [23]. A disadvantage of DNN-based

methods, however, is that they require a lot of resources to build a

model that can provide better detection with a multi-dimensional

feature set [2]. This would be problematic in training scenarios such

as edge machine learning, in which smart devices can process data

locally using machine and deep learning algorithms (e.g. federated

learning). Moreover, compared to the mainstream IT devices, IoT

devices are equipped with limited computing resources (processing

and storage) in order to enable maximum data output with min-

imum energy requirements while remaining cost-effective. As a

result, DNN-based security solutions designed for mainstream IT

devices cannot simply be deployed for security monitoring in an

environment with limited computing resources. In addition, the de-

tection capabilities of DNN-based methods can easily be exploited

by feeding the network with adversarial samples [12]. To this end,

we investigate the following research questions (RQs) to develop a

suitable DNN-basedmethod for the security monitoring of resource-

constrained environments such as IoTs and cyber-physical systems.

RQ1: Can existing DNNs be trained to be resource efficient so that

the resulting model is suitable for security monitoring in

resource-constrained environments like IoTs? (see subsec-

tion 3.2)



RQ2: Can the resulting Resource Efficient DNN (REDNN) model

be robust against perturbations attacks? (see subsection 5.1)

RQ3: Can the REDNN effectively detect attacks on IoT networks

better than its counterparts, and howmuch detectionmust be

sacrificed to achieve the desired level of resource efficiency?

(see subsection 5.3)

In our experiments, we use Fully Connected Neural Network

(FCNN) along with IoT benchmark datasets as described in sub-

section 4.1, and exploit FCNN’s optimization algorithm to obtain

the REDNN version from the FCNN. The experimental results are

promising, as the resulting REDNN maintains better classification

performance, low execution time and memory consumption and

well resistance to adversarial attacks against each dataset used in

our experiments. To the best of our knowledge, this is the first

attempt to examine FCNN’s capabilities for resource efficient and

robust detection in the IoT security context, using a large number

of benchmark datasets generated by hostile attacks on commercial

IoT devices.

The rest of the paper is organized as follows. Section 3 describes

the proposed method, while Section 4 describes the evaluation

procedure as well as the adopted perturbations techniques. Results

and discussion can be found in Section 5. Section 2 presents the

related work. Finally, Section 6 concludes the paper with future

research directions.

2 RELATEDWORK
IoT technology is not yet mature and fully secured. There are many

security challenges that need to be overcome, and vulnerability

issues are a key to them. These weaknesses can be traced back to a

lack of standardization, security considerations and the resource

limitation of IoT devices.

AI for IoT Security Monitoring: AI techniques have been

applied widely in the literature to address security challenges in

the IoT [40]. Elrawy et al. [11] present recommendations for de-

veloping Machine Learning (ML) and DNN based IoT intrusion

detection systems. These techniques remain promising in the field

of IoT security monitoring researches. In that aspect, Bhunia et

al. [5] utilize Support Vector Machine (SVM) to propose a frame-

work for IoT security monitoring. Lopez et al. [26] proposed an IoT

network traffic forecasting technique based on Gradient Boosting

(GB) classifier. Tang et al. [41] enhanced the Adaboost algorithm to

detect low rate DoS attacks in an IoT environment. Mohammad et

al. [30] utilized DNN to accurately classify IoT networks traffic data.

Iandola et al. [17] described the minimum speed requirements for

deploying DNN on a resource-constrained environment. Shen et al.

[38] compressed Convolutional Neural Network (CNN) for struc-

ture learning in an IoT resource-constraint environment. Kodali

et al. [21] utilized DNN, especially FCNN, for classification tasks

on resource-limited devices. Most of these techniques compressed

DNN by the quantization of weights and bias parameters. However,

our proposed approach in this paper targets effective attacks detec-

tion with resource minimization to reduce FCNN computational

complexity. Themethod exploits pruning, simulatedmicro-batching

and parameters optimization to regularize the resulting model and

reduce memory and time requirements while increasing accuracy

performance.

Adversarial Attacks Against AI: The limitation of AI (ML and

DNN) based models deployed for IoT security monitoring is that

an attacker can hinder their functionality. For instance, an attacker

can control the training data by modifying each label instance [6].

Such attacks consider feeding the model with poisonous training

data. The intention is to reduce the classification performance [36].

With that, a bunch of incorrect classifications is created by impact-

ing the model used for security monitoring. In another context, a

new set of perturbed data can be generated at the testing phase.

The Fast Gradient Sign Method (FGSM) proposed by Kurakin et

al. [24] is a potential mechanism for launching such perturbation.

Kurakin et al. [24] enhance FGSM and introduce Projected Gradient

Descent (PGD). This is a targeted attack method that maximizes the

probability of a specific target class. Hosseini et al. [14] proposed a

semantic attack method to alter the meaning of the original data

samples. Athalye et al. [4] proposed a generic perturbation method

based on randomly generated noise samples. The Jacobian Saliency

Map Attack (JSMA) based on feature saliency map and jacobian

derivative computation of the learned DNN model can succeed in

crafting adversarial samples [33].

These perturbation methods are white-box based, assuming that

the adversary has complete knowledge about the model applied in

cyber security monitoring. However, a robust and effective classi-

fication model can defeat various adversarial perturbations. Such

procedure considers training the built model with perturbed sam-

ples to augment regularization for resilience testing [44]. In our

approach, we try to address these attacks for IoT security without

utilizing the perturbed samples in training. Particularly to exploit

the capability of the optimized FCNNmodel in defeating adversarial

attacks effectively and efficiently. Therefore, we use eleven network

traffic features data from various IoT devices. These IoT bench-

marks data capture relevant device-specific properties. Therefore

suitable for evaluating the performance of the proposed method

with more realistic data samples instead of using oversimplified

simulation methods.

3 METHODOLOGY
To demonstrate the proof of concept, we will use (FCNN) along

with a number of IoT benchmark datasets, and exploit FCNN’s

optimization algorithm to obtain the REDNN version of the FCNN.

3.1 Baseline FCNN
DNN is a neural network structured into several layers of neurons

representing the input data. A neuron is a fundamental computing

unit capable of transmitting the result of the operation computed

by its activation function with the input. FCNN is a sequential DNN

that connects neurons by linking them with their corresponding

weights and bias parameters. These weights and biases function as

information storage units. Hence, we used Algorithm 1 to obtain

the optimized FCNN model (M𝑛) as the baseline for the compar-

ison. The function BASE in line 1 of Algorithm 1 corresponds to

theM𝑛 mini-batch training using the gradient descent algorithm

while computing the forward and backward derivatives [8]. The

procedure is determined to minimize the objective function 𝐽 (𝑊,𝑏)
in Equation 1 in-order to map unseen samples by using a procedure



that learned from D𝑡𝑟 . The resulting FCNN approach uses super-

vised neural networks as a classifier,M𝑛 can accept an input D𝑡𝑟
and outputs a probability class of vector 𝑌 . The desired output 𝑌

are rounded up to the closest integer using a specified threshold

value 𝑡 as in Equation 2. This output represents either the benign

(1) or the attack (0) traffic instance.

Algorithm 1 Baseline FCNN training

Input: Labelled data D𝑡𝑟 , Iteration number T , Batch size S
Output: Baseline modelM𝑛

1: function Base(D𝑡𝑟 [ ]) ⊲ Training baseline model

2: for 𝑖 = 1 to T ; do
3: Mini-batch 𝐵 = {(𝑥1, 𝑦1), ..., (𝑥𝑚, 𝑦𝑚 )} ⊂ 𝐷𝑡𝑟
4: 𝐹𝑝 (𝐵) ⊲ Forward propagation

5: E𝑖 ← 𝐿 ⊲ 𝐿 = Base loss

6: 𝐵𝑝 (B) ⊲ Backward propagation

7: Compute gradients for parameters update

8: Estimate𝑚𝑖 ⊲ Execution memory at epoch 𝑖

9: Estimate 𝑡𝑖 ⊲ Execution time at epoch 𝑖

10: M𝑛 = Trained model that estimate E𝑖 ,𝑚𝑖 , 𝑡𝑖
11: end for
12: return (M𝑛, E𝑖 ,𝑚𝑖 , 𝑡𝑖 )
13: end function

𝐽 (𝑊,𝑏) = 1

𝑚

𝑚∑︁
𝑖=1

𝐿 − (𝑌 log𝑌 + (1 − 𝑌 )log (1 − ˆ𝑌 ) (1)

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 =

{
0 if 𝑌 ≤ 𝑡

1 if 𝑌 > 𝑡
(2)

3.2 Robust, Effective and Resource Efficient
FCNN (REDNN)

The procedure of finding a robust, effective and resource efficient

DNN model can be a challenging task [1]. This is due to the vari-

ous parameters requirements in designing and building the desir-

able architecture. Particularly with complex and multidimensional

datasets. Especially the IoT traffic data produced from many com-

mercial devices consists of resource constraints, lower memory and

processor. In this context, we utilize the baselineM𝑛 model to pro-

pose the optimized REDNN model. As demonstrated in Algorithm

2 the optimized model adopts micro-batching [16, 31] for efficient

model building. The function procedure requiresD𝑡𝑟 in mini-batch

and micro-batch forms to return the efficient𝑀𝑒 representing the

REDNN model. The optimization process utilizes penalty function

(weight elimination) [13] represented by 𝐸 in Equation 3 with a

threshold parameter 𝑤0. This training description is in line 7 of

Algorithm 2. This is useful in distinguishing the sets of relevant

weights from the irrelevant ones. Particularly the insignificant large

weights of the baselineM𝑛 model. Weights values𝑊 greater than

𝑤0 yield a complexity cost closer to 1 and require regularization

using the penalty parameter 𝜆. This is important to reduce the

complexity of the model. To retain its performance, we consider

the set of parameters that can give a training error E 𝑗 lower than
E𝑖 . The REDNN model is less complex based on the regularization

in lines 10 and 11 of Algorithm 2.

Algorithm 2 Proposed method to obtain REDNN

Input: Penalty term 𝜆, (D𝑡𝑟 ,T , 𝐵, in Alg. 1)

Output: Efficient modelM𝑒

1: function Efficient(D𝑡𝑟 [ ])
2: for 𝑗 = 1 to T ; do
3: Micro-batch𝑀 = {(𝑥1, 𝑦1), ..., (𝑥𝑚, 𝑦𝑚)} ⊂ 𝐵

4: 𝐹𝑝 (𝑀) ⊲ Forward propagation

5: E𝑡 = 𝐿 ⊲ L = Initial loss

6: 𝑚𝑡 , 𝑡𝑡 ⊲𝑚𝑡 , 𝑡𝑡 estimated memory and time using E𝑡
7: E 𝑗 ← E𝑡 + 𝜆

∑𝑊
𝑗=1

(𝑤2

𝑗 /𝑤2

0
)

(1+𝑤2

𝑗
/𝑤2

0
)

8: 𝐵𝑝 (M) ⊲ Backward propagation

9: Compute gradients for parameters update

10: if (E 𝑗 ≤ E𝑡 ) then
11: 𝜆 = 𝜆 + △𝜆
12: Estimate𝑚 𝑗 ⊲ Execution memory at epoch 𝑗

13: Estimate 𝑡 𝑗 ⊲ Execution time at epoch 𝑗

14: if 𝑚 𝑗 ≤𝑚𝑡 then
15: 𝑚𝑡𝑟 =𝑚 𝑗 ⊲𝑚𝑡𝑟 = Efficient memory

16: if 𝑡 𝑗 ≤ 𝑡𝑡 then
17: 𝑡𝑡𝑟 = 𝑡 𝑗 ⊲ 𝑡𝑡𝑟 = Efficient time

18: M𝑒 = Trained model that estimate

E 𝑗 ,𝑚𝑡𝑟 , 𝑡𝑡𝑟
19: end if
20: end if
21: end if
22: end for
23: return (M𝑒 , E 𝑗 ,𝑚𝑡𝑟 , 𝑡𝑡𝑟 )
24: end function

𝐸 = 𝜆

𝑊∑︁
𝑗=1

(𝑤2

𝑗
/𝑤2

0
)

(1 +𝑤2

𝑗
/𝑤2

0
)

(3)

4 EVALUATION
This section describes the evaluation criteria of the baseline FCNN

and REDNN models. It also presents the datasets used in building

models.

4.1 Utilized Datasets
The N-BaIoT dataset contains various realistic data samples from

nine commercial IoT devices that collectively represent multitudes

of botnet and benign network traffic flow [27]. Each device is ei-

ther infected by BASHLITE or Mirai attacks, with some regular

instances. The nine devices subsets are a (i) Danmini Doorbell,

(ii) Ecoobee Thermostat, (iii) Ennio Doorbell, (iv) Philips B120N10,

(v) Provision PT-737E, (vi) Provision PT-838, (vii) Samsung SNH-

1011-N, (viii) SimpleHome XCS-1002-WHT, and (ix) SimpleHome

XCS-1003-WHT. Each device consists of sufficient records of at-

tacks and regular instances with 115 features vector. As a result,

the N-BaIoT dataset serves as a benchmark for the proposal of IoT

network intrusion detection systems. We utilized all commercial

devices subsets data of the N-BaIoT for training and testing FCNN

and REDNN models.



Kitsune dataset consists of multiple traffic captured on an IoT

network setting [29]. This dataset contains attacks that violate

confidentiality, integrity and authenticity. These attacks are cate-

gorized into (i) Reconnaissance attacks, (ii) DoS attacks, and (iii)

Mirai attacks. The subset of this data used to evaluate our models

has 764,137 of Mirai and regular instances. This dataset has 115

features with a normal distribution of 121,621 raw traffics data.

WUSTL dataset consists of multiple reconnaissance attacks with

normal traffics that emulate real-world industrial IoT systems for

cyber-physical systems security research [42]. This dataset is use-

ful in investigating the feasibility of ML algorithms for detecting

various real-time attacks. The raw data consists of 7,037,983 data

samples with seven (7) features. It comprised 93.30% for benign

records with 6.7% attacks data records.

4.2 Data Preprocessing
The choice of these datasets allows frequent model training and

rigorous evaluation. These datasets represented by numeric traf-

fics flow are highly in-balanced suitable for IoT security investiga-

tions. Each utilized dataset is separated into 80% for training and

20% testing samples. Data input vectors are normalized using the

unity-based normalization feature scaling. With 𝑛 data features

𝑥1, 𝑥2, ..., 𝑥𝑛 , within a dataset, the normalization is performed using

the formula in Equation 4. The notation 𝑥𝑖
′
, represents the nor-

malized value of the ith feature, 𝑥𝑖 the original value, while𝑚𝑖𝑛𝑥𝑖
and𝑚𝑎𝑥𝑥𝑖 represents the minimum and maximum value of the 𝑖𝑡ℎ

feature over the entire dataset.

𝑥𝑖
′ =

𝑥𝑖 −𝑚𝑖𝑛𝑥𝑖

𝑚𝑎𝑥𝑥𝑖 −𝑚𝑖𝑛𝑥𝑖
(4)

4.3 Experimental Setup
We used Python 3.76 on a desktop computer with Intel Xeon E5-

2695(4 core) CPUs running at 2.10 GHz with 16.0 GB installed mem-

ory to build each model. For profiling model memory consumption,

we utilized the integrated memory usage [34]. At training, param-

eters remain constant to enable a fair comparison. This applied

to the baseline FCNN model, optimized REDNN and adversarial

process.

4.4 Implementation Details
FCNN and REDNN Models Design. For building the generic

sequential (dense) FCNN and REDNN models with each dataset,

we utilized the scientific NumPy python module [20]. This enables

the building of an in-depth DNN model without any library. This is

good to understand underlying concepts and explore the internal

operations within the network. Each model consists of an input

layer, four hidden layers and an output layer. Regarding the topol-

ogy selection against each dataset, we utilized the best-run Hyperas

modules [22]. With that, we can select the best topology configu-

rations against each dataset. The topology selection can minimize

operations while maximizing the performance metrics. These are

the requirements for the task of binary classification. The architec-

tural settings remain identical for evaluating the baseline FCNN and

the proposed REDNN model. Table 1 describes the models topology

against each tested data.

For training, a mini-batch gradient descent optimizer with mo-

mentumwas used. Random initialization of weight and bias parame-

ters are within [0,1]. The baseline and optimized training procedure

utilized 𝑙𝑟 = 0.001 across each dataset except the Ecobee and Ennio

devices data with a different topology that used 𝑙𝑟 = 0.0001. Both

FCNN and REDNN utilized a momentum value of 0.001. We used

0.01 values for 𝜆, △𝜆 and threshold𝑤0 [7] with 4 micro-batches to

build the REDNN model. Models are trained in 128 batches within

the 100 epochs for accuracy to converge. Binary cross entropy was

used for calculating loss function. The activation function used

in the input layer is ReLu [18] and Sigmoid for the output layer.

For efficient hyperparameter selection, we utilized an automatic

optimizer search module [37]. This technique required a range of

values for each hyperparameter to be tuned to return an efficient

combination. We used Numpy.float16 modules to implement the

float 16 precision for the baseline and optimized model.

A TensorFlow Core version (v2.8.0) is used for building the Keras

and TensorFlow deep learningmodels. The TensorFlow Lite (TFLite)

converter module is used to build the TFLite deep learning model.

The implementation used a fair comparison with Numpy (FCNN

and REDNN) as both the Keras and TFLite models are trained in

128 mini-batches using stochastic gradient descent, at 100 epochs

iterations. For the linear SVM, Adaboost and GBmodels, we utilized

the Scikit-learn [35] machine learning python framework.

For exploration and reproduction purposes, the codes used for

this study is accessible at [45]. Regarding the TFLite experimen-

tation, we include both the Jupyter notebook file and the python

script in [45] repository.

Perturbation Procedures. The perturbation methods utilized

in crafting the adversarial samples are the FGSM and PGD [24],

semantic [14], and random noise [4]. The FGSM attacking tech-

nique is computationally efficient. It required a one-step gradient

update towards the direction of gradient sign as in Equation 5. We

utilize FGSM in Algorithm 3 to generate a new perturbed dataset

𝑋 𝑓 𝑔𝑠𝑚 based on the original data𝑋𝑜 . The epsilon 𝜖 parameter deter-

mines the proportion of generated 𝑋 𝑓 𝑔𝑠𝑚 samples. These features

are normalized using the clipping method to align with the cor-

responding 𝑋𝑜 data features. The success of FGSM motivates the

proposal of PGD [24]. PGD is an extended version of the FGSM

method described in Equation 6. Both methods operate by com-

puting the forward and backward propagation while generating

perturbed samples. In the PGD attacking method, perturbed noise

𝜃 was added to the FGSM procedure before clipping the perturbed

samples.

𝑋 𝑓 𝑔𝑠𝑚 = 𝑋𝑜 + 𝜖𝑠𝑖𝑔𝑛(∇𝑋𝑜 𝐽 (𝑋𝑜 , 𝑌 )) (5)

For crafting the FGSM and PGD adversarial samples, we utilized

Algorithm 3 along with the cleverhans documentation [32]. The uti-

lized documentation enables the development of generic adversarial

attacks methods using NumPy. Each employed attacking technique

except the semantic utilized an epsilon value scale within [0,1] in-

cremented by 0.1. These scaling values determined the proportion

of perturbation data generated. For the PGD, an infinity norm value

was used with 40 iterations. This method enables the production of

a new set of testing data that can be evaluated against the baseline

FCNN and REDNN models.



Table 1: Topology and distribution of normal and attack for each device data.

Device Normal Attack Inputs Outputs Topology

Danmini Doorbell 49,548 968,750 115 1 128-128-128-128

Ecobee Thermostat 13,113 822,763 115 1 32-64-64-16

Ennio Doorbell 39,100 316,400 115 1 64-128-128-64

Philips B120N10 175,240 923,437 115 1 128-128-128-128

Provision PT-737E 62,154 766,106 115 1 128-128-128-128

Provision PT-838 98,514 729,862 115 1 128-128-128-128

Samsung SNH-1011-N 52,150 323,072 115 1 128-128-128-128

SimpleHome XCS-1002-WHT 46,585 816,471 115 1 128-128-128-128

SimpleHome XCS-1003-WHT 19,528 831,298 115 1 128-128-128-128

Kitsune 121,621 642,516 115 1 128-128-128-128

Wustl 6,566,438 471,545 6 1 128-128-128-128

Algorithm 3 FGSM Perturbation procedure

Input: X,Y, 𝜖,M, Data, label, epsilon, model

Output: Perturbed data X′

1: for each 𝜖 do
2: 𝐹𝑘 (M) ⊲ ModelM forward propagation

3: 𝐵𝐾 (M,Y) ⊲ ModelM backward propagation for gradient

update (𝑔)

4: X′ = X + 𝑠𝑖𝑔𝑛(𝜖 ∗ 𝑔)
5: X′ = 𝑐𝑙𝑖𝑝 (X′, [0, 1])
6: end for

𝜃 = 𝑋 𝑓 𝑔𝑠𝑚 − 𝑋𝑜 and 𝑋𝑝𝑔𝑑 = 𝑋𝑜 + 𝜃 (6)

Another perturbation procedure considered in this work is the

data poisoning attacks in Algorithm 4. In this scenario, the data is

poisoned by randomly flipping the labels. The flipping procedure

considers label modification for the attacks (0s) and benign (1s)

samples. This is the all labels modification technique that changes

1s to 0s and 0s to 1s. It is a non-targeted form of attacking method

that concentrates on both classes. The rationale is to mislead the

model by bringing its accuracy value down to 0%. We generate this

form of attack by considering the training dataset. The data samples

are randomized to have a fair proportion of the attack and benign

samples. All labels of the randomized samples are flipped based on

the specified poisoning proportion. For simplicity, we consider the

rate to be from 0% - 50% by 5% increment.

Algorithm 4 Label modification perturbation procedure

Input: X,Y, 𝑛, 𝑝, Data, label, data length, percent
Output: Poisoned data {X′,Y ′}

1: for 𝑡 = 1 𝑡𝑜 𝑛; do
2: if 𝑡 ∈ (1, 𝑝 ∗ 𝑛) then ⊲ Random samples selection

3: 𝑦𝑡 = 1 − 𝑦𝑡 ⊲ Labels 0 and 1 modification

4: Y ′ = {(𝑥𝑡 , 𝑦𝑡 )}, 𝑡 = 1 . . . 𝑛 ⊲ Integrating label

5: end if
6: end for
7: return {X′,Y ′}

5 RESULTS AND DISCUSSION
This section discusses the experimental results. It details the evalua-

tion comparison of the REDNN and optimized FCNN models across

datasets.

5.1 REDNN Model Robustness
In Table 2, comparison results between the performance of the

REDNN and FCNN models against tested adversarial samples are

presented. In most cases, the REDNN provides higher test accuracy

in detecting adversarial perturbation. Using the SimpleHome XCS-

1002-WHT device data, PGD reduces the accuracy performance of

the FCNN and REDNN by 2.6 and 1.94 percentage points, respec-

tively. With the Kitsune dataset, PGD affects the accuracy of the

FCNN by 13.64 percentage points, while that of the REDNN by 3.91

percentage points only. These results demonstrate the capability

of REDNN in resisting the most successful PGD perturbation tech-

nique. The semantic attack is the weakest that shows no reduction

in accuracy with each model. The reason can be altering the origi-

nal samples by negation may not affect the accuracy with network

traffic data rather than image format data [39]. For the noise attack,

the REDNN provides better accuracy in many instances. The reg-

ularized REDNN model can accurately detect several adversarial

attacks in IoT networks environments better than its counterparts.

These results suggest that an effective parameters optimization of

an in-depth DNN model can influence a robust detection of ad-

versarial attacks in the context of IoT networks. As demonstrated,

training with perturbed samples is not a requirement for effective

and efficient detection in IoT network environment.

Robustness against number of epoch. Table 3 shows the

effect of epoch variation on model robustness against the XCS-1003

dataset. At ten epochs, the adversarial accuracy of both models

reduces, especially the baseline FCNN. Particularly with the PGD

attacks that reduce the accuracy of the FCNN and REDNN to 69.65

and 77.43 percentage points. At 100 epoch iteration, the resilience

of each model against perturbation attacks is better. Their accuracy

value is more than 97 percent. This is useful as the optimized model

can save more resources while thwarting adversarial attacks.

Robustness with clipped perturbation samples. Table 4 com-

pares models’ performance with clipped and non-clipped adversar-

ial samples against randomly chosen datasets. The performance

of detecting FGSM and random noise is better with the clipped



Table 2: Models performance comparisons across datasets.

Dataset Model Clean set FGSM set PGD set Noise set Semantic set

acc (%) acc (%) acc (%) acc (%) acc (%)

Danmini Doorbell

FCNN 95.11 95.05 93.99 95.11 95.11

REDNN 95.11 95.10 94.57 95.11 95.11

Ecobee Thermostat

FCNN 93.36 93.36 92.97 93.36 93.36

REDNN 93.36 93.36 93.36 93.36 93.36

Ennio Doorbell

FCNN 88.94 88.90 88.90 88.94 88.94

REDNN 88.94 88.89 88.89 88.94 88.94

Philips B120N10

FCNN 84.08 83.27 80.81 84.05 84.08

REDNN 84.08 84.07 83.54 84.08 84.08

Provision PT-838

FCNN 88.07 87.19 84.75 88.06 88.07

REDNN 88.07 87.83 86.70 88.07 88.07

Provsision PT-737E

FCNN 92.52 92.49 91.10 91.57 92.52

REDNN 92.52 92.51 91.47 91.87 92.52

Samsung SNH-1011-N

FCNN 86.07 85.33 83.12 86.05 86.07

REDNN 86.07 85.94 85.32 86.06 86.07

SimpleHome XCS-1002-WHT

FCNN 94.65 94.65 92.05 94.65 94.65

REDNN 94.65 94.65 92.71 94.65 94.65

SimpleHome XCS-1003-WHT

FCNN 97.73 97.69 97.24 97.73 97.73

REDNN 97.73 97.70 97.28 97.73 97.73

Kitsune

FCNN 84.09 78.27 70.45 81.00 84.09

REDNN 84.09 83.52 80.18 84.02 84.09

Wustl

FCNN 94.26 94.26 94.26 94.26 94.26

REDNN 94.26 94.26 94.26 94.26 94.26

Table 3: Effect of number of epoch against models performance with XCS-1003
dataset.

Epoch Model Clean set FGSM set PGD set Noise set

acc (%) acc (%) acc (%) acc (%)

10

FCNN 97.73 79.51 69.65 89.52

REDNN 97.73 86.70 77.43 89.79

20

FCNN 97.73 86.35 77.07 93.86

REDNN 97.73 86.70 77.43 94.08

40

FCNN 97.73 93.74 86.66 97.08

REDNN 97.73 94.19 87.10 97.17

60

FCNN 97.73 96.48 90.72 97.63

REDNN 97.73 96.84 92.09 97.69

80

FCNN 97.73 97.48 94.82 97.72

REDNN 97.73 97.53 95.34 97.73

100

FCNN 97.73 97.69 97.24 97.73

REDNN 97.73 97.70 97.29 97.73

procedure. The REDNN demonstrates better performance than its

baseline counterpart. For thwarting the non-clipped FGSM adver-

sarial samples of XCS-1003 device data, REDNN and FCNN accuracy

decreased by 0.41 and 0.45 percentage points, respectively. With

the same procedure to detect the random noise attacks against the

Kitsune data, the accuracy of the FCNN and REDNN decreased

by 4.86 and 0.93 percentage points. These results demonstrate the

resilience nature of the REDNN with clipped and non-clipped ad-

versarial samples.

Robustness against model variation. Table 5 presents the

performance of REDNN and FCNN using three hidden layer ar-

chitectures. Across each tested dataset, REDNN resists adversarial

attacks better than its counterparts. As tested against the Danmini

Doorbell dataset, PGD attacks lower the accuracy of the FCNN

and REDNN by 9.18 and 7.23 percentage points, respectively. With

the optimized four hidden layer model, accuracy reduction is by

1.12 and 0.54 percentage points for the FCNN and REDNN model

(see Table 2). These results demonstrate that the four hidden layer

networks can enable better attacks detection. As a result, a neu-

ral network model with few hidden layers may not stand robust

against adversarial attacks. As demonstrated, REDNN is more ap-

propriate for detecting adversarial perturbations in an IoT network

environment.

Figures 1(a) and 1(b) show the impact of epsilon value against

variational architecture in detecting PGD adversarial attack. In

Figure 1(a), the FCNN and REDNN used three hidden layers. In

Figure 1(b), both models utilized four hidden layers to detect PGD

perturbations. In both scenarios, test set accuracy decrease with

the epsilon value of 1.0. The REDNN model appears to provide

an incremental accuracy value with 0.6 and 2.0 percentage points

with three and four hidden layers while detecting the PGD attacks.

The reason may be removing a hidden layer of a model may affect

performance accuracy. In our case, each hidden layer has 128 neuron

values.

Figures 2(a) and 2(b) present the impacts of reducing the second

hidden layer neuron of each model by 50% and 25% against re-

silience using the Kitsune dataset. In each setting, REDNN provides

better detection accuracy against adversarial samples. As depicted



Table 4: Effect of clipping samples against perturbations method.

Dataset Procedure Model Clean set FGSM set PGD set Noise set

acc (%) acc (%) acc (%) acc (%)

XCS-1003

Clipped

FCNN 97.73 97.69 97.24 97.73

REDNN 97.73 97.70 97.29 97.73

Non-clip

FCNN 97.73 97.24 97.24 97.56

REDNN 97.73 97.29 97.29 97.58

Danmini Doorbell

Clipped

FCNN 95.11 95.05 93.99 95.11

REDNN 95.11 95.10 94.57 95.10

Non-clip

FCNN 95.11 93.99 93.99 94.79

REDNN 95.11 94.57 94.57 94.98

Kitsune

Clip

FCNN 84.09 78.27 70.45 80.67

REDNN 84.09 83.52 80.18 83.84

Non clip

FCNN 84.09 70.45 70.45 75.81

REDNN 84.09 80.18 80.18 82.91

Table 5: Variational models perturbations evaluations across datasets.

Dataset Model Clean set FGSM set PGD set Noise set

acc (%) acc (%) acc (%) acc (%)

Danmini Doorbell

FCNN 95.11 91.43 85.93 93.78

REDNN 95.11 92.93 87.88 94.45

Provsision PT-737E

FCNN 92.52 90.31 86.31 91.61

REDNN 92.52 90.81 87.20 91.91

SimpleHome XCS-1002-WHT

FCNN 94.65 92.48 87.87 93.54

REDNN 94.65 93.21 89.02 93.99

SimpleHome XCS-1003-WHT

FCNN 97.73 96.51 92.20 96.98

REDNN 97.73 96.62 92.33 97.03

Kitsune

FCNN 84.09 75.73 70.02 81.72

REDNN 84.09 81.56 77.65 83.88

in Figure 2(a), lowering hidden neurons values affect accuracy. It

reduces FCNN and REDNN accuracy by 14.66 and 0.42 percentage

points. For detecting PGD attacks using the 25% reduced neurons

shown in Figure 2(b), FCNN and REDNN accuracy reduces by 24.52

and 5.26 percentage points, respectively. These results suggest that

a significant reduction of hidden neurons affects models resilience

against adversarial samples. In each scenario, REDNN stands to be

more robust with topology variation than its counterparts. As a

result, proper architecture selection can influence an efficient and

effective identification of adversarial samples.

In Figure 3, we measured the results generated by poisoning the

training data samples. A label flipping attack was integrated on

each model using the kitsune and PT-737E device centred dataset.

Each model performs better with the modified data of the kitsune

data (see Figure 3(a)). They can thwart label poisoning attacks with

10% - 30% mislabelled training data as supported by the architec-

ture of each model. Unlike Dunn et al. [10] that utilized 5% - 30%

poisoned IoT data, we investigated further. With a 40% poisoning

rate, REDNN significantly outperforms the FCNN model. For the

PT-737E dataset result in Figure 3(b), the accuracy of the FCNN

reduces significantly with 50% poisoning data. This behaviour may

be due to the regularized property of the REDNN model [25]. Be-

cause of this, slighter changes in the training data may not affect

the REDNN model. As demonstrated, the FCNN model is more

(a) (b)

Figure 1: PGD test accuracy changes with epsilon for (a) four and (b) three
hidden layers architecture against the Danmini Doorbell dataset.

sensitive to the 40% and 50% poisoning of the Kitsune and PT-737E

datasets.

5.2 REDNN Model Resource Usage
Figures 4(a) and 4(b) present the execution time in seconds and

CPU performance (1/𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒) for training each model. As

demonstrated, the REDNN model is more efficient with better CPU

performance against each dataset. This suggests its less computa-

tional expensive nature. The resources saving capabilities make



(a) (b)

Figure 2: Accuracy changes with reduce hidden neuron by (a) 50% and (b) 25%
against the Kitsune dataset.

(a) (b)

Figure 3: Accuracy changes with label flip against (a) Kitsune and (b) PT-737E
dataset.

it an appropriate model for intrusion detection in IoT network

environments.

(a) (b)

Figure 4: Model training (a) execution time and (b) CPU performance against
utilized datasets.

We present measured testing results of the eleven IoT datasets

runs with the FCNN and REDNN models in Table 6. In each case,

the testing memory consumption of the datasets is profiled in MB

accordingly. As demonstrated, the REDNN model can operate with

a lower memory footprint. It can process the Wustl and Philips

B120N10 datasets with 86.08 times and 2.16 timesmemory reduction

than FCNN. These resources minimization make it a better choice

for IoT security monitoring. It indicates its less complexity and

faster detection capability.

5.3 REDNN Model Performance Comparison
The descriptions in Table 7 compare the performance evaluation

of REDNN against the standard python technology frameworks.

At training, REDNN demonstrates better memory footprint and

Table 6: Testing memory footprint.

Dataset Model Mem Mem Test

(MB) save (%) acc (%)

Danmini Doorbell

FCNN 3.742 N/A 95.11

REDNN 1.555 58.44 95.11

Ecobee Thermostat

FCNN 2.804 N/A 93.36

REDNN 1.277 54.46 93.36

Ennio Doorbell

FCNN 2.410 N/A 88.94

REDNN 0.539 77.63 88.94

Philips B120N10

FCNN 3.738 N/A 84.08

REDNN 1.731 53.71 84.08

Provision PT-838

FCNN 3.031 N/A 88.07

REDNN 1.266 58.23 88.07

Provision PT-737E

FCNN 3.008 N/A 92.52

REDNN 1.285 57.28 92.52

Samsung SNH-1011-N

FCNN 2.598 N/A 86.07

REDNN 0.582 77.60 86.07

SimpleHome XCS-1002

FCNN 3.004 N/A 94.65

REDNN 1.320 56.06 94.65

SimpleHome XCS-1003

FCNN 3.145 N/A 97.72

REDNN 1.305 58.51 97.72

Kitsune

FCNN 2.726 N/A 84.09

REDNN 1.168 57.15 84.09

Wustl

FCNN 491.6 N/A 94.26

REDNN 5.711 98.84 94.26

time savings. It saves 99.85 and 99.99 percentage points of training

time and memory footprint than the baseline model trained with

Keras. As compared with the converted FCNN TFLite model, the

REDNN demonstrates better memory usage. The reason can be the

TFLitemodel inherits the default Keras parameters during themodel

conversion. As a result, the conversion produces a lighter version of

the Keras model. However, the quantized optimized TFLite model

consumes fewer resources. It required 0.111 seconds of training

execution times and 0.004 MB of training memory footprint. This is

due to the computationswith tf.float16 low precision [28] at training

while optimizing the converted TFLite model [43]. However, in

some cases, low precision can cause numerical issues [28]. This

can leads to accuracy performance degradation with some datasets

[46]. Because of that we implement each framework in 32 bits and

compare their performance in Table 7. This is useful to investigate

the resource savings without the low precision integration. As

presented, the significant training resource-saving of the optimized

REDNN model can be useful for on-device learning.

Table 7: Training performance evaluation across frameworks with Provision
PT-737E dataset.

Procedure

Train time Train mem Test set

(sec) (MB) acc (%)

FCNN-Keras 145.650 518.082 92.52

FCNN-TFLite 1.772 61.672 92.52

FCNN-Numpy 0.631 2.805 92.52

REDNN-Numpy 0.216 0.023 92.52



In Table 8, we show the testing resources (memory and time)

consumption by each model against utilized frameworks. Regarding

the processing times, the NumPy implementation is faster. REDNN

can process IoT data efficiently at a slight rate than the baseline

FCNN model runs on the same framework. The TFLite model is

more efficient than the Keras model but slower than Numpy (FCNN

and REDNN) models. Overall, REDNN saves 4.318, 69.81 and 80.55

percentage points of processing times than FCNN, TFLite and Keras

models, respectively.

For the memory consumption in column (Test mem), REDNN

demonstrates better savings. The reduction is by 78.91, 80.11 and

98.51 percentage points of memory footprint than FCNN, TFLite and

Keras models, respectively. The TFLite more resources consumption

is due to the to and fro data type conversion during prediction [43].

The conversion can increase the execution time and memory [19] as

demonstrated in Table 8. The higher resources (memory and time)

consumption of the TFLite at the testing stage is a limitation for

effective IoT attacks detection. REDNN that demonstrate minimal

testing resources consumption stands appropriate for IoT security

monitoring.

Table 8: Testing resource consumption across frameworks with Provision PT-
737E dataset.

Procedure

Test time Test mem Test set

(sec) (MB) acc (%)

FCNN-Keras 6.494 84.92 92.52

FCNN-TFLite 4.184 6.383 92.52

FCNN-Numpy 1.320 6.016 92.52

REDNN-Numpy 1.263 1.269 92.52

Table 9 presents measured results that compare the performance

of the REDNN model against state-of-the-art techniques using the

PT-737E dataset. The REDNN model demonstrates better memory

and time savings. At training, it saves more than 99.99 and 99.80

percentage points of execution time and memory footprint than the

SVM model. For testing, the reduction is 99.91 and 99.17 percentage

points of processing time and memory against the SVM model.

The testing memory reduction remains promising across all tested

models. This is good as the proposed REDNN can provide effective

and efficient detection using minimal memory consumption.

Table 9: Performance evaluation comparison on Provision PT-737E dataset.

Model

Train time Test time Train mem Test mem Test set

(sec) (sec) (MB) (MB) acc (%)

SVM 10045.545 1382.825 251.102 152.977 92.52

GB 360.247 0.619 14.730 3.316 92.58

AdaBoost 344.685 7.213 2.777 2.293 92.47

FCNN 0.631 1.320 2.805 1.320 92.52

REDNN 0.216 1.263 0.023 1.269 92.52

In addition to REDNN significant savings capability, it is more

resilient against random noise attacks than each compared model

(see Table 10). We later examined the effects of poisoning 50% of the

training data with label modification (see Poisoned label column).

The poisoning affects the robustness of the FCNN, SVM, GB and

Adaboost model by lowering their accuracy to 9.55, 7.48, 10.01 and

11.05 percentage points, respectively. As demonstrated, REDNN

indicates better resistance against labelled poisoned attacks. The

results suggest that a stable and less complex model can defeat

label poisoning attacks. It further demonstrates the effectiveness

and lightweight nature of the REDNN model. As a result, it stands

appropriate for the task of IoT security monitoring.

Table 10: Performance evaluation comparison with Provision PT-737E dataset.

Model

Clean set Noise set Poisoned label

acc (%) acc (%) acc (%)

SVM 92.52 70.89 7.48

GB 92.58 61.91 10.01

Adaboost 92.47 53.31 11.05

FCNN 92.52 91.57 9.55

REDNN 92.52 91.87 92.52

Table 11 presents the model performance evaluated by test set

accuracy, precision, recall and harmonic score (F1) while investigat-

ing the effects of FP16 integration on model resilience. Since the IoT

datasets we considered are often in-balanced, test accuracy alone

is not enough as a performance metric. Instead, precision consid-

ers the proportion of samples that are relevant within a predicted

class and the F1 score that corresponds to the harmonic mean of

precision and recall are more appropriate. The employed metrics

utilized the True Positive (TP), False Positive (FP), True Negative

(TN), False Negative (FN). The accuracy, precision, recall and F1

score are defined in Equation 7, 8, 9 and 10.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 + 𝐹𝑃 +𝑇𝑁 + 𝐹𝑁 (7)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (8)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (9)

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (10)

The integrated FP16 low precision affects the robustness of the

FCNN model, especially in defeating random noise attacks. As

demonstrated, REDNN indicates better resilience in thwarting each

adversarial attack. The results suggest that FP16 integration had a

minor influence on the robustness of the REDNNmodel. Because of

this, REDDN is a more effective and robust IoT security monitoring

technique than its baseline counterparts.

Table 11: Model resilience evaluation with kitsune dataset.

Attacks Model Accuracy (%) Precision Recall F1-Score

FGSM

FCNN 83.60 0.8408 0.9744 0.9027

REDNN 84.09 0.8409 1.0000 0.9136

PGD

FCNN 82.34 0.8408 0.9744 0.9027

REDNN 84.09 0.8409 1.0000 0.9136

Noise

FCNN 76.67 0.8412 0.8906 0.8652

REDNN 83.73 0.8411 0.9944 0.9113



6 CONCLUSION
This work served to evaluate the feasibility of using AI techniques

in IoT security monitoring in a resource-efficient manner. In this

context, we introduced a procedure to obtain a robust, efficient and

effective method (REDNN) by exploiting the training algorithm

of the model. In building the REDNN, we utilized FCNN and pro-

posed a model that defeats adversarial attacks and maintains better

performance for crafted features of the IoT networks traffic. We

demonstrated its performance through empirical evaluation using

eleven datasets. The technique can accurately detect adversarial

attacks from each IoT device’s dataset. It demonstrates more effi-

cient performance than its counterpart in terms of robustness and

resource consumption. The training and testing resource-saving

results for each device model and accurate detection of adversarial

samples depend on the topology settings and effective parameters

optimization. The results suggest that utilizing perturbed traffic

features at training is not a requirement for resisting adversarial

attacks. It further shows the potentiality of the DNN algorithm

in providing a robust and efficient solution for IoT network intru-

sion detection tasks. This is useful in finding an optimal model for

different datasets in IoT security monitoring or any other classi-

fication problem using DNN in general. Especially in attracting

future research for model consideration near the task of real-time

IoT security monitoring. An essential approach to this would be

to enhance this study’s results to investigate more challenging

ML techniques and CNN variants of the DNN methods. In particu-

lar, the exploration and consideration of the impact of adversarial

perturbations in the unsupervised scenario. In addition, we plan

further research to exploit REDNN learning capability with non-IoT

datasets to benefit from the training and testing resource-saving

advantage of the optimized algorithm. This can be useful for testing

the generalization ability of REDNN for on-device learning using

real IoT resources-constraints devices.
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