
SENANAYAKE, J., KALUTARAGE, H., AL-KADRI, M.O., PETROVSKI, A. and PIRAS, L. 2022. Developing secured android 
applications by mitigating code vulnerabilities with machine learning. In ASIA CCS '22: proceedings of the 17th ACM 
(Association for Computing Machinery) Asia conference on computer and communications security 2022 (ASIA CCS 

2022), 30 May - 3 June 2022, Nagasaki, Japan. New York: ACM [online], pages 1255-1257. Available from: 
https://doi.org/10.1145/3488932.3527290  

 
 
 
 

© 2022 Copyright held by the owner/author(s). Permission to make digital or hard copies of part or all of this 
work for personal or classroom use is granted without fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this notice and the full citation on the first page. 
Copyrights for third-party components of this work must be honored. For all other uses, contact the 
owner/author(s). 

This document was downloaded from 
https://openair.rgu.ac.uk 

Developing secured android applications by 
mitigating code vulnerabilities with machine 

learning. 

SENANAYAKE, J., KALUTARAGE, H., AL-KADRI, M.O., PETROVSKI, A. and 
PIRAS, L. 

2022 

https://doi.org/10.1145/3488932.3527290


POSTER: Developing Secured Android Applications by Mitigating
Code Vulnerabilities with Machine Learning

Janaka Senanayake∗
j.senanayake@rgu.ac.uk
Robert Gordon University
Aberdeen, Scotland, UK

Harsha Kalutarage
h.kalutarage@rgu.ac.uk
Robert Gordon University
Aberdeen, Scotland, UK

Mhd Omar Al-Kadri
omar.alkadri@bcu.ac.uk

Birmingham City University
Birmingham, England, UK

Andrei Petrovski
a.petrovski@rgu.ac.uk

Robert Gordon University
Aberdeen, Scotland, UK

Luca Piras
l.piras@rgu.ac.uk

Robert Gordon University
Aberdeen, Scotland, UK

ABSTRACT
Mobile application developers sometimes might not be serious
about source code security and publish apps to the marketplaces.
Therefore, it is essential to have a fully automated security solu-
tions generator to integrate security-by-design into the develop-
ment practices, especially for the Android platform. This research
proposes a Machine Learning (ML) based highly accurate method to
detect Android source code vulnerabilities. A new labelled dataset
containing Android source code vulnerability samples was gener-
ated initially. The dataset was used to train binary and multi-class
classification based ML models, to identify code issues by following
a static analysis approach. The proposed model can detect code vul-
nerabilities with a 0.90 F1-Score and vulnerability categories (CWE)
with a 0.96 F1-Score. By integrating this with the Android devel-
opment environment, app developers can analyse source code and
identify security vulnerabilities in real-time. The proposed frame-
work can be extended to suggest suitable patches to overcome the
source code issues by providing real-time fixes in future.

CCS CONCEPTS
• Security and privacy → Software and application security;
• Human-centered computing→Mobile computing; • Com-
puting methodologies → Machine learning.

KEYWORDS
android, code vulnerability detection, static analysis, vulnerability 
dataset, machine learning, secure mobile apps

ACM Reference Format:
Janaka Senanayake, Harsha Kalutarage, Mhd Omar Al-Kadri, Andrei Petro-
vski, and Luca Piras. 2022. POSTER: Developing Secured Android Appli-
cations by Mitigating Code Vulnerabilities with Machine Learning. In Pro-
ceedings of the 2022 ACM Asia Conference on Computer and Communications 
Security (ASIA CCS ’22), May 30-June 3, 2022, Nagasaki, Japan. ACM, New 
York, NY, USA.

Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 
on the first page. Copyrights for third-party components of this work must be honored. 
For all other uses, contact the owner/author(s).
ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan
© 2022 Copyright held by the owner/author(s).

1 INTRODUCTION
With the increased use of smartphones, device manufacturers and
Operating System (OS) vendors try to increase their market shares.
As of February 2022, Google Android leads with a 70.97% mar-
ket share, while Apple iOS has a 28.27% market share [12]. Some-
times, mobile application developers try to develop applications
and release them to the market in a rush, without having much
concern about the security-by-design concepts. Therefore, some ap-
plications contain vulnerabilities that may lead to severe problems.
However, the application developers and mobile OS vendors are re-
sponsible for securing users from vulnerabilities. Though Android
has the highest market share, the applications are not thoroughly
verified for security aspects, like iOS [3]. The security of these
applications is not guaranteed since they might not comply with ex-
tensive security protocols. According to the security development
lifecycle, [6], it is better to follow the security first development
practices simultaneously as the code is being written [11], without
waiting until the application is completely developed. Therefore, a
proper vulnerability detection mechanism is required, which can
be used to enhance their security when developing Android apps.

Researchers used conventional and ML-based m ethods to de-
tect and mitigate vulnerabilities with the three analysis methods:
static, dynamic and hybrid [8]. Due to the increasing popularity
of ML, many studies have used ML methods compared to conven-
tional methods [4]. Nevertheless, many of these studies conducted
their experiments to identify vulnerabilities in software written in
Java, C++, Python. Few works have been conducted specifically for
Android applications [8], but they were not comprehensive.

2 BACKGROUND AND RELATEDWORK
There are two ways of analysing Android applications. The first
way is to analyse the code by reverse-engineering the developed
Android Application Packages (APKs). It is the most popular and
the easiest way, but a pre-build application is required to follow
this approach [1]. The second way is to analyse the source code
simultaneously as the code is being written, which is more valuable
to the developers. Researchers have developed several automated
tools to identify Android app vulnerabilities [4, 9] with various
scanning methods. However, these tools require deployment-ready
APKs to perform the analysis, which is the main limitation of those
methods.

Poster Session ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

https://orcid.org/0000-0003-2278-8671
https://orcid.org/0000-0001-6430-9558
https://orcid.org/0000-0002-1146-1860
https://orcid.org/0000-0002-0987-2791
https://orcid.org/0000-0002-7530-4119


2.1 Motivation of the Research
As per our findings, there is no proper method to detect vulnerabil-
ities with high accuracy at the Android application development
time. Many of the studies only consider detection methods rather
than mitigation methods. Furthermore, a properly labelled dataset
that can be used to identify Android-specific vulnerabilities is also
required to train an ML model to predict the vulnerabilities in each
source code. This work proposes a method to detect Android source
code vulnerabilities using ML with static analysis techniques. The
proposed model can detect vulnerabilities in Android source code
with an F1-Score of 0.90 in the binary classification and 0.96 in the
multi-class classification when trained with the XGBoost algorithm.
This work also proposes a comprehensive source code vulnerabil-
ity dataset for Android, which the research community can use
for further experiments. The current dataset contains vulnerable
and non-vulnerable source code samples from over 1000 applica-
tions, along with attributes such as the standard identifiers, levels
of severity, and descriptions. Furthermore, a thorough analysis of
existing application reverse engineering and source code scanning
methods is also introduced, used as the base method for this dataset
generation stage.

3 METHODOLOGY
This research proposes a method for Android source code vulner-
ability mitigation using ML. There were two main stages in this
approach: 1) Training dataset generation, 2) Pre-processing and ML
model training to identify the accuracy of dataset generation and
prediction model accuracy. Figure 1 illustrates the overall approach.

Figure 1: Overall approach

3.1 Training Dataset Generation
By identifying the research gap through related studies and existing
methods, it is identified that the lack of benchmark dataset to train
anMLmodel for Android code vulnerability detection. Therefore, as
the proof of concept, a novel dataset was created at the initial stage.
The dataset generation process has two main steps: a) Scrapping
APKs and source code and b) Scanning APKs and generating the
vulnerability dataset.

Scrapping APKs and Source Code (Data Collection). The initial
step of the dataset generation process was to scrape APKs and their
source code from application repositories, including Google Play.
With the use of python script, APKs were downloaded along with
their source code from GitHub repositories. This study considered
only the free and open-source Android applications since the source
code can also be compared with the reverse-engineered APKs in
subsequent studies to review the accuracy of the reverse engineer-
ing methods. Since the Fossdroid project [10] provides APKs and
their GitHub repositories, it was scrapped to create a list of trending
Android apps using the Python BeautifulSoup library. 1008 APKs
and their source codes were successfully scrapped and downloaded
by performing these operations. If necessary, it is possible to run
the same script to increase the sample size of the APKs and source
codes.

Scanning APKs for Vulnerabilities (Data Labelling). The second
step was to scan the downloaded APKs to identify their vulnerabil-
ities. To accomplish this, the APKs need to be re-engineered and
then scanned. MobSF [7], and Qark [5] were used in this research as
vulnerability scanning tools since they can provide high accuracy in
identifying Android vulnerabilities. When using the combination of
these tools, it is identified that the accuracy of the proposed model
can be increased by avoiding the dependence of just one method.
However, none of these tools can perform real-time source code
vulnerability detection, requiring pre-build applications.

A python-based script was developed to automate the scanning
process using the tools mentioned earlier. All the applications were
scanned through this script. Scanned source codes were stored as
text lines, and if there is any identified vulnerability associated
with the code line, they were mapped with the CWE identifiers.
A description, type of the vulnerability, severity level, CWE ID,
description of CWE ID, Open Web Application Security Project
(OWSAP) ID and a further reference link for the vulnerability were
also recorded for the vulnerable source code lines.

3.2 Pre-processing and ML Model Training
The second stage is to pre-process the generated dataset and train
ML algorithms to validate the possibility of using the dataset to
train an ML model. Features to train the model were generated
using 1-3 n-gram techniques.

Only the vulnerability status, CWE-ID and the source code sam-
ple attributes in the dataset were considered for further analysis in
this work. The source code samples should be processed appropri-
ately to maximise the detection accuracy of the model since it is the
independent variable of the model. The string values mentioned
within the source code were replaced with “user_str”, except the
IP address related details and encryption-related details stated as
string values. These particular string values were substituted with
matching templates (i.e. “0.0.0.0”, “AES”, “SHA1”, “MD5”) since they
can cause vulnerabilities such as CWE-200 (exposure of sensitive
information to an unauthorised actor), CWE-201 (insertion of sen-
sitive information into sent data), and CWE-327 (use of a broken or
risky cryptographic algorithm) [2]. Additionally, all the comments
in the source code were removed.

Poster Session ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan



Model Training and Evaluating. Once the pre-processing was
completed, both binary and multi-class classification methods were
used. Conversely, as the primary research goal, it is required to
identify whether a given source code is vulnerable or not. If vul-
nerable, the CWE-IDs associated with it are required to provide
suggestions for vulnerability mitigation.

Several ML algorithms, including Naive Bayes, Logistic Regres-
sion, Gradient Boosting, Random Forest and XGBoost were consid-
ered and selected XGBoost as it provides a high accuracy compared
to the others in this approach. Once the model is applied to the
coding environment, it is possible to detect whether a given code
line is vulnerable or not. If the code line is vulnerable, suggestions
to mitigate the vulnerability by referring to the CWE are also pro-
vided.

4 PRELIMINARY RESULTS
After training and testing the model, the binary and multi-class
classification results are discussed in this section.

4.1 Binary Classification
By training 2,952,785 source code samples using XGBoost, the bi-
nary classification model provides an F1-Score of 0.90 as illustrated
in Figure 2.

Figure 2: Binary classification results with XGBoost

4.2 Multi-Classs Classification
By training XGBoost model using a multi-class classification ap-
proach with 46,333 vulnerable code samples, 0.96 F1-Score was
achieved as illustrated in Figure 3.

Figure 3: Multi-class classification results with XGBoost

5 CONCLUSION AND FUTUREWORK
Based on the initial experiments for building a highly accurate An-
droid vulnerability detection method, it is possible to see promising
results for binary and multi-class classification approaches with
the XGBoost algorithm. Therefore, the proposed model can be inte-
grated with an Android development environment after training
with more data. Furthermore, explainable artificial intelligence is
planned to be integrated to identify the reasons for vulnerabilities.

ACKNOWLEDGMENTS
We thank Robert Gordon University — UK, the University of Ke-
laniya and the AHEAD grant — Sri Lanka for their support.

REFERENCES
[1] Ashwag Albakri, Huda Fatima, Maram Mohammed, Aisha Ahmed, Aisha Ali,

Asala Ali, and Nahla Mohammed Elzein. 2022. Survey on Reverse-Engineering
Tools for Android Mobile Devices. Mathematical Problems in Engineering 2022
(2022), 4908134. https://doi.org/10.1155/2022/4908134

[2] The MITRE Corporation. 2022. CWE - Common Weakness Enumeration. https:
//cwe.mitre.org/ Accessed: 2022-01-02.

[3] Shivi Garg and Niyati Baliyan. 2021. Comparative analysis of Android and iOS
from security viewpoint. Computer Science Review 40 (2021), 100372. https:
//doi.org/10.1016/j.cosrev.2021.100372

[4] Seyed Mohammad Ghaffarian and Hamid Reza Shahriari. 2017. Software Vul-
nerability Analysis and Discovery Using Machine-Learning and Data-Mining
Techniques: A Survey. ACM Comput. Surv. 50, 4, Article 56 (aug 2017), 36 pages.
https://doi.org/10.1145/3092566

[5] LinkedIn. 2015. Quick Android Review Kit (QARK). https://github.com/linkedin/
qark/ Accessed: 2022-01-02.

[6] Nana Onumah, Sam Attwood, and Rupak Kharel. 2020. Towards Secure Ap-
plication Development: A Cyber Security Centred Holistic Approach. In 2020
12th International Symposium on Communication Systems, Networks and Digital
Signal Processing (CSNDSP). IEEE, Porto, Portugal, 1–6. https://doi.org/10.1109/
CSNDSP49049.2020.9249631

[7] OpenSecurity. 2015. Mobile Security Framework (MobSF). https://github.com/
MobSF/Mobile-Security-Framework-MobSF Accessed: 2022-01-02.

[8] Janaka Senanayake, Harsha Kalutarage, and Mhd Omar Al-Kadri. 2021. An-
droid Mobile Malware Detection Using Machine Learning: A Systematic Review.
Electronics 10, 13 (2021), 1606. https://doi.org/10.3390/electronics10131606

[9] Faysal Hossain Shezan, Syeda Farzia Afroze, and Anindya Iqbal. 2017. Vulnera-
bility detection in recent Android apps: An empirical study. In 2017 International
Conference on Networking, Systems and Security (NSysS). IEEE, Dhaka, Bangladesh,
55–63. https://doi.org/10.1109/NSysS.2017.7885802

[10] Daniele Simonin. 2022. Fossdroid. https://nvd.nist.gov/vuln Accessed: 2022-01-
02.

[11] Murugiah Souppaya, Karen Scarfone, and Donna Dodson. 2021. Secure Software
Development Framework (SSDF) Version 1.1: Recommendations for Mitigating the
Risk of Software Vulnerabilities. Technical Report. NIST.

[12] Statcounter. 2022. Mobile Operating System Market Share Worldwide. https:
//gs.statcounter.com/os-market-share/mobile/worldwide/ Accessed: 2022-03-02.

Poster Session ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

https://doi.org/10.1155/2022/4908134
https://cwe.mitre.org/
https://cwe.mitre.org/
https://doi.org/10.1016/j.cosrev.2021.100372
https://doi.org/10.1016/j.cosrev.2021.100372
https://doi.org/10.1145/3092566
https://github.com/linkedin/qark/
https://github.com/linkedin/qark/
https://doi.org/10.1109/CSNDSP49049.2020.9249631
https://doi.org/10.1109/CSNDSP49049.2020.9249631
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://github.com/MobSF/Mobile-Security-Framework-MobSF
https://doi.org/10.3390/electronics10131606
https://doi.org/10.1109/NSysS.2017.7885802
https://nvd.nist.gov/vuln
https://gs.statcounter.com/os-market-share/mobile/worldwide/
https://gs.statcounter.com/os-market-share/mobile/worldwide/

	coversheet_template
	3488932.3527290.pdf
	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Motivation of the Research

	3 Methodology
	3.1 Training Dataset Generation
	3.2 Pre-processing and ML Model Training

	4 Preliminary Results
	4.1 Binary Classification
	4.2 Multi-Classs Classification

	5 Conclusion and Future Work
	Acknowledgments
	References




