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15 Abstract: Rapid, accurate, and nondestructive internal quality detection for large and rough 

16 surface fruit, such as translucency in pineapples, is challenging. In this paper, a visible and near 

17 infrared (VIS/NIR) spectrum-based platform is proposed for optimized detection of pineapple 

18 translucency. The internal quality of three batches of samples harvested at the same maturity 

19 but on different dates (early, middle, and mid to late harvest stage) were acquired with different 

20 spectral settings: VIS to shortwave NIR (400-1100 nm), NIR (900-1700 nm) and VIS/NIR 

21 (400-1700 nm). The pineapple samples were manually cut open and divided into three 
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22 translucency degrees (no, slight, and heavy), according to marketing standards. The Savitzky 

23 Golay (SG) and standard normal variate (SNV) were applied to remove jitter and scattering 

24 noise, respectively. The successive projections algorithm, principal component analysis and 

25 Euclidean distance were combined for feature extraction and measurement, followed by data 

26 modeling using the partial least squares regression and probabilistic neural network (PNN). 

27 Data correction, data supplementation, and a combination of these were applied for model updating. 

28 Experimental results showed that the optimal solution for pineapple translucency detection was to 

29 use 400-1100 nm spectrum with SG, SNV, PNN and data supplementation for model 

30 updating. With only the first and second batch of samples used for modeling (validation set 

31 accuracy 91.2 %) and updating (validation set accuracy 100 %), the detection accuracy on the 

32 third batch samples was 100 %. The proposed methodologies therefore can be used as 

33 rapid, nondestructive, and cost-effective tools to detect pineapple translucency to guarantee 

34 the marketing of high-quality fruit, which can also guide the postharvest treatment for 

35 the pineapple industry to improve market competitiveness as well as to benefit nondestructive 

36 quality assessment of other large fruit. 

37 Keywords: Pineapple; translucency; visible and near infrared spectroscopy; nondestructive 

38 detection 

40 

41 

42 
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43 1. Introduction

44 Pineapple is one of the most economically important crops in tropical and subtropical areas, 

45 however, for the past several decades, it has been damaged by flesh translucency (Paull and 

46 Reyes, 1996). Pineapple flesh translucency (PFT) is an irreversible physiological disorder, 

47 which affects the flesh and results in low porosity, a water soaked appearance, flat and over- 

48 ripe off flavor, rotten taste, and much lower edible quality (Chen and Paull, 2000).  

49 Translucent fruit are very susceptible to damage after mechanical collision during transportation  

50 and may decay fast during storage (Py et al., 1987). PFT can be caused by either natural or 

51 human factors such as pre-harvest temperature, sunburn, excessive rainfall, and 

52 overfertilization (Cano Reinoso, 2021; Chen, 1999; Murai et al., 2021; Paull and Chen, 2013). 

53 Despite various efforts by researchers and farmers, PFT remains a frequent occurrence at 

54 present. 

55 PFT occurs in many countries around the world, such as Benin, Brazil, China, Costa Rica, 

56 India, Nigeria, Thailand, USA, etc, and the occurrence rate can reach 87.77% with poor 

57 management (Adetunji et al., 2012; Chen and Paull, 2000; Fassinou Hotegni et al., 2014; 

58 Korres et al., 2010; Mandal and Vanlalawmpuia, 2020; Montero-Calderón et al., 2008; 

59 Joomwong and Sornsrivichai, 2006). According to the investigation, the PFT occurrence rates 

60 in Zhanjiang, the largest producing area of China, were 15 %, 24 %, and 44 % annually from 

61 2019 to 2021. The increasing PFT rate requires the urgent attention of researchers. In China, 

62 pineapple is mainly planted by individual farmers without a unified planting standard that 

63 makes the control and treatment of PFT even harder in the short term. Thus, it is crucial to 
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64 explore a nondestructive, fast, and smart solution for PFT detection and grading in order to 

65 determine the most suitable postharvest treatments to maintain market quality, protect the brand, 

66 and improve market competitiveness. 

67 In the past, acoustic detection was widely applied in industry by knocking the pineapple 

68 manually, where a duller sound indicated a more serious degree of translucency. However, the 

69 accuracy of acoustic detection is only about 60%, and is also labor intensive and inefficient. 

70 Although acoustic impulse-response technique was found feasible for fruit internal quality 

71 assessment (Duprat et al., 1997), this technique has not been extensively used by the industry 

72 due to its sensitivity to the environmental noise. Haff et al. proposed an X-ray image method 

73 for the detection of pineapple translucency, where the detection accuracies for no translucency 

74 and extreme translucency were 95 % and 85 %, respectively (Haff et al., 2006). However, 

75 X-ray technology has a high cost, is a radiological hazard and is slow, which makes it hard for

76 the agro-product industry to adopt. Therefore, exploration of nondestructive, fast, and 

77 cost-effective methods for pineapple translucency detection is still vital and remains unsolved. 

78 Recently, visible and near infrared (VIS/NIR) spectroscopy (Pahlawan et al., 2021), 

79 electronic nose (Shi et al., 2018), and machine vision (Naik and Patel, 2017) techniques have 

80 become mainstream technologies in nondestructive quality assessment of agro-products. As the 

81 occurrence of translucency starts from the heart of the pineapple before spreading out to the 

82 whole flesh, electronic nose and machine vision fail to characterize the translucency position of 

83 pineapple directly due to the fact that they rely mainly on superficial features such as 

84 volatile, color, shape, and size. VIS/NIR spectrum, the previous experiment found, is able to 
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85 transmit the whole pineapple with enough light intensity and quickly acquire abundant 

86 information about the internal quality, which is more suitable for pineapple translucency 

87 detection than other technologies (Xu et al., 2021). Additionally, the successful and 

88 nondestructive detection of the internal quality of watermelon (Jie and Xuan, 2018) and 

89 pomelo (Xu et al., 2020) was demonstrated using the VIS/NIR transmission spectra. However, 

90 the nondestructive detection of the internal quality of large fruit is rarely reported. 

91 Translucency starts from the middle of the pineapple, which requires an acquired spectrum 

92 with a higher signal to noise ratio. Thus, further research on pineapple is still needed due to 

93 its unique characteristics. 

94 VIS/NIR spectroscopy has been successfully applied to a wide range of internal quality 

95 assessment tasks, such as total soluble solids content, acidity, firmness, pathology, and insect 

96 infestation (Adedeji et al., 2020; Li et al., 2016; Lu et al., 2020; Wang et al., 2015), especially 

97 for small fruits, such as apple, pear, peach, and kiwi. However, the large size and rough skin of 

98 pineapple can easily increase the scattered noise of the spectral signal, leading to difficulty 

99 in detecting the internal quality compared to other small fruit. Whether pineapple 

100 translucency can be detected using the VIS/NIR spectroscopy or not is still an open question. 

101 In addition, most of the existing works focus on nondestructive detection in a lab based setting, 

102 where the application cost and model adaptation among different batches of samples are often 

103 ignored (Cruz et al., 2021; Zhang et al., 2021). As detection cost and model robustness are two 

104 important factors for the potential deployment of the developed techniques in real industrial 

105 applications, they need be addressed accordingly. 
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106 To tackle these challenging issues, the objectives of the work were to (1) test the efficiency 

107 of nondestructive pineapple translucency detection using a developed VIS/NIR spectroscopy- 

108 based method; (2) balance the detection accuracy and the cost using two spectroscopies in 

109 different wavelengths; (3) explore the robustness of the detection model by using three batches 

110 of pineapple samples harvested at different times, one for training, one for updating, and the 

120 other for testing in practical applications.2. Materials and methods 

121 2.1. Pineapple samples 

122 The experimental pineapple samples, variety ‘Bali’, were harvested at Youhao farmland in 

123 Zhanjiang, Guangdong Province, China. Three batches of pineapple samples were harvested at 

124 different dates for model training, updating, and testing (Table 1). All samples were harvested 

125 at the same maturity and, with the same cultivation pattern, although they were planted at 

126 different dates. Pineapple sampling was conducted in a temporary laboratory near the farmland. 

127 For data sampling of the third batch, 10, 20, 20, 20, and 20 samples were used on different 

128 postharvest times. 

129 Table 1 Experimental pineapple sample information 

Batch 

number 

Sample 

size Harvest / sampling date Data use and data splitting of cross validation 

1 100 Both on 16th, April, 2021 

(1) Model training: 67 samples (38, 14, and 15 samples were randomly

selected from the three categories of no, slight, and heavy translucency, 
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2 100 Both on 1st, May, 2021 

respectively) for calibration, the rest 34 samples of batch 1 for validation; 

(2) Necessity test of model updating: Whole batch 1 for calibration, and 

whole batch 2 for validation; 

(3) Model updating: Whole batch 1 plus part (gradually increased) of batch

2 for calibration, the rest of batch 2 for validation; 

(4) Model testing: Whole batch 1 and part (gradually increased) of batch 2 

for calibration, whole batch 3 for validation. 

3 90 

3rd, May, 2021 / 3rd, 5th, 

7th, 9th, 11th May, 2021 

130 

131 2.2. VIS/NIR based spectrum detection 

132  The lab-based VIS/NIR spectrum detection platform for pineapple internal quality inspection 

133 is shown in Figure 1. In consideration of practical requirements of stability of pineapple samples 

134 on the assembly line, each pineapple fruit is put on a tray when being imaged. To avoid 

135 scattering noise being received by the optical fiber, all light goes through both the input and 

136 output optical holes, passing through the pineapple fruit, before being detected by the optical 

137 fiber. The whole sampling process was conducted in a dark environment composed of a black 

138 box and curtain. 

139 For optimal sampling effect, all the key parameters of the platform were adjustable. The 

140 light source is composed of 9 halogen lamps (the power is 100 W each, LM-100, MORITEX 

141 Company, Japan), the power of the whole lighting system varies from 100 W to 900 W. The 

142 sizes of the input and output optical holes can be determined empirically by changing and 

143 testing for multiple times. The distance among the light, pineapple, and optical fiber can also 

144 be adjusted by moving components on a sliding rail. In addition, there are only two kinds of 
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145 commonly used VIS/NIR spectroscopy sensors on the market, namely 400-1100 nm, and 900-  

146 1700 nm. Thus, another end of the optical fiber is connected to two different modularized spectro- 

147 scopy sensors: QE PRO (400-1100 nm) and NIR QUEST (900-1700 nm), both produced by the 

148 Ocean Optics Company, USA. The combination of these two can cover 400-1700 nm  

149 wavelengths. 

150 After testing repeatedly, the key parameters of the VIS/NIR spectrum detection platform 

151 for pineapple inspection were set as follows. The integral times of QE PRO and NIR QUEST 

152 were 600 ms and 2000 ms, respectively. The distance between the optical fiber and the tray was 

153 30 mm. The distance between the light and the input optical hole was 84 mm. The power of the 

154 light source was 500 W. The pineapple sample was put in the groove in the middle of the tray. 

155 The light source, input optical hole, pineapple, output optical hole, and optical fiber were all at 

156 the same horizontal level. Under the parameters of the lab-developed VIS/NIR platform, the 

157 light would only project onto the pineapple fruit body, before being received by spectroscopy 

158 sensors. 

Output optical hole 

Optical fiber 

Pineapple Input optical hole 

Light 

Curtain 

163 

Tray 

Objective table 

Black box shell Antiglare board Sliding rail 

Light switch 
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164 Fig. 1. Structure of lab-developed VIS/NIR spectrum detection platform 

165 

166 2.3. Pineapple translucency degree assessment 

167 After VIS/NIR spectrum sampling, pineapple translucency was assessed based on the 

168 spectral data. Pineapples with different degrees of flesh translucency were not obviously 

169 different from one another based on visual observation of the skin surfaces. Due to the lack of 

170 an industrial standard for pineapple translucency degree assessment, a new pineapple 

171 translucency degree assessment method was developed according to practical market 

172 considerations. First, the pineapple is cut lengthwise into halves, which are further cut into 12 

173 slices, and then tiled on a table. Second, the translucency degree is evaluated using three 

174 categories: no translucency, slight translucency (edibleness and translucent area is up to 10 % 

175 of the total sliced area), heavy translucency (edibleness and translucent area is more than 10 % 

176 of the total sliced area). Third, the pineapple slices are turned over and checked using Step 2 

177 again, and the most serious degree among the evaluation results was applied to represent 

178 the translucency degree of the whole sample. 

179 

181 2.4. Data analysis 

182 2.4.1. Analysis of the first batch of pineapples 

183 The data from the first batch are applied for training the model. The scores from the 

184 principal component analysis (PCA) (Wold et al., 1987) were applied for first checking the 

185 classification effect and spatial distribution of samples in different pineapple translucency 

186 categories. The Savitzky Golay (SG) filter (Press and Teukolsky, 1990) was applied to reduce 
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187 the jitter noise. The effect of SG is influenced by the order of polynomial and the size of the 

188 smoothing window. Standard normal variate (SNV) (Barnes et al., 1989) was applied to reduce 

189 the scattered noise due to the rough surface of the pineapple. 

190 After applying SG and SNV as preprocessing, the successive projection algorithm (SPA) 

191 (Araújo et al., 2001) was applied for feature extraction, in combination with the PCA and the 

192 Euclidean distance (ED) (Danielsson, 1980) as follows. First, all features (transmissivity of 

193 each wavelength after SG and SNV processing) were sorted by difference among samples 

194 from large to small using SPA. Second, features were gradually added in order (sorted by SPA) 

195 from two to the maximum and applied for PCA space classification, respectively; third, ED 

196 was applied to calculate the distances between center points of different sample classes in PCA 

197 classification space, with the added feature retained if the ED increased (Xu et al., 2015; Xu et 

198 al., 2014). 

199 Partial least squares regression (PLSR) (Geladi and Kowalski, 1986) and probabilistic 

200 neural network (PNN) (Specht, 1990) were applied for building the detection model. Holdout 

201 cross validation was applied for data splitting to avoid overfitting. For model training based on 

202 data of batch 1, to avoid inhomogeneity among translucency categories of traditional random 

203 data selection of holdout cross validation, 38, 14, and 15 pineapple samples were randomly 

204 selected from the no translucency, slight translucency, and heavy translucency categories, 

205 respectively, were labeled as 1, 2 and 3, and were selected randomly from the first batch as the 

206 calibration set, where the rest of the samples from the same batch were used as the validation 

207 set. For PLSR, the factor number (FN) is the variable number selected after feature dimension 

208 reduction as the input of modeling, which is the key parameter that affected the detection 
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209 accuracy, and was determined empirically in this study. In addition, due to the output of the 

210 PLSR being decimal, the output was rounded-off to match the labeled value of the translucency 

211 degree. For PNN, another key parameter, the Spread value (Ahmadlou and Adeli, 2010), is also 

212 empirically determined. The integer output of the PNN can match the labeled translucency 

213 degrees. 

214 2.4.2. Analysis of the second batch of pineapples 

215 The data from the second batch of pineapples were used for model updating. To 

216 evaluate the adaptability of the detection model to different harvest times, the second batch 

217 data (validation set) were applied to test the model which was built based on the first batch 

218 data (calibration set). To further improve the adaptability of the detection model, three methods 

219 were utilized for comparing the model updating effect, which included data correction, data 

220 supplementation, and data correction + supplementation (Candolfi and Massart, 2000; Xie  

221 and Ying, 2012). For data correction, a certain number of reference samples were selected from 

222 the second batch, while the rest of the samples were used as the validation set. First, the 

223 averages of the first batch sample SG and SNV processed spectral data and reference sample 

224 SG and SNV processed spectral data of the second batch samples were calculated, to 

225 compensate for the difference between averages for each validation samples. For data 

226 supplementation, a certain number of reference samples were selected from the second batch, 

227 and the rest were used for the validation set. The reference samples were added to the first 

228 batch samples to re-train the detection model. For data correction +  supplementation, 

229 data correction was conducted to compensate for the differences in the averages for all the 
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230 second batch sample data (reference samples and validation samples), and corrected reference 

231 samples were added to the first batch samples to re-train the detection model. To assess the 

232 influence of the number of reference samples on the effect of model updating, 5-95 from the 

233  second batch of pineapples were randomly selected as the model updating reference samples to 

234 add into the first batch of pineapples (calibration set), with a step size of 5, where the rest of 

235 the samples (validation set) were used as the validation samples to evaluate the model updating 

236  effect. 

237 2.4.3. Analysis of the third batch of pineapples 

238 Data from the third batch of pineapples were applied for model testing (validation set). 

239 The refined detection models with three updating methods and a different number of reference 

240 samples added into the first batch of pineapples (calibration set) were applied for translucency 

241 degree detection on the third batch of data. The results further verify the effectiveness of the 

242 updated model. 

244 

245 3. Results and Discussion

246 3.1. Pineapple translucency degree distribution 

247 The sample distribution in different translucency degrees for the three pineapple batches is 

248 shown in Table 2. From the middle of April to the middle of May, 2021, the pineapple 

249 translucency occurrence rate first increased and then declined, this same trend can also be 

250 found in 2019 and 2020. In China, pineapple translucency only happens in April and May, the 

251 season that a large number of pineapples are ready for harvest and marketing,   due to high 

252 rainfall followed by low rainfall in February (Pre-mature stage) in Zhanjiang, Guangdong, 
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253 China. Previous research also showed that PFT started to occur before the harvest and 

254 the occurrence rate increased with maturity development (Chen and Paull, 2000). 

255 However, PFT was only slightly related to the harvest season in Thailand, as it occored 

256 the whole year (Joomwong and Sornsrivichai, 2006). The reason maybe that Thailand in a 

257 tropical area with a high temperature, and intense illumination almost all year. 

258 Table 2 Translucency degree distribution of three batches of pineapples 

No translucency Slight translucency Heavy translucency 

Batch Sum number 

Number Proportion (%) Number Proportion (%) Number Proportion (%) 

1 56 56.0 21 21.0 23 23.0 100 

2 24 24.0 31 31.0 45 45.0 100 

3 38 42.2 24 26.7 28 31.1 90 

Sum 118 40.7 76 26.2 96 33.1 290 

260 

261 3.2. Evaluation of pineapple translucency detection model 

262 3.2.1. Classification using raw spectrum data 

263 Fig. 2(A-C) shows the raw spectrum data from the first batch of pineapples at 400-1100 

264    nm, 900-1700 nm and 400-1700 nm, respectively. As seen, more jitter noise can be observed in 

265 the NIR spectrum, especially over 1100 nm. The reason is mainly due to the degradation of 

266 degradation of optical energy with increasing wavelength, where the NIR spectrum can be 

267 more easily absorbed by water while transmitting the fruit than the VIS wavelengths (Liu et al., 

268 2020). The more translucent fruit has higher transmissivity in the VIS spectrum but lower 

269 in the NIR spectrum, because translucency happens with increased water content in the 
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270 intercellular spaces, thus, VIS transmits better than NIR spectrum. 

271 Pineapple translucency degrees can be classified in three categories based on the PC1 and PC2 

272 of the visible and NIR spectrum within 400-1100 nm (Fig. 2(D)). However, the boundary of 

273 each class overlaps with the others, and the clustering performance is poor. For NIR spectrum 

274 in 900-1700 nm, the three separate pineapple translucency degrees cannot be 

275 differentiated as shown in Fig. 2(E). The occurrence of pineapple translucency is accompanied 

276 by changes of flesh color, texture, and other components e.g. sugar accumulation, water 

277 content increase, and sugar fermentation (Chen and Paull, 2000). Optically, the visible 

278 spectrum and the NIR spectrum are sensitive to color and component (with 

279 hydrogen-containing groups) changes (Arendse et al., 2018), respectively, meanwhile both VIS 

280 and NIR spectrums are sensitive to flesh texture (Alhamdan et al., 2019). The reason that 

281 visible and NIR spectrum within 400-1100 nm have better translucency classification than 

282 the NIR spectrum within 900-1700 nm is that translucency involves both flesh color and 

283 component changes, to which the visible and NIR spectrum is more sensitive and has a relative 

284 high SNR. On the contrary, the NIR spectrum is quite sensitive to component change and a 

285 relatively low SNR (Liang et al., 2009). In addition, the classification result using the 

286  combined spectrum of 400-1700 nm in Fig. 2(F) is quite similar to those using visible and 

287  NIR spectrum only, thus it can be inferred that the primary and most useful information for 

288  translucency degree classification is from visible and NIR spectrum within 400-900 nm. In 

289 addition, the rough surface brings scattered noise for spectrum detection. Thus, the 

290 nondestructive detection of pineapple translucency is too difficult to use methods for fruit 
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291  internal quality inspection, and requires an improvement in method, from platform to signal 

292  preprocessing to modeling. 

293 

293 

294 Fig. 2. Raw spectrum data (top) and the PCA space translucency classification results (bottom) 

295 of the first batch pineapple based on wavelengths of 400-1100 nm (A, D), 900-1700 nm (B, E), 

296 and 400-1700 nm (C, F). 

297 

298 3.2.2. Classification based on denoised spectrum 

299 Considering that the jitter noise in the spectrum may affect the classification, the 

300 classification results were evaluated under different SG models for smoothing, where 3 orders 

301 23 points SG, 3 orders 41 points SG, and 3 orders 41 points SG were applied for denoising the 

302 spectrums in 400-1100 nm, 900-1700 nm, and 400-1700 nm, respectively for their best 

303 performance in the experiments. In addition, due to the highly rough surface of the pineapples, 

304 scattering noise is unavoidable in sampling the spectral signal. Thus, SNV was applied to 

305 suppress the scattering noise after SG based de-noising, see in Fig. 3(A-C). After applying SG 

306 and SNV for denoising, the PC1 and PC2 obtained from different spectrums is visualized, 

307 where the results from 400-1100 nm, 900-1700 nm, and 400-1700 nm are shown in Fig. 3(D-F), 

308 respectively. The clustering performance is largely improved, and the overlapping is 
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309 largely reduced when compared to the results from the raw spectral data shown in Fig. 2(D- 

310 F). Three translucency degrees are easily distinguishable using 400-1100 nm and 400-1700 

311  nm spectrums, but not using the 900-1700 nm spectrum. However, there is still some 

312 overlapping between different translucency classes. 

313 

314 Fig. 3. Raw data (top) and PCA space translucency classification (bottom) of the first batch 

315 pineapples after applying SG and SNV for denoising the spectrum of 400-1100 nm (A, D), 

316 900-1700 nm (B, E), and 400-1700 nm (C, F), respectively.

317 

318 3.2.3. Feature selection and detection model training 

319 Fig. 4 shows the Euclidean distance changes between different translucency classes in the 

320 PCA space (composed of PC1 and PC2) while gradually increasing the features in order 

321 (ordered by SPA). The effectiveness of this method has been shown in previous research 

322  (Xu et al., 2015; Xu et al., 2014). Even the external appearance rarely changed with the 

323 occurrence of translucency, however, the color, cell structure, and material composition of 

324 internal flesh are apparently different, where all the wavelengths from 400 to 1700 nm can 

325 contribute positively to translucency degree detection. In this study, there are 940 and 956 data 

326 points in total for 400-1100 nm and 900-1700 nm spectrums, respectively. The test results have 
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327 shown that these data can be calculated to output the translucency degree within 0.001 sec for 

328 detection using SG, SNV and PLSR detection, or 0.06 sec for PNN with SG and SNV on a  

329 Lenovo Laptop T14 (Intel i7 CPU, 16.0 GB RAM). Thus, the feature number can satisfy the 

330 requirement of real-time detection in industrial applications. 

331 

332 Fig. 4. SPA + PCA + ED contribution analysis of spectral feature from (A) 400 to 1100 nm, (B) 

333 900 to 1700 nm, and (C) 400 to 1700 nm. 

334 

335 Table 3 shows the results of pineapple translucency degree detection using PLSR and PNN, 

336 based on different spectra after de-noising with SG and SNV. Pineapple translucency degree can 

337 be accurately detected using the 400-1100 nm spectra and 400-1700 nm spectra, but not the 

338 900-1700 nm spectrum. In addition, 400-1100 nm and 400-1700 nm spectra produced the same

339 detection accuracy in the validation set. In general, PNN has better results than PLSR in 

340 translucency detection, especially for the validation set. This is because the kernel algorithm of 

341 PNN has a stronger capability than the linear regression used in PLSR, especially in modeling 

342 the nonlinear characteristics of translucency degree, as seen with the non-linearly separable 

343 boundaries between different translucency classes in Fig. 2(D-F). Considering further the 

344 relatively low cost of the QE pro for 400-1100 nm compared to the NIR QUEST for 900-1100 

345 nm, the optimal pineapple translucency detection method would use 400-1100 nm spectrum 

346 along with SG and SNV for de-noising and PNN for classification. 

347 However, considering the stability in practical use, the testing of the NIR spectrum is still 
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348 needed for comparison in future experiments. 

349 Table 3 PLSR and PNN based translucency degree detection results using different spectrums 

350 with holdout cross validation data splitting 

Wavelength 

(nm) 

Parameter 

Calibration set (67 of the first batch) 

(%) 

Validation set (34 of the first batch) 

(%) 

FN Spread No Slight Heavy Total No Slight Heavy Total 

400-1100 11 - 100.0 100.0 93.3 98.5 94.74 100.0 62.5 88.24 

PLSR 900-1700 11 - 89.5 73.3 66.7 80.6 73.7 57.14 25.0 58.8 

400-1700 14 - 100.0 100.0 100.0 100.0 84.21 100.0 93.3 88.24 

400-1100 - 1.2 100.0 100.0 93.3 98.5 100.0 85.7 75.0 91.2 

PNN 900-1700 - 0.1 100.0 100.0 100.0 100.0 73.7 28.6 62.5 62.0 

400-1700 - 0.2 100.0 100.0 100.0 100.0 100.0 85.7 75.0 91.2 

351 

352    3.3. Model updating using the second batch of pineapple samples 

353 3.3.1. Necessity test of model updating 

354 Fig. 5(A-B) show the raw spectral data of the second batch of pineapples in 400-1100 nm, 

355 and 400-1700 nm, respectively, and their de-noised versions using SG and SNV are shown in 

356 Fig. 5(C-D). Compared to the spectral data of the first batch, the second batch has a similar 

357 spectral profile, but higher transmissivity in VIS/NIR spectrum and lower transmissivity in 

358 NIR spectrum. This is due to the second batch having more serious translucency, as shown in 

359 Table 2, which has led to a lower density (or less blockage for VIS/NIR spectrum) and higher 

360 water content (more absorption for NIR spectrum) in the flesh. 
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361 

362 

363 Fig. 5. Raw spectrum data (A, B) and denoised data using SG and SNV (C, D) of the second 

364 batch of pineapple samples using 400-1100 nm spectrum (A, C), and 400-1700 nm spectrum 

365 (B, D), respectively. 

366 

367 To further validate the efficacy of the trained optimal detection method derived from the first 

368 batch of pineapples, the second batch of pineapples were tested using this model. In addition, 

369 the samples were also increased for training the model from 67 to 100, all from the first batch 

370 of samples, the model was then tested using the 100 samples from the second batch, and the 

371 results are summarized in Table 4. As seen, SG + SNV + PNN still produces the best results 

372 for the validation set, especially with the VIS/NIR spectrum in the 400-1100 nm spectrum, 

373 where the 400-1700 nm spectrum seems unfeasible as it can be easily affected by external 

374 disturbance e.g. sample difference. Thus, 400-1700 nm spectra slightly improved the 

375 detection accuracy on the calibration set compared to 400-1100 nm spectra (Table 3), 

376 which has the risk of lowering the detection accuracy with the addition of interference 
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377 factors like sample difference (Table 4). Thus, 400-1100 nm spectra already contained 

378 major information for pineapple translucency detection, 1100-1700 nm supplied minimal 

379 extra useful information compared to 400-1100 nm spectra. In addition, the previous research 

380 also proved multi-information fusion had the potential to both increase and reduce detection 

381 accuracy (Xu et al., 2019). Thus, 400-1100 nm is a low cost and efficient way for the 

382 nondestructive detection of pineapple translucency. Additionally, increasing training samples 

383 can improve the detection accuracy on the validation set, but not on the calibration set, as fewer 

384 training samples will likely result in over fitting. As the testing was carried out using a 

385 different batch of samples, the detection accuracy decreased from 91.2 % to 70 % when 

386 compared to testing on the same batch of samples. Thus, model updating is necessary for model 

387 adaptation improvement. 

388    Table 4 Results from first pineapple batch detection model used to test the second pineapple 

389 batch with holdout cross-validation 

Wavelength Modeling Calibration set (the whole first batch) Validation set (the whole second batch) 
sample (%) (%) 

(nm) 

number No Slight Heavy Total No Slight Heavy Total 

400-1100 

67 100.0 100.0 93.3 98.5 91.7 19.4 22.2 38.0 

PLSR 100 100.0 77.8 91.3 92.0 91.7 25.8 37.8 47.0 

400-1700 67 100.0 100.0 100.0 100.0 95.8 6.45 37.8 43.0 
100 96.0 85.2 87.0 91.0 25.0 71.0 62.2 56.0 

67 100.0 100.0 93.3 98.5 50.0 45.2 91.1 67.0 

400-1100 

100 100.0 77.8 100.0 94.0 62.5 45.2 91.2 70.0 

PNN 

67 100.0 100.0 100.0 100.0 100.0 3.3 15.6 32.0 

400-1700 

100 100.0 100.0 100.0 100.0 100.0 6.45 17.8 34.0 
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392   3.3.2. Translucency detection model updating 

394 The PCA score plot clearly shows the almost original distribution of samples in a same 

395 space. To visualize the difference among these three batches of pineapples, the PC1 and 

396 PC2 of each SG and SNV processed sample data is shown in Fig. 6 for comparison. Obviously, 

397 the first batch cannot cover the other two, which explains the low validation accuracy when 

398 testing the second batch of pineapples using the detection model trained on the first batch of 

399 pineapples. Model updating research is an essential step to move the application of 

400 spectroscopy forward. Thus, model updating is applied to tackle this problem. 

401 

402 Fig. 6. PCA score plot of the three batches of pineapples 

403 

404 Data correction, data supplementation, and the combination of these two schemes were 

405 applied to determine the optimal model updating strategy to tackle the low detection accuracy 

406 issue caused by the differences between the samples. Specifically, some of the second batch 

407 samples were incrementally taken as references to update the trained model derived from the first 

408 batch of pineapple samples. The model updating results are shown in Fig. 7. The detection 

409 accuracy on the calibration set of all three model-updating methods increased while adding 

410 additional reference samples, which reached over 96 % after five samples (Fig. 7(A)). For the 
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411 validation set, not surprisingly, the detection accuracy also kept improving (Fig. 7(B)). However, 

412 the detection accuracy stability using the data supplementation scheme seems better than the 

413 other two methods. With the data supplemented by 40 reference samples from the second batch 

414 of pineapples, the detection accuracy on the validation set can be improved from 70 % to 

415 80 %, which is satisfactory for the accurate detection of pineapple translucency degree. For 

416 the three model updating methods using 85 reference samples from the second batch of  

417 pineapples, the detection accuracy of the validation sets can all achieve 100 %. Both data 

418 supplementation (Schimleck et al., 2006) and data correlation (Yao et al., 2010) were proven 

419 useful for the different targets’ detection model updating. Xie et al. found the model updating 

420 effect of data correlation was better than data supplementation in tomato quality detection (Xie 

421 and Ying, 2012). Thus, there is no one model updating method which fits all detection targets, 

422 due to the specifics of different agricultural products. In addition, a data correlation + 

423 supplementation method was proposed in this study, and that model’s updating effect was worse 

424 than the data supplementation model’s effect. However, data correlation + supplementation 

425 may be the optimal model updating effect for quality detection of other targets, and future 

426 research is required to confirm this. A third batch of  pineapples is needed to further validate the 

427 efficacy of the three model updating methods. 

429 
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430 Fig. 7. Results of model updating on the calibration set (A) and the validation set (B) by 

431 progressively increasing samples from the second batch. 

432 

433 3.4. Testing on the updated model using the third batch of pineapples 

434 Before testing the accuracy of the updated model using the third batch of pineapples, the 

435 average spectra of the first, second, and third batches of pineapples were compared in Fig. 8. 

436 The second batch of pineapples shows the highest transmissivity, followed by the third and the 

437 first batches. It can also be further confirmed that, pineapples with more serious translucency 

438 tend to have higher spectral transmissivity. 

440 

441 Fig. 8. Average of raw spectrums of the first, second and third batch of pineapples 

442 

443 Ninety pineapple samples in the third batch were harvested to further validate the 

444 efficacy of the updated models, using the three model updating schemes for detection of the 

445 degree of pineapple translucency. As shown in Fig. 9(A), the data correction based model 

446 updating method degrades the validation accuracy with an increasing number of references 

447 samples. The reason for this is that each pineapple batch should be more or less different from 

448 the others, thus the reference samples of the second batch cannot represent the validation 

449 samples from the third batch. In other words, a data correction based model updating method is 
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450 only suitable for detection within the same batch of training and testing samples. For the 

451 data supplementation based model updating method, where the pre-trained model was retrained 

452 using the second batch of samples, it can still achieve a very high accuracy for the validation 

453 set of the third batch of pineapples for pineapple translucency detection, see in Fig. 9(B). When 

454 40 or more reference samples were added for model updating, the detection accuracies of the 

455 total and each individual translucency degree can be at least 80 %, and nearly 100 % when 95 

456 reference samples were added for model updating. Thus the supplementing of the second batch 

457 of samples with the first batch can largely improve the data set multiformity to cover the 

458 characteristics of the third batch samples. In addition, combining data correction and data 

459 supplementation for model updating also shows a poor ability in improving the detection 

460  accuracy for practical application, see in Fig. 9(C), and the updating effect on model accuracy on 

461 the validation set of the third batch of pineapples seemed unstable with an increasing number of 

462 reference samples from the second batch of pineapples for. As a result, data supplementation is 

463 found to be the most effective and robust model updating scheme for the detection of 

464 pineapple translucency. As shown in Fig. 6, and 8, it can be seen that the first two batches 

465 of pineapples can cover most of the characteristics of the third batch. Therefore, the translucency 

466 of the third batch can be successfully detected by using the model based on the first two 

467 batches of pineapple. Thus, this study provided an optimal VIS/NIR detection platform 

468 parameter, and demonstrated the efficiency of SG and SNV for signal preprocessing, and PNN 

469 for modeling, for the nondestructive detection of pineapple translucency. Compared to other 

470 potential methods, such as acoustic impulse-response technique, the noise interference problem 

471 of VIS/NIR spectroscopy, which is more stable and promising for industrial 
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476 Fig. 9. Detection results on the third batch of pineapples with different model updating 

477 approaches including data correction (A), data supplementation (B), and the combined scheme 

478 (C). 

479 

480 

481 4. Conclusion

482 VIS/NIR spectroscopy coupled with data analysis and machine learning was used for 

483 nondestructive detection of PFT. The developed low-cost detection platform can meet 

484 industrial requirements and work on assembly lines for real-time operations, and the optimal 

485 parameters can be empirically determined for the best efficacy. 

486 In this system, SG and SNV were found to be useful in removing the jitter noise caused by low 

487 SNR of the large fruit size and the scattering noise caused by the irregular and rough surface of 

488 the pineapple. Accordingly, SG and SNV can help to improve the data clustering performance 

489 for the classification of pineapple translucency in the PCA space for a reduced dimension of 

490 the data. The spectral data from VIS/NIR wavelengths of 400-1100 nm is found particularly 

491 useful. Also, PNN produced better results than PLSR in solving nonlinear classification 
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492 problems of pineapple translucency degrees. To tackle the sample difference of training and 

493 validation data, data supplementation is found to produce particularly good results compared to 

494 data correction or the combination of these two schemes for model updating. Therefore, the 

495 optimal roadmap for pineapple translucency detection in the industry is a recommendation 

496 to adopt the 400-1100 nm spectrum data, followed by SG and SNV based de-noising, PNN 

497 based data classification, and data supplementation for model updating. The proposed 

498 approach can be used as a rapid, nondestructive, and cost-effective framework to detect 

499 pineapple translucency. It can help to guarantee the quality of fruit sent to market, to alert 

500 pineapple processors around the world to the possible need for post harvest treatment, and 

501  to improve the market competitiveness. 
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