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Jincheng Zhou1,2, Tao Hai1,2,3*, Dayang N. A. Jawawi3, Dan Wang2,4, Ebuka Ibeke5 and Cresantus Biamba6* 

Abstract 

In our everyday lives, we communicate with each other using several means and channels of communication, as 
communication is crucial in the lives of humans. Listening and speaking are the primary forms of communication. For 
listening and speaking, the human voice is indispensable. Voice communication is the simplest type of communica-
tion. The Automatic Speaker Verification (ASV) system verifies users with their voices. These systems are susceptible 
to voice spoofing attacks - logical and physical access attacks. Recently, there has been a notable development in the 
detection of these attacks. Attackers use enhanced gadgets to record users’ voices, replay them for the ASV system, 
and be granted access for harmful purposes. In this work, we propose a secure voice spoofing countermeasure to 
detect voice replay attacks. We enhanced the ASV system security by building a spoofing countermeasure dependent 
on the decomposed signals that consist of prominent information. We used two main features— the Gammatone 
Cepstral Coefficients and Mel-Frequency Cepstral Coefficients— for the audio representation. For the classification 
of the features, we used Bi-directional Long-Short Term Memory Network in the cloud, a deep learning classifier. We 
investigated numerous audio features and examined each feature’s capability to obtain the most vital details from the 
audio for it to be labelled genuine or a spoof speech. Furthermore, we use various machine learning algorithms to 
illustrate the superiority of our system compared to the traditional classifiers. The results of the experiments were clas-
sified according to the parameters of accuracy, precision rate, recall, F1-score, and Equal Error Rate (EER). The results 
were 97%, 100%, 90.19% and 94.84%, and 2.95%, respectively.

Keywords: Automatic Speaker Verification (ASV) spoofing voice biometrics deep learning neural network machine 
learning
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Introduction
The voice is considered a form of human biometrics 
and is a medium of communication. The characteristics 
of a person’s voice is unique, so the voice can used for 
authentication and biometric identification purposes [1]. 
Voice biometrics is a simple way of authenticating users 
that doesn’t require any unique sensor device or equip-
ment [2, 3]. A regular smartphone or microphone can be 
used for this. Voice biometrics are used in the process of 

verification or recognition of the speaker. Voice biom-
etrics is the technology which uses one-to-one process-
ing to compare the speeches of two individuals. If both 
speeches originate from the same individual, it is referred 
to as speaker verification. On the other hand, speaker 
identification is where an unknown individual is identi-
fied with his voice. It is a one-to-many process, although 
this could result in numerous repetitions of 1-1 compari-
sons. According to [4], there are two attributes of a per-
son referred to as biometrics. There is the more natural 
authentication technique such as the iris, face, finger-
print, etc., and the behavioral technique such as signa-
ture, voice, gait, etc.

Our primary goal is to create a security layer for the 
protection of customers from voice replay spoofing 
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attacks to the ASV systems. In this system, the speech 
signals are used to do a 1-1 comparison of the user’s 
voice and voice prints stored in the database. Naika [5] 
called this the Automatic Speaker Verification. The ASV 
system has two main types of attacks— the spoofing and 
zero effort attack. In the latter attack, a speaker who isn’t 
registered speaks an ’authentic’ speech to be granted 
access as if he was actually registered. This kind of attack 
is simple to detect because a 1-1 comparison will fail to 
match with the registered user. In the spoofing attack, the 
attacker attempts to gain access by playing a speech that 
was previously recorded, and is similar to the speech of 
registered speakers. In recent times, the susceptibility of 
ASV systems to voice spoofing attacks is increasing [6]. 
The voice spoofing attacks are further divided into logi-
cal and physical access attacks. These attacks reduce the 
efficiency of ASV systems [7]. Building of state-of-the-
art ASV systems is an emerging topic. Over the past few 
years, several authors have organized numerous evalu-
ation challenges [8]. This challenge primarily deals with 
the logical access attacks, where the samples are created 
with voice conversion or text-to-speech or algorithms. 
Challenges have also been organized to address both log-
ical and physical access attacks, and just physical access 
attacks [9–11]. For greater security of the ASV systems, 
the spoofing countermeasure should be able to detect the 
kinds of attacks in the training set, and the system must 
be capable and robust enough to identify unseen attacks 
with a reduced EER rate. The anti-spoofing system should 
be able to generalize. [8] addressed this issue by employ-
ing some deep audio features extraction processes. In 
[12], several embeddings were obtained from an inner 
layer of the deep neural network in order to indicate the 
whole audio or the frame of audio signals. The anti-spoof-
ing system tries to ascertain the genuineness of the input 
speech signal. After the process of extracting the features, 
a classifier is used to classify the speech into a genuine or 
fake. Researchers make use of deep learning or ML classi-
fiers, but deep learning classifiers have proven to be more 
effective; this is also evident in several studies using deep 
learning approaches [13–16]. The following are the con-
tributions of this research:

1. We propose a state-of-the-art strong voice spoofing 
countermeasure based on the decomposed signals 
through the process of empirical mode decomposi-
tion for the detection of voice replay attacks.

2. We examine the features of the decomposed acous-
tic and create a hybrid features-based architecture to 
detect fake speech.

3. We study the existing ML classifiers for the perfor-
mance of detecting spoofing.

4. We evaluate the deep learning classifiers for their 
effectiveness against voice replay attacks.

The remainder of this paper is organized as such: “Lit-
erature review” section critically presents related litera-
ture. The methodology of the proposed study is discussed 
in “Proposed method” section. “Results” section dis-
cusses the experimental results of the proposed system 
and compares it with traditional methods. “Conclusion” 
section concludes this paper.

Literature review
Hanilci et al. [17] presented a method for detecting voice 
replay spoofing using a high-frequency and glottal exci-
tation band. The information of glottal excitation was 
extracted using a method of Iterative Adaptive Inverse 
Filtering which illustrates the unique specifics of fake 
and genuine speech. They observed a decrease of 3.68% 
and 8.32% in the Equal Error Rate (EER) in the evalua-
tion and development set. In [18], the authors explored 
the improved Enhanced Teager Energy Operator (ETEO) 
and cepstral coefficient, and signal mass to detect replay 
attacks. The EER of the evaluation and development sets 
were 10.75% and 5.55%, respectively. The authors in [19] 
evaluated a spectrum analyzer referred to as ‘cochlear’ 
which comprises of a level-dependent compression and 
a sharp frequency tuning. They then created a method by 
using an adaptive notch and resonant filter for the coch-
lear model. This technique showed advancements in the 
EER by 60.8% and 51.9%. In [20], the authors proposed a 
framework to detect replayed audio for the security of the 
ASVs from fraudulent purposes. The framework could 
also detect the fake audio created by spoofing algorithms.

Aljasem et al. [21] presented a system to detect replay 
attacks based on the GMM and SVM classifiers, and the 
analysis of the linear prediction. The evaluation set gen-
erated an EER of 4.8%. In [22], the authors proposed a 
framework for the detection of replay audio and the secu-
rity of voice assistants like Alexa and Siri based on the 
difference in the locations of phonemes between a live 
human’s voice and the replay audio. The authors in [23] 
introduced a technique to detect voice spoofing based 
on the Gammatone Cepstral Coefficients features and 
LTP for the security of the Internet of Things (IoT) and 
cyber-physical systems. These features were merged and 
fed into the SVM for differentiating purposes. In [24], 
the authors proposed a voice replay detection framework 
by employing the spectral and spatial of signals. They 
emphasized on the non-speech segments and used spa-
tial features based on the generalized cross correlation to 
identify the difference. Yaguchi et al. [25] investigated the 
logSpec and cepstral coefficients to enhance the identifi-
cation of attacks. The first feature is based on a ratio of 
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the noise and harmonic sub-band. The two features were 
extracted with the linear prediction signals. The develop-
ment and evaluation datasets had a reduced EER of 7% 
and 51.7% respectively. In [26], the authors proposed a 
spoofing detection technique for replay attacks based 
on an energy separation algorithm [27, 28]. They also 
examined a Teager energy operator as a result of it being 
robust to the noise. They observed EER improvements 
of 66.34% and 21.88% in noisy and clean environments 
respectively.

The authors in [29] designed a technique to detect 
live audio signals based on constant-Q transform which 
uses distributed frequency bins geometrically. In [30], 
the authors created spectral based features, i.e., shifted-
CQCC and the Glottal Mel-Frequency Cepstral Coef-
ficient (GMFCC), and integrated them for the detection 
of replay signals. The shifted-CQCC generated an EER 
of 11.34%, while CQCC produced an EER value of 7.94%. 
Meng et  al. [31] proposed an anti-spoofing measure for 
smart home systems called ARRAYID which detects 
the passive liveness that uses the collated speech to dis-
tinguish between a live human and the replayed speech. 
Mittal and Dua [32], explored the deep learning models, 
CNN and LSTM, and the CQCC spectral feature. Two 
levels were used to detect spoofs. In the first level, LSTM 
and CNN were utilized. The next level used time distrib-
uted wrappers and LSTM. The authors in [33] presented 
a system which distinguishes between the genuine and 
a replayed audio by exploring the manipulations gener-
ated by the recording device using an SVM. In [34], the 
authors proposed a system to detect replay attacks which 
places prime importance on replaying and recording 
devices. They also introduced a countermeasure system 
using the evaluation of a regular audio spoofing tool.

Garg, Bhilare, and Kanhangad [35] introduced an 
anti-spoofing measure based on MFCC and CQCC 
feature. Sub-band analysis was performed on these fea-
tures. The baseline system had an improved EER value 
of 36.33%. In [36], the authors proposed an anti-spoof-
ing measure for replayed speech based on the human 
cochlear as compared to the filter bank models. They 
also designed two features for extracting features from 
modulation. The experimental results showed that the 
integration of these features outperformed the filter 
bank. The authors in [37] presented a linear predic-
tion signal for the detection of replayed speech. The 
residual-MFCC and excitation source obtained from 
the linear residual audio signals were integrated for the 
detection of the replay audio. The residual-MFCC had 
better outcomes compared to the baseline systems. In 
[38], the authors evaluated a detection system for spoof 
speech based on linear frequency residual cepstral 

coefficient. Two classifiers called the GMM and CNN 
were used to distinguish between the replayed and gen-
uine audio signals. A decline of 28.78% and 42.72% in 
the EER values of the development and evaluation sets 
respectively was reported.

Proposed method
The primary objective of this research is the detection 
of voice replay attacks against ASV systems. Our pro-
posed system comprises two basic stages: the extrac-
tion of features and classification stage. In the first 
stage, the audio signals are decomposed and two fea-
tures of 7, 7-dim, i.e., MFCCs and GTCCs are obtained. 
Next, we used the Bi-directional long short-term mem-
ory network as a deep learning classifier. Our proposed 
spoofing countermeasure determines the user’s authen-
ticity based on the voice provided. We used the ASVs-
poof2019 PA dataset for all tests. Figure  1 illustrates 
the proposed countermeasure. For the implementation 
of this work, we used a MATLABR2022a. The Mat-
lab2022a has several tools for audio processing. We also 
performed extraction of features and classification in a 
single tool.

Empirical mode decomposition
This process was built in 1998. It deals with the audio 
signals such that fast oscillations are covered on the slow 
oscillations which can further be decomposed into meek 
and intrinsic oscillations in a unique way making use of a 
dynamic scale without the vital earlier machine specifics 
[39]. This kind of decomposition is implemented with a 
restricted single information time scale for it to be suit-
able for non-linear and non-stationary processes which 
produces Intrinsic Mode Functions (IMFs) [40]. This has 
been applied in system detection challenges and health 
monitoring [41]. Although several applications have 
proven the legitimacy and robustness of the EMD, it has 
not been used as a countermeasure to optimize the sys-
tem and for the purposes of voice spoofing [42]. Before 
now, the EMD has been studied in two forms: varying the 
process of sifting and configurations that are empirically 
stated. It has been used in several applications includ-
ing fault detection, evaluation of biomedical data, and 
analysis of power and seismic signals. The EMD elements 
are called IMFs. By using EMD, the noise in signals can 
be eradicated and the signals reconstructed again. We 
acquire the significant elements for assessing the audio 
signals. In this paper, we initially empirically decomposed 
the signals and obtained the two prinicpal coefficients as 
presented in Fig. 2.
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Methods of extracting features
Mel‑Frequency cepstrum coefficient
The MFCC is a popular technique of obtaining features 
from audio signals [43]. It is referred to as the filter 
banks-based cepstral domain features obtaining tech-
nique. The Mel-scaled filter bank and the Fast Fourier 
Transform (FFT) is used in the audio signals. The filter 
bank divided the spectrum non-linearly by adhering to 
the mel-scale. The lower zones’ frequency filters have 
lower bandwidth than their counterparts. The mel-scale 
has the spacing of the frequency below 1kHz, in contrast 
to the logarithmic spacing. The final stage consists of 
the ranges of coefficients according to their significance. 
Their importance is obtained through the computation of 
the discrete cosine transform of the filter bank’s logarith-
mic output. The signals were decomposed, and the 7-dim 
MFCCs features were extracted from the audio signals. 
Figure 3 below shows the details.

Gammatone cepstral coefficients
In the next phase, the audio signals were decomposed 
and the 7-dim features of the GTCC were extracted 
for more evaluation. It is another technique for obtain-
ing features originally created in [44]. Gammatone’s 
function presents several characteristics that make the 

GTCC filters suitable to imitate the auditory of the sys-
tem’s spectral and human response [45–47]. Gamma-
tone’s function is computed by the multiplication of the 
Gamma distribution function with the sinusoidal tone. It 
is illustrated as follows:

The K, B, n, φ, and fc represent the amplitude factor, 
bandwidth parameter, filter order, phase shift and fil-
ter central frequency, respectively. The filter impulse 
response period is directly connected to the equal rectan-
gular bandwidth, i.e., is a metric used to approximate the 
bandwidth of human audio filters in the cochlea, a part 
of the ear. There is a connection between the ERB and B. 
Equation 2 shows the computation of the ERB as:

The fc, minBW, EarQ, and n represent the filter central 
frequency, lowest bandwidth at zones of lower frequen-
cies, asymptotic quality at higher frequency zones, and 
order of approximation, respectively. Equation  3 shows 
the computation of the middle frequency of every filter 
fci below:

(1)
gt(t) = Kt(n−1)e(−2πBt)cos(2π f ct + φ) t≥0

(2)ERB = [(
fc

EarQ
)n +minBWn

]
1

n

Fig. 1 The proposed system
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(3)
fci = (fh + EarQminBW )e

−
i step
EarQ − EarQminBW

The fh, EarQ, and minBW illustrate the increased fre-
quency and ERB parameters, while i is the GT filter 
index. The stage is computed by employing Eq. 4 below:

Fig. 2 Decomposed Signals

Fig. 3 Extraction of the Decomposed Features from MFCC
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In Eq.  3 above, the N illustrates the amount of filters. 
The GTCC extraction of feature process is similar to that 
of the MFCCs, but GTCCs use gammatone filter bank 
instead of a mel-filter bank. 7-dim decomposed GTCCs 
features were procured from the audio. Figure  4 below 
gives the details.

Dataset
The ASVspoof2019 [48] PA dataset we used for experi-
mentations is publicly available and the statistics are 
shown in Fig.  5. The sub-folders are three in number: 
the training, development, and evaluation folder. They 
all contain bonafide and replayed speech samples. The 

(4)Stage =
EarQ

N
ln(

fh + EarQminBW

fl + EarQminBW
)

genuine data comprises 200 samples collated from 20 
various speakers as illustrated in (#11). In a single envi-
ronment produces voice replay in accordance to nine 
different attacks, resulting in 1,800 generated samples 
as illustrated in (#13). A matching method is used for 
the development partition samples. It is however only 
for the 10 different speakers as shown in (#12), there-
fore, 900 samples as depicted in (#14). This process is 
repeated for the entire set of the acoustic surroundings 
producing the same number of samples as depicted in 
Fig. 5. There are 24,300 and 48,600 samples for training 
and development, respectively. An evaluation partition 
is created in a similar manner, with 48 and 19 target and 
non-target speakers. This produced 4,320 samples for 9 
various voice spoofing assaults in a single environment 
as illustrated in (#16). For the entire set of 27 varying 

Fig. 4 Decomposed GTCC Features Extraction

Fig. 5 Statistics of the Dataset
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environments, 116,640 samples are there as illustrated in 
(#22). The known and unknown attack types are differ-
ent in the scenario of physical access. If the samples in 
all the three folders are created with a particular setting 
of voice replay categories, the impulse responses in every 
set would be different. In this sense, the evaluation fold-
er’s samples are considered unknown attack types.

Classification
Figure  6 illustrates the suggested spoofing counter-
measure classification. The audio is processed, and the 

extracted features are passed into the BiLSTM network 
to be classified into bonafide or spoofed audio. BiLSTM 
has continuously been utilized in several approaches 
[49]. BiLSTM is a Recurrent Neural Network [50] used 
for Natural Language Processing and the prediction 
of the time series. The audio signal is also data in the 
time series. The input moves in a single direction in the 
LSTM network. In the BiLSTM network, on the other 
hand, the input flows in both forward and backward 
directions. This allows the BiLSTM network to use 
prominent details from both directions. BiLSTM has 
an additional LSTM layer that varies the movement of 

Fig. 6 Classification with input and output

Fig. 7 Our proposed method’s results for detecting replay attacks



Page 8 of 14Zhou et al. Journal of Cloud Computing           (2022) 11:51 

details. This means that the input moves in the opposite 
direction in the additional LSTM layer. Afterwards, the 
output obtained from the two layers are then merged. 
Figure 6 illustrates the specifics of the BiLSTM frame-
work below.

Results
This section discusses the comprehensive performance 
evaluation of the proposed system to detect voice replay 
attacks. Our technique’s performance was evaluated 
using the Accuracy, Recall, Precision, F1-score, and 
Equal Error Rate (EER) performance parameters. How-
ever, the comparison with other systems will be based 
on the EER. This experiment was conducted to evaluate 
our technique (emd-GTCC+emd-MFCC-BiLSTM) using 
the ASVspoof2019 PA dataset. This dataset has three 
sets: the training, evaluation, and development set. The 
training set is used for training, while the evaluation set 
is used to test the model that has been trained. The sam-
ples of the development set cannot be used to evaluate 

spoofing countermeasures. We empirically decomposed 
the audio signals and extracted the 7-dim features of the 
MFCC and GTCC from the evaluation and training set. 
As far as we know, this is the earliest effort of the signals 
being decomposed and evaluation of the efficiency of the 
detectors of spoofing. We used the 14-dim (emd-MFCC 
and emd-GTCC) features and fed it into the BiLSTM 
classifier to classify the audio into authentic or spoofed. 
There are various algorithms which depict improved per-
formance on the classification of the time series data. The 
audio is a data in the time-series and the proposed BiL-
STM framework has shown impressive results. Figure 7 
illustrates the outcome of our spoofing countermeasure. 
Our proposed method obtained a remarkable accuracy 
of 97% for binary classification of spoofed and bona-fide 
audio. The 100% precision rate of our technique signifies 
that the proposed countermeasure is effective in detect-
ing replay signals. It had recall and F1-score of 94.84% 
and 90.19%, respectively. The ASVspoof organizers’ 
baseline used Constant Q Cepstral Coefficient (CQCC) 

Fig. 8 Voice replay attacks confusion matrix
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and GMM as a form of classifier. Also, the baseline used 
GMM and Linear Cepstral Coefficients (LFCC) to clas-
sify. The resultant systems however are not effective 
enough to be used in a real-time environment as a result 
of the features’ inability to obtain maximum information. 
The 2.95% EER value of our method is significantly lower 
than the baseline methods. The voice replay detection 
baseline methods obtained an EER of 13.54% and 1q.04% 
using LFCC-GMM and CQCC-GMM, respectively, 
in comparison to our system which obtained 10.59% 
and 8.09%, respectively. The ASVspoof2019 PA dataset 

contains audio samples recorded making use of several 
recording gadgets of different qualities: perfect, high or 
low. The sizes of the room used for the replay attacks 
recordings are also of different sizes (10-20m, 5-10m and 
2-5m). The PA dataset is assorted. The proposed method 
had an accuracy of 97%, indicating it is effective in detect-
ing voice replay spoofing attacks.

Confusion matrix of the system
This section gives a comprehensive evaluation of the 
results of classification of our proposed system as 

Fig. 9 The SVM results for detecting replay attacks

Fig. 10 The SVM’s Confusion Matrix for Voice Replay Attacks
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depicted in Fig.  8. The confusion matrix was developed 
for classification challenges, with four kinds of values: 
True Positive and True Negative (TP and TN), and False 
Positive and False Negative (FP and FN). The True Posi-
tive shows the accurate positive class prediction, and the 
True Negative shows the accurate negative class predic-
tion. Conversely, the FP shows the inaccurate positive 
class prediction, and the FN indicates the inaccurate 
negative class prediction class. As depicted in our sys-
tem’s confusion matrix, the TP, FP, FN, and TN values 
are 5,400, 13,853, 0 and 597, respectively. These values 

indicate that the proposed system has accurately clas-
sified all the bona-fide samples. The system accurately 
detected 13,853 samples that were spoofed, and 587 sam-
ples that were spoofed were detected as bona-fide. 3% of 
the data are classified incorrectly, the rest are correctly 
classified. In the confusion matrix, 1 stands for the bona-
fide class, and 2 stands for a spoofed class.

SVM performance
The SVM classifier is utilized in various applications. 
Firstly, 14-dim features were extracted for the training of 

Fig. 11 The ENSEMBLE results for detecting replay attacks

Fig. 12 The ENSEMBLE classifier’s confusion matrix for voice replay attacks
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the SVM classified. The SVM obtained 78.03% accuracy 
and 68.27% precision. The F1-score and recall attained by 
the emd-MFCC and emd-GTCC+SVM are 74.31% and 
81.53%, respectively. Figure 9 shows the detailed results.

Confusion matrix of the sVM classifier
A confusion matrix was created for the SVM classi-
fier to evaluate the performance in detecting replay 

attacks. Figure 10 shows the details of the four values. We 
observed that this method has obtained values of 4,914, 
486, 3,873, and 10,567 of TP, FP, FN, and TN respectively. 
The values of the FP and FN are optimum, proving that 
this technique is not effective in detecting replay attacks. 
1 stands for the bona-fide class, and 2 depicts the spoofed 
class.

Fig. 13 The KNN results for detecting replay attacks

Fig. 14 Confusion Matrix of KNN classifier for voice replay attacks
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The ensemble classifier’s performance
The second traditional classifier utilized is the 
ensemble classifier for the detection of replay attacks. 
This classifier is utilized in several applications. 
14-dim features are obtained and passed into the 
classifier for the classification into spoofed and bona-
fide audio. This method obtained an accuracy of 
84.71%, 6.68% higher than that of the SVM classifier. 
The precision rate is 71.53%, higher than the 68.27% 
of the SVM. The F1-score and recall are 76.63% and 
81.53%, respectively. Our technique had the impres-
sive outcomes of precision of 100% and accuracy of 
97%, 12.29% higher than that of the ensemble classi-
fier. Figure 11 shows the comprehensive results of the 
classifier and our technique.

Confusion matrix of ensemble
Figure  12 shows the comprehensive classification per-
formance outcomes of the TP, FP, FN, and TN values. 
Figure 12 shows that the ensemble classifier accurately 
classified 3,644 and 13,162 bona-fide and spoofed sam-
ples, and 1,756 and 1,278 audio samples are inaccu-
rately classified.

Performance of kNN classifier
The performance of the KNN classifier in detecting voice 
replay attacks was checked. KNN classifier is utilized in 
several applications. The obtained 14-dim features are 
passed in to the KNN for the classification into a bona-
fide or a replay voice. Figure 13 shows that the accuracy 
realized using our proposed method with KNN classifier 
is 77.09%. The precision rate of 89.2% is 18.49% less than 
that of an ensemble classifier. The F1-score and recall is 
67.94% and 54.86%, respectively. These two parameters 
on the KNN-based method are smaller than that of the 
SVM-based technique and the ensemble classifier.

The kNN confusion matrix
A confusion matrix was created for the KNN-based 
method for the complete classification outcome. Fig-
ure 14 illustrates the TP, FP, FN, TN values of 4,817, 583, 
3,963, and 10,477, respectively. The KNN-based method 
has accurately classified 4,817 and 10,477 speech samples, 
and 583 and 3,963 samples are classified inaccurately.

Performance comparison with existing systems
The performance of our proposed technique is likened to 
the other existing methods. The comparison is based on 
the obtained EER value. The most ineffective approach is 
the baseline with the EER value of 13.54% using LFCC-
GMM, while the CQCC-GMM had an EER of 11.04%. The 
second most effective approach is [49] with an EER value of 
7.99%. A Deep Neural Network and CQSPIC method was 
used. The DNN was used for the classification into authen-
tic or replay speech. In comparison with other methods, 
our proposed method performed remarkably well with 
an EER of 2.95%, which is significantly smaller EER value 
than those of the other techniques. Figure  15 illustrates 
the comparison between our proposed approach and the 
others. The comprehensive experimental conclusions and 
comparison with traditional classifiers show that our pro-
posed approach can encapsulate the unique features from 
the authentic audio and replay signals.

Conclusion
Attackers use enhanced gadgets to record the voices of 
bona-fide and registered speakers, replay it to ASV sys-
tems to obtain unlawful access for malicious purposes. 
These kinds of attacks are serious menaces to the secu-
rity of these systems. To secure the ASV systems from 
voice replay spoofing attacks, we proposed a method 
which uses the empirical mode decomposition of speech 
signals. GTCC and MFCC are used as features, and the 
BiLSTM is used to classify the audio into bona-fide or 

Fig. 15 Comparison with other approaches
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spoofed. The ASVspoof2019 PA dataset is used for the 
experiments carried out. An accuracy of 97% and pre-
cision rate of 100% is achieved by our approach. The 
F1-score and recall values are 94.84% and 90.19%, respec-
tively. Our proposed approach obtained a significantly 
lower EER value of 2.95%, and is 8.09% and 10.59% less 
than the traditional baseline methods. The evaluation 
and conclusions indicate that our proposed system is reli-
able for the detection of replay attacks. Subsequently, we 
aim to explore the efficiency of our proposed approach 
on the algorithm-generated voice attacks.
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