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Abstract—In the transition to electric fleets around the world,
electricity demand from electric vehicle (EV) fleets is expected
to become significant in the future. Since fleet cars can display
different charging characteristics than individual EVs, analyzing
the charging behavior patterns of fleet cars is essential. To do so,
this study first examines real EV fleet data from 724 charging
events using data analytics methods. Based on this analysis, a
charging behavior model is then developed to predict the realistic
charging demand of an EV fleet with any number of EVs.
In order to overcome the limitations of traditional probability
density functions, this study utilizes Gaussian Mixture Models
and Kernel distribution in developing charging behaviour models,
i.e., charging start and end times, and total charging energy. The
models’ behaviours are then compared in terms of goodness-of-
fit (GoF) to determine the best match for the original data, in
which normalised root mean squared error serving as the fitness
criteria.

Index Terms—Data analytics, electrified fleets, fleet Charging,
Gaussian mixture model, kernel distribution, plug-in electric
vehicles, probability density functions.

I. INTRODUCTION

Fleet electrification is expanding around the world in
respond to global zero-emissions mandates. In addition to
government commitments to convert public transport fleets
to electrify, major companies have declared the transition to
electric mobility by shifting their conventional fleets to electric
vehicles (EVs) [1]. Due to this transition, the charging demand
from EV fleets is expected to drive increments in peak power
generation and transmission capacity [2]. The increased de-
mand associated with the electrification of the transport sector
can present challenges and opportunities through flexible elec-
tric vehicle grid integration schemes [3]. Therefore, analysis
of charging behavior patterns of EV fleets and hence their
realistic representations are needed to better analyze future
energy systems. As a result, a charging behavior model may
assist fleet owners in planning optimal sizing of the charging
infrastructure required as well as optimal management of the
charging demand with efficient use of the grid assets.

Traditional probability density functions (PDFs) were ini-
tially used to model charging behavior of EVs [4]. Each
mobility metric at workplaces can be represented by the PDF
of a normal distribution. As more EVs penetrate on the roads,
real charging data from EV field tests have been used to model
EV charging behaviors [5], [6]. However, the traditional PDFs
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are limited to representing the charging profiles comprehen-
sively. Therefore, Gaussian Mixture Models (GMMs) have
been proposed [7]. A GMM is a weighted sum of m different
Gaussian distributions that allows fitting various PDFs. As
such, based on a histogram of collected data, realistic EV
charging profiles are produced. In [8], the GMM is used to
calculate the charging probability of EVs thereby generating
EV charging profiles. Several studies have applied GMMs
to model EV behavior for better planning and operation of
future electricity networks. In [9], each charging metric, such
as start charging time, initial and final state-of-charge (SOC),
is represented by a GMM. The populated EV profiles by
the GMMs are then validated against real data from an EV
trial test. It is shown that the GMM model avoids under or
overestimations, thereby producing more realistic EV profiles
as compared to traditional PDFs, which are based on travel
surveys. In [10], GMM is applied to predict EV user behavior
at workplaces based on learned distribution from actual EV
data. As a result, the GMM has shown to be effective to model
EV behaviors realistically.

The models in the literature are based on collected data from
individual cars. However, the charging behavior of EV fleet
cars can differ from that of individual EVs. While workplace
electric vehicle supply equipment (EVSEs) can accommodate
a portion of the charging demand, public EVSEs are required
to meet the demand for increased travel range [11]. It is
therefore essential to develop a mobility model for an EV
fleet as opposed to EVs at residential and workplace charging
that typically rely on a predictable mobility pattern. To be
able to truly assess the evolution and implications of the EV
fleet, there is a need to analyze their charging behaviors. As
such, based on this analysis, a charging behavior model can
be developed to populate realistic EV profiles for a fleet with
any number of EVs. The motivation in this study is to use
data analytics methods in order to understand the charging
patterns of an EV fleet. To do so, real EV fleet data from
Leeds City Council [12] is analyzed in detail. GMMs and
Kernel distribution functions are used to model three charging
characteristics, i.e., charging start and end times, and total
charging energy. The behaviors of models are then compared
in terms of goodness-of-fit (GoF) to find the best fit for the
original data, in which normalized root mean squared error is
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Fig. 1: Session numbers and total energy of charging events

used as the fitness criterion.

II. DESCRIPTION OF EV FLEET CHARGING DATA

This study utilizes EVSE data set [12] used only by Leeds
Council EV fleet. The fleet consists of 339 EVs whose
configurations are as follows: (i) 3 different Renault Kangoo
models with 33 kWh battery capacity and 7.4 kW on-board
charger ratings, (ii) 2 different Nissan models with 24/40 kWh
battery capacities and 3.3/6.6 kW on-board charger ratings.
The workplace charging station includes, 120 chargers which
are single phase, L2/Mode-3 type EVSEs at 7.36 kW. As
shown in Fig. 1, the EVSE data set contains 724 charging
events from July 25, 2020 to September 29, 2020. While
the data includes charging start and end times, total charging
energy, and plug-in time, EV identities are not known.

III. DATA ANALYSIS

The number of occurrences and the amount of total charging
energy are both investigated in more depth. Fig. 1 indicates
that the fleet’s energy consumption and number of charging
sessions vary by day. However, a similar pattern exists as
weekly energy needs. The total charging energy is mainly
higher during the week days and low in weekends. This is
more readily seen in Fig. 2a. The weekly distribution of
charging events and average energy are reported. The figure
shows that a number of events during the weekdays form
86.6% of the total events with an average of 1719.8 kWh
energy while being 13.4% and 738.3 kWh on weekends,
respectively. The figure also indicates that when the energy
need changes, so does the number of events. The data is then
further examined to determine the hourly energy consumption
requirements. The hourly energy need per day is shown in
Fig. 2b. The charging events occur in typical work hours of
between 4 am and 4 pm with an hourly average energy of
13.91 kWh. The charging events’ hourly energy requirement
varies by hour and mainly higher in morning hours. Each fleet
may have a varied hourly requirement based on the work shifts
and service provided.
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energy demand distribution, a)

Data on charging events for each EVSE unit was examined
further. The average charging energy and number of events for
each EVSE are calculated and the correlation is presented in
Fig. 3. The marginal distributions given in Fig. 3a show that
most of the EVSE units have fewer charging events while the
average energy supplied per session is varying in a wide range.
It is also seen that the EVSE units hosting a higher number of
charging events usually supply higher average energy in each
session. This may be due to the variations of the group of EVs
in each departments. The correlation is also clustered and k-
means classification is presented in Fig. 3b. Results depict that
charging events can be classified mainly as two groups, each
having 15.62 kWh and 88 sessions, and 11.84 kWh and 19.5
sessions as the center points that are shown in the figure with
a cross symbol.

IV. STATISTICAL MODELING AND ANALYSIS

Mathematical representations of EV fleet charging behav-
ior are first developed in Matlab using GMM and Kernel
Distribution separately and then compared to show the best
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Fig. 3: EVSE units a) correlation and marginal distributions
b) k-means classification.

fit. GMM is used to represent almost any distribution as a
convex combination of Normal Distributions (NDs) with their
means (u) and variances (o) [9].The parameters are estimated
from the original data using an iterative process known as
Expectation-Maximization (EM), which maximizes the log-
likelihood expectation depending on the number of GMM
components that have been chosen as the target [13], [14].
A GMM, f(x), can be formulated as the sum of weighted &
number of NDs [9], [13], [14]as

k
f@) = wifnp(uon (@), (1)
=1

where, w;, p;, and aiz are the weight, mean, and variance of
each Normal Distribution. Each GMM component’s density
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function is a normal distribution with the following:

1 _ (z—py)?

fND(u,UQ)(x):We 207 )

The weight of each distribution, w;, ranges between 0 and
1 with Y w; = 1. In order not to overfit the GMM and find
the best number of normal distribution components, Bayesian
Information Criterion (BIC) and Akaike Information Criterion
(AIC) that are commonly used as model selection criteria
[15] are compared for a wide range of possible component
numbers (1~20). Among each model with different number
of components, GMM with minimum BIC and AIC values
are selected as the best fit models. In addition, a new set of
data with the same number of charging events is generated
using the GMM models and the GoF with the original data is
compared. Normalized root mean squared error is used as the



fitness criterion where the closer to zero, the better fit for the
original data. As the second method of modeling the charging
events, Kernel Distribution is selected as a nonparametric
representation of PDF [16]-[20]. Kernel density estimator can
be used as the estimated PDF of a random variable and
formulated for any real values of x as follows:

f(x)zv;;ff(xh”) 3

1 —z2/2
K(z) NS ; “)
where, x1, a,..., T, are random samples, n is the sample
size, K(-) is the kernel smoothing function, and h is the
bandwidth. New set of data is generated with the Kernel
Distribution model and the GoF is compared with that of
GMM for performance comparison.

Fig. 4 and Fig. 5 show the GMM and Kernel Distributions,
and their GoFs with the original data for charging start
time, charging energy, and charging end time, respectively.
The charging start time histogram, GMM with BIC criteria,
GMM with AIC criteria, and Kernel models are provided and
compared in Fig. 4a. The histogram shows that most of the
charging events occur in the afternoon with the higher rate
around 1 pm. The figure also depicts that each model has
distinct fit. Although the GoFs of GMM with AIC and BIC
are close to each other, the AIC model over fits with 11 GMM
components while it is 4 for BIC. On the other hand, the
Kernel distribution has slightly different fit with the worse
GoF value when the Kernel bandwidth is found to be 44.60.
GMM with BIC outperforms the other two models in terms of
GoF. The number of components for the charging start time
GMM contains four normal distributions, and each normal
distributions containing the GMM is illustrated in Fig. 4b as an
example for the analysis. It can be shown that the final GMM
(red line) consists of the weighted sum of each components
(dashed lines), as shown in the figure.

The charging energy and end time for the data set have
been modeled in a similar manner. Fig. 5a compares the three
model fits. The distribution of the charging energy shows that
majority of the charging energy ranges from 8 to 13 kWh.
There is less of a disparity between the fit lines, as may be
seen in this figure. The worst fit is obtained by the Kernel
distribution, while the greatest fit is achieved by the GMM BIC
with two components. The difference in GMM AIC and BIC
models is significantly less compared to that of charging start
time models since the GMM AIC model has three components.
The charging end time models are given in Fig. 5b. The two
GMM models have the same number of components as the
four-component GMM model. This causes the two charts to
overlap. Despite the fact that the lines overlap, there is a little
variation in the GoF. While the two GMM models overlap,
the Kernel model has the worse GoF among the three models.

The modeling results show that in terms of the GoF value,
the GMM BIC achieves the closest the zero as compared to
the Kernel Distribution and GMM with AIC. The GoF for
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Fig. 5: Histograms and GMM and Kernel PDF comparison
for, a) Total charging energy, b) charging end time.
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BIC and AIC are close to each other, however, AIC has equal
and higher ND components compared to that of GMM with
BIC in all three behaviours. This confirms that the AIC model
is less smoother than the BIC model. Among the three fits,
the GMM with BIC model is found to be the best fit. While
parametric modeling, GMM requires the user to determine the
number of components an iterative process, Kernel does it
directly. In order to get the least AIC or BIC values, it is
necessary to manually run the GMM model over a large range
of component numbers at a high computational speed. The
parameters (weights w, standard deviation y, and variance o?)
and number of components for GMM BIC model calculated
are reported in Table I.

V. CONCLUSION

In this study, real EV fleet charging data was examined in
detail. Since normal distributions lack the ability to represent
their charging behavior, two advanced PDFs were developed



TABLE I: GMM with BIC components for EV fleet charging parameters

Start Time End Time Total Energy
Component | w; i [min] | o w; i [min] | o2 wj pi [kWh] | o
=1 0.1214 | 590.57 2138.6 | 0.1473 | 935.74 2360.4 | 0.5938 17.52 44.03
1=2 0.2441 | 766.70 262.52 | 0.4305 | 559.26 1451.4 | 0.4062 | 8.64 12.84
=3 0.3846 | 819.37 7738.3 | 0.1614 | 414.76 2497.9
=4 0.2499 | 411.97 5072.7 | 0.2608 | 747.11 2665.8

based on GMM and Kernel distributions. A comparative anal-
ysis was performed to find the GoF whose criterion is normal-
ized root mean squared error that represents the best charging
behavior. The data analysis found that the charging behavior
of EV fleet displays different characteristics as compared
to residential and typical workplace charging. The charging
start time expands throughout the day. Furthermore, EVSE
occupancy times per EV is longer. However, the charging
energy consumption follows a pattern that is close to normal
distributions. It has been observed that in terms of GoF,
the performance of the models depends on the distribution
characteristics of data. Based on the EV fleet charging pat-
tern considered, the GMM has shown superiority over the
Kernel distribution model. As the normal distribution fails
to model EV fleet charging behaviors, the analysis confirms
that advanced PDFs such as GMM or Kernel distribution
can be a good alternative to better represent the data. Fleet
charging events, on the other hand, have been observed to
occur mostly during the weekdays, with fleet EVs beginning
charging operations as soon as they plug in. In this respect,
smart charging can be utilized to evenly distribute the charging
times. As a result, the grid assets can be efficiently used.
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