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Abstract

Conventional blockchain technologies developed for cryptocurrency applications

involve complex consensus algorithms which are not suitable for resource con-

strained Internet of Things (IoT) devices. Therefore, several lightweight consen-

sus mechanisms that are suitable for IoT devices have been proposed in recent

studies. However, these lightweight consensus mechanisms do not verify the

originality of the data generated by the IoT devices, so false and anomalous

data may pass through and be stored in the ledger for further analysis. In this

work to address the data originality verification problem, we propose an autoen-

coder (AE)-integrated chaincode (CC)-based consensus mechanism in which the

AE differentiates normal data from anomalous data. The AE is invoked through

the CC once a transaction is initiated; the result returned from the AE to the

CC is stored in the ledger. We have conducted a case study to train and test

the AE model on the IoTID20 dataset. Also, Minifabric (MF) is used to im-

plement the CC and illustrate the CC operation that stores only original IoT

data. Moreover, the performance has been shown for the chaincode in terms of

Latency and Throughput.

Keywords: IoT, Autoencoder, Blockchain, Hyperledger, Security

1. Introduction

The Industrial Internet of Things (IIoT) refers to the application of IoT net-

works in the field of industrial applications and smart manufacturing processes

?Fully documented templates are available in the elsarticle package on CTAN.

Preprint submitted to Journal of LATEX Templates July 4, 2022



[1] and became the key technology of industry 4 [2]. IoT devices equipped with

various types of sensors and actuators [3] are attached to industrial machines5

or engines and form a wireless network by connecting with each other through

high-bandwidth (BW) communication links. These tiny IoT devices sense the

intended data, collect useful information and periodically share these data with

the central hub. Utilizing this type of IoT network in an industrial building

or smart factory enhances the manufacturing process or production process [4].10

It also enables efficient controlling and monitoring of industrial machinery. A

central authority or admin can analyze the data collected from the sensors and

use the results to increase the effectiveness of industrial operations through a

centralized process like cloud architecture. The IIoT encompasses a wide range

of applications, including Automated and remote equipment management and15

monitoring, Predictive maintenance, Faster implementation of improvements,

Pinpoint inventories, Quality control, Supply chain optimization, Plant safety

improvement [5] [6].

However, integration of an IoT network with cloud-based architecture is

subject to several limitations and shortcomings. For example, cloud-based IoT20

architectures are vulnerable to several security threats and suffer from various

bottlenecks, such as single point of failure [7]. Security and privacy attacks can

damage an entire IoT network and disrupt normal network operations. More-

over, an IoT network is complex, heterogeneous, distributed and unattended,

leaving it vulnerable to various types of attacks [8]. The data that is exchanged25

among IoT devices may be modified or tempered by a nefarious actor or attacker

[9] [10]. Tempering of the data hampers proper monitoring of the industrial

process and causes incorrect information to be passed along to the authority.

Therefore, it is vital to protect the security and privacy of data exchanged

among IoT devices in a distributed untrusted IoT environment.30

Recently, blockchain technology has gained popularity as a promising solu-

tion and become a research hot spot [6] [11] due to its various salient features,

such as security, anonymity, auditability, trust, transparency and decentraliza-

tion in the IoT domain [12] [13] [14] [15]. IoT devices can rely on a blockchain
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to communicate and share data, since blockchain technology matches the dis-35

tributed feature of an IoT network [16]. Authentication is ensured, since each

transaction for each IoT node is signed by a private key, thus preventing man-in-

the-middle attacks [17]. A blockchain is distributed in nature, thereby eliminat-

ing single points of failure. Furthermore, it offers immutability, meaning that

a transaction cannot be changed once it is validated [18], so data manipulation40

can also be eliminated. However, direct application of existing blockchain tech-

nologies in the IoT domain is not possible, for example the core component of a

blockchain is the consensus mechanism, which is responsible for ensuring consen-

sus with the whole network before any transaction is added in the blockchain.

The well-established consensus protocols used in blockchains are not suitable45

for IoT networks, since these protocols (e.g., PoW, PoS, and PoET) are compu-

tationally expensive, power hungry, low-throughput and subject to time delay

[19]. Moreover, these consensus mechanisms were solely developed for cryp-

tocurrency applications and lead to centralization issues since the node with

highest mining power is selected to control a network[20]. Various recent stud-50

ies have proposed different solutions to overcome these shortcomings. In [21] an

IoT-oriented proof of honesty consensus mechanism is proposed for transaction

validation which protects the scheme from participating in malicious or faulty

nodes. In [7] a stochastic blockchain-based data integrity checking scheme for an

IoT network is proposed which incorporates a data integrity checking process55

in the blockchain consensus mechanism. The authors in [12] proposed a fast

scalable blockchain, called treechain, for IoT networks, which introduces ran-

domization in the transaction level and blockchain level.A scalable blockchain

titled Groupchain is proposed for fog-enabled IoT networks in [22]; also, to in-

crease throughput and reduce confirmation latency, a reduced-size consensus60

mechanism is proposed. In [23] Spacechain, a 3-dimensional blockchain, is pro-

posed, which overcomes the heterogeneity and scalability issues. Also, a new

consensus mechanism is proposed to improve network security. In [24] a new

lightweight consensus mechanism is proposed which does not include a complex

mathematical algorithm to be solved by the mining node. This validates both65
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trades and blocks. In [25] a lightweight consensus mechanism is proposed which

eliminates any kind of extra resource consumption. In addition, a distributed

trust management and throughput management strategy is introduced. Lastly,

a dual vote confirmation-based consensus scheme is proposed for blockchain-

enabled IoT networks in [26].70

Though these newly proposed lightweight consensus algorithms improve per-

formance in IoT networks, they do not consider data verification. This means

that the consensus mechanisms only validate transactions by computing the

hash value through a key sharing mechanism or voting method, but do not jus-

tify the originality of the data inside each transaction. Data could be falsified75

by an adversary, which could result in serious damage to the network in the

final analysis output. A means of handling missing, erroneous or false data is

urgently needed for proper operation of the industrial process. Artificial In-

telligence approaches can be very efficient in several recognition [27, 28, 29],

detection [30, 31], and pattern recognition [32, 33, 34] tasks. AEs can be used80

to understand missing or corrupted data, since this type of neural network can

model and learn the underlying patterns of the data. Hidden layers of the AE

learn the true behavior of the input data. Therefore, if something unusual hap-

pens in the data generated by the IoT devices, the AE can easily predict unusual

events in the input dataset.85

In this article, we propose a permissioned Hyperledger Fabric blockchain-

enabled IIoT network along with an AE-based consensus algorithm to verify

the data before it is stored in the Blockchain. The contributions of this work

are as follows.

• We first review the existing algorithms in blockchain-enabled IoT networks90

and summarize the consensus mechanisms along with their limitations in

terms of IoT data originality verification.

• We propose a permissioned Hyperledger Fabric distributed ledger technol-

ogy as the underlying blockchain architecture for the IIoT network instead

of using any public blockchain network.95
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• To overcome the data originality verification problem identified in the re-

cently proposed consensus mechanisms, we incorporate an AE with the

Hyperledger CC in the consensus process for distinguishing anomalous

data from original data. Therefore, using this AE-enabled CC-based con-

sensus mechanism, the distributed ledger only stores original data.100

• We have conducted a case study to illustrate the implementation of the

above proposal, in which the AE is trained and tested on the IoTID20

dataset and MF is used to show the block architecture with only original

data stored in the Fabric network.

In Section 2, recently proposed consensus algorithms in blockchain-based IoT105

networks are discussed along with their potential limitations and strengths.

Section 3 describes the system model with Hyperledger Fabric architecture and

the relevant operations of a Fabric-integrated IIoT network. In Section 4, we

discuss the case study that demonstrates the implementation of the proposed

scenario. Finally, Section 5 concludes this paper.110
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Figure 1: Architecture of a Hyperledger fabric network, comprising a client node, endorsing

peer node, committing peer node and master/origin node. The endorsing peer node verifies

the transactions from the clients, the ordered node forms blocks of transactions and distributes

them among the peer nodes, and the committing peer node validates the transactions based

on the endorsement policy before storing each blocks.
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2. Related Works

In this section, we discuss recently proposed blockchain-based solutions for

IoT networks. We summarize the consensus mechanisms and their potential

shortcomings in terms of data originality verification.

PLEDGE [21] This method maintains an honesty metric for the nodes115

which propose blocks in the network. When a block is appended by a node in

the network, the honesty metrics are updated. Cumulative honesty metrics are

also computed for each node. A list of honest nodes is formed based on the

value of each node’s honesty metric. If a node’s honesty metric is greater than a

predefined threshold then it is included in the list. Primary and secondary block120

proposers are selected from the list at random to propose a block. If anything

goes wrong, then the proposed block is rejected.

LDC [35] An Edge gateway node (EGN) works as a blockchain node. When

an EGN receives a chunk of data, it generates the hash value of the data and

includes it in the block of data which will be verified by another EGN. This125

data block is sent to the other EGN for verification purposes. The EGN which

receives the data block checks whether or not the destination EGN and the hash

value of the previous block of the data block to be verified are the same. If the

two match, then the verification is true. On the other hand, if the destination

EGN receives more than 50% of the verification result, then the data is marked130

correct. From this explanation, it is not clear how the data is verified. The

proposed consensus algorithm only checks the hash value of the previous block

and destination gateway, which does not explain the mechanism of verifying the

originality of the data.

PoAh [36] This proposed proof of authentication consensus algorithm uses135

the Elgamal crypto system for encryption and decryption. The public key of

each network node is made available to all other nodes for signature verifica-

tion. Each network device first adds its digital signature before broadcasting

a block in the network for verification. When a trusted node receives a block

for verification, it first verifies the signature with the help of the source node’s140
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Table 1: Comparisons of several consensus algorithms for blockchain enabled IoT networks

Method Strengths Limitations

PLEDGE Proof of honesty-based consensus

mechanism; low latency, low com-

putations, low communications com-

plexity.

Data verification issue is not ad-

dressed in the time of transaction ver-

ification.

LDC Lightweight data block structure;

lightweight data consensus algorithm.

Consensus algorithm is ambiguous,

Data verification is not clearly ex-

plained during the transaction verifi-

cation process.

PoAh Lightweight consensus mechanism;

Highly scalable.

Only verifies block using DS and

MAC address but do not verify the

data which may result in verified

block with false data.

PoBT Block verification and trade valida-

tion based consensus mechanism

SC only verifies the permission of

both end IoT device but does not ver-

ify data.

DVCC Dual vote confirmation based consen-

sus mechanism; Better throughput;

Less delay .

However, only voting a block for vali-

dation does not ensure the data orig-

inality or elimination of malicious

data.

Tree

Chain

Fast; Optimized; Highly scalable; re-

duced overhead.

Validates blocks based on hash value

but does not verify the data of the

transactions.

3D-

GHOST

Consensus process enhances the secu-

rity.

However, this consensus mechanism

lacks data verification.

Groupchain Scalable for IoT network Data verification of the transactions

is not clearly shown.

LSB Lightweight consensus mechanism;

Distributed throughput management

scheme; resilient against several secu-

rity attacks.

The transactions are verified based on

the hash and signature but no data

verification is shown.

Legend: DS– Digital Signature, SC– Smart Contract
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public key. During the second round of verification, the trusted nodes verify

the MAC address from the transaction. After successful block verification and

authentication, the source node generates a hash of the block and adds it to the

previous block in the chain. Other nodes follow the same process for adding a

block to the chain. Moreover, a successful verification increases the trust value145

of a node and the trust value decreases if a fake block authentication occurs.

LSB [25] This consensus algorithm introduces randomness by generating

blocks using overlay block managers (OBMs). Each OBM waits for a fixed

amount of time before generating a new block. In the meantime, if another

OBM generates a block, then an OBM which was waiting to generate a block150

will discard the transactions that are already included in other blocks generated

by other OBMs. This avoids attempts at verification of duplicate transactions.

The block generation time is also limited in such a way that each OBM can

generate a new block at a given time interval. However, the generated blocks

will be attached to the chain if and only if the transactions in the block are155

verified. The transactions are verified based on the hash value and signatures

involving public and private keys.

PoBT [24] This proposed mechanism first verifies trades and then forms a

consensus. An IoT device in the network generates trades and sends the trades

as transactions to the source node (blockchain node) to which it is connected.160

This source blockchain node invokes a smart contract to verify the trade. The

source node verifies that the destination IoT device can receive this trade ac-

cording to the smart contract business logic. If the destination IoT device is

allowed or involved in this trade exchange scheme, then a local consensus is

executed. Otherwise, the destination blockchain node that is connected to the165

destination IoT device receives the trade. The destination blockchain node also

invokes the smart contract and follows the above process specified in the smart

contract. If this trading process for the two IoT devices is valid, the trade is

sent to the ordered node for consensus formation. During this period of time,

a number of session nodes are selected. These session nodes further verify the170

block of trades by keeping track of the source and destination nodes along with
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the trades with which they are involved.

DVCC [26] This consensus mechanism evaluates the credit score of each net-

work node which will maintain the distributed ledger of the blockchain, conduct

transaction verification, and perform other blockchain operations. To finalize a175

block that will be added to the distributed ledger as a valid block, more than

2/3 of the votes are required from both verifier nodes and member nodes. Two

voting strategies are introduced. In the simple voting mechanism, each verifier

node votes for the block and they have the same rights. On the contrary, in the

weight-based voting mechanism, the voting right is made proportional to the180

credit score of each individual blockchain node.

Tree Chain [12] This consensus protocol introduces a randomization pro-

cess for selecting a validator node which will commit or store transactions and

blocks to the distributed ledger at low computational cost. This scheme uses

the output of a hash function to commit transactions in the ledger. A valida-185

tor node is selected randomly to commit a transaction depending on the most

significant bit (MSB) of the hash of the transaction. The authors termed this

MSB a “consensus code.” In each transaction committal period, each validator

node is assigned a particular consensus code, so a transaction is only committed

in the ledger by randomly selecting a validating node.190

3D-GHOST [23] The dynamic weight distribution is first considered when

designing a 3D-GHOST consensus mechanism to better address the real-time

distributed ledger state. Dynamic weights are formed based on three metrics,

cardinal value, data validity and contact degree, where cardinal value is related

to the block creation rate, data validity is related to valid transaction committal,195

and contact degree is related to the connection between the vertex and the

entire ledger. In addition, a contact degree greedy traversal algorithm is used

to compute the dynamic weights. Based on these two mechanisms (dynamic

weights and greedy search algorithm), a 3D-GHOST consensus is developed

which helps the peer nodes reach a consensus about the transactions in the200

network.

Groupchain [22]A number of blockchain nodes form a group in which one
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Figure 2: Network architecture of Industrial IoT-integrated Hyperledger blockchain method.

Each IoT device sends the sensed data to the IoT gateway node. The IoT gateway node

performs two roles, as a client and an ordered node. The gateway node generates a transac-

tion proposal, sends the transactions, collects the transactions, and orders the transactions.

The edge servers work as both endorsing and committing nodes. The edge servers verify

transactions through CC, reach a consensus, and store the block in the blockchain.
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node becomes the leader node and the others act as member nodes. The leader

node serializes all of the received transactions and creates a block. This newly

generated block is broadcast to all member nodes in the group. When the205

member nodes receive this block for verification, the member nodes verify the

transactions and broadcast the transaction results to each other along with their

individual signatures. Upon receiving results from other member nodes, each

member node matches the received results with its own verification results. If

the block is considered a valid block, then the member nodes sign the block210

and forward it to the leader. If the majority of the results from the member

nodes are valid, then the block is disseminated to all of the blockchain nodes

for storage.

The summary of the above consensus mechanisms of blockchain-enabled IoT

networks shows that all of the schemes are similarly complicated in terms of data215

verification. Some of the studies do not clarify the process of data verification.

Table 1 shows the major contributions and limitations of these methods in terms

of data verification.

3. System Model

We have used Hyperledger Fabric as the underlying blockchain architecture.220

Figure 1 shows the basic architecture of the Hyperledger Fabric network, in

which a client sends transactions to the endorsing peer nodes. The endorsing

peer nodes verify the transactions based on the CC (CC is the smart contract

for Hyperledger Fabric) logic and return the endorsed transactions (signed with

a private key) to the clients. The clients collect the endorsed transactions and225

forward these transactions to the orderer nodes. The orderer node creates a

block of transactions and disseminates it to all of the peer nodes in the network.

The committer nodes validate each transaction according to the endorsement

policy and stores the validated transactions in the blockchain. In this work, we

have integrated the Hyperledger Fabric blockchain platform into an industrial230

IoT network. The following subsections will illustrate the use of Hyperledger
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Fabric in the IoT network.

3.1. Network Model

IoT devices are low-powered and do not have enough resources to support a

blockchain ledger and other functionalities of Fabric. Therefore, the edge nodes235

will host the blockchain. The edge nodes are connected to each gateway node

of the IoT devices. The IoT devices send the sensed data to the IoT gateway

nodes. The gateway nodes forward these data as transactions to the edge nodes,

where the consensus mechanism is conducted to verify the data and validate

the transactions. Fig 2 shows the overall architecture of the Fabric-enabled IoT240

network, in which each IoT device is connected to an immediate gateway node.

The gateway node forwards the collected data to the edge nodes. Finally, the

edge nodes conduct the consensus mechanism.

3.2. Network Entities

3.2.1. IoT nodes245

IoT nodes are low-powered sensor devices equipped with various types of

sensors, such as a temperature sensor, humidity sensor, pressure sensor, and

so on. Each IoT device also consists of a microprocessor, a power unit and

a communication transceiver. In an industrial scenario, the IoT devices are

attached to the industrial machinery in order to measure the performance of250

that machinery. An IoT device senses the intended data and forwards that data

to the IoT gateway node.

3.2.2. IoT Gateway Node (As Client Node)

A client represents an application that generates a transaction proposal. In

a business blockchain network, a client node works on behalf of an end user.255

However, in the IIoT scenario, each IoT gateway node operates as a client node.

The IoT gateway node communicates with a peer node of the blockchain network

to exchange data as payload over the transaction proposal message. This node

is responsible for transaction generation and endorsed transaction reception.
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3.2.3. Edge Server (As Peer Node)260

A peer node can be defined as a blockchain node that keeps a copy of the

distributed ledger and stores all transactions as blocks in the ledger [37]. Since

this type of node requires sufficient resources, such as memory and computing

power, we have assigned the edge server to this role. Some edge servers as peer

nodes will also work as endorsing nodes. As an endorsing node, an edge server265

executes the transactions from the client node following the logic implemented

in the CC and endorses the transactions. Moreover, a group of endorsing edge

server nodes verifies the transactions by invoking the CC and reaches a consensus

in the network.

3.2.4. IoT Gateway Node (As Ordered Node)270

Since a node is a logical entity and multiple nodes can reside in the same

physical device [38], therefore we also considered an IoT gateway node as an

orderer node. As an orderer, the IoT gateway node orders the received transac-

tions in ascending or descending order and creates a block of transactions. This

block of transactions is broadcasted to all peer nodes in the blockchain network275

to store the transactions in the ledger.

3.2.5. Edge Server (As Committer Node)

A committer node in a Hyperledger Fabric blockchain system only contains

a copy of the distributed ledger. In our scenario, an edge server also works as a

committer node. All edge servers contain a copy of the ledger. However, some280

edge servers host both the chain code and a ledger copy, so they work as both

endorsing nodes and committer nodes. As a committer node, an edge server

stores the block of the transactions in the ledger following the endorsement

policy.

3.2.6. Membership Service Provider285

Membership Service Provider (MSP) is a Fabric element that handles cer-

tificates, key management, authentication and other cryptography protocols. In

our IoT network, the MSP will store the public key of each of the IoT Gateway
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nodes. MSP will provide the public keys to the CC during identity verification

process.290

3.3. Transaction Propagation

3.3.1. Transaction Proposal

After obtaining data from the IoT nodes, an IoT gateway node generates a

payload. These payloads will be attached to the transaction proposal message

along with other identifiers of the transactions (TX). A transaction proposal

message can be formed as below

TX = {GWNID, TXID, CCID, Payload,GWNSign}

Where, GWNID is the unique identifier of the IoT Gateway node, TxID is

the ID of the transaction, CCID is the ID of the specific CC to be invoked,

Payload contains the data of the IoT nodes and GWNSign denotes the digital

signature of the GWNID . Payload itself can be defined as,

Payload = {IoTnodeID,Data, timestamp}

After forming the transaction proposal message, the GWN sends this proposal

message to the endorsing peer nodes of the Hyperledger Fabric network. The

GWN also keeps a copy of the transaction in its memory. In Figure 2, step 1295

shows the IoT nodes sending data to the IoT GWN, and step 2 shows the IoT

GWN sending the transaction proposal message to an endorsing peer node such

as an edge server (B).

3.3.2. Transaction Endorsement

Upon receiving the transaction proposal message from the GWN, the peer300

node (endorsing peer) (B) in Figure 2 executes the transaction, meaning that

it verifies the transaction based on the verification logic written in the CC

by invoking the appropriate CCID as mentioned in the transaction proposal

message. CC invocation is shown in step 4 of Figure 2. Before verifying the

payload, the endorsing peer will check the ID of the IoT node by invoking the305
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Figure 3: Identity verification procedure by the peer node. Each peer node first decrypts the

digital signature using the corresponding public key and extracts the hash value. Then, it

computes the hash value of GWNID from the proposal message.

public key from MSP. After executing the transaction through the CC logic, the

endorsing peer endorses the transaction by signing it and then returns it to the

GWN. We discussed the CC operations in detail in Subsection 3.4. The below

mathematical notation denotes the return message from the endorsing peer to

the GWN.310

RTX = {TXID, TX − V erified, Tx− Endorsed,EPsign}

or similarly,

RTX = {TxID, Tx−NotV erified, Tx− Endorsed,EPsign}

Where, TXID denotes the transaction that is executed and endorsed, TX −Verified

means the payload in the transaction passed the verification logic, TX − Endorsed

means the transaction is executed by the Endorsing peer and finally, theEPsign

denotes the sign of the Endorsing peer which executed theTX .

3.3.3. Distributing blocks315

As shown in Figure 2, step 6, the client node sends all collected endorsed

transactions to the orderer node. The orderer node first orders all the trans-

actions in ascending or descending order, and then it creates a block. Next, it
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calls the Broadcst() function to disseminate the newly created block to all edge

servers (peer nodes) in the network, as shown in step 7 of Figure 2.320

3.3.4. Block committing

Upon receiving the ordered transactions of the block, each peer node (peer

nodes (A), (B), (C)) in Figure 2 iterates over each transaction and validates

it according to the endorsement policy set by the network administrator. Any

transactions that are not verified are discarded from the block. Only verified325

and validated endorsed transactions are stored in the blockchain by invoking

the commit() function.

3.4. Consensus Mechanism & Transaction Verification

Since there is no central authority in the blockchain realm, any decisions in

a blockchain network can be made through a consensus protocol. Consensus330

refers to a method of reaching an agreement in a group such that the agreement

benefits the entire group. Consensus decision making is a group decision making

process in which the group members develop and agree to support a decision

that is in the group’s best interest on the whole. The most popular consensus

mechanisms in blockchain networks are PoW, PoS, and PoAh. Use of these335

consensus mechanisms would introduce complexity in resource-constrained IoT

networks, and IoT-suitable consensus mechanisms do not address the verification

of the originality of the IoT data, as discussed in Section 2. Therefore, here, we

have integrated an unsupervised machine learning algorithm with CC to reach a

consensus and to verify the data contained in the transactions from the end IoT340

devices. The committing nodes then generate a hash value and append it to the

block before adding the verified block to the blockchain. The AE is used as the

underlying data verification machine learning architecture. The AE takes the

data generated by the IoT devices as input and tries to predict any abnormalities

in the data according to the training data or learned behavior. Fig. 4 shows the345

consensus process, in which each endorsing node invokes the CC to verify the

transactions. The CC itself verifies the ID and data of the payload contained
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in the transaction, as described below. If 2 out of 3 endorsing peer nodes agree

on the verified result, then the data is considered valid and original, and thus

suitable for storage in the ledger. 2 out of 3 verification result is considered as350

the endorsement policy.

To verify a transaction generated by an IoT GWN, each peer node invokes

a CC according to the CCID mentioned in the transaction proposal message.

The two portions of the transaction are verified sequentially.

3.4.1. Identity Verification355

In the first phase, the ID of the IoT GWN is verified. The endorsing peer

node first extracts the GWN ID and GWN digital signature from the transaction

proposal message. Then, the endorsing node invokes the public key of the GWN

from the MSP and gets a hash value by decrypting the digital signature. At the

same time, the endorsing node also generates a hash value from the GWNID . If360

the two hash values are the same, then the GWNID is verified.

3.4.2. Data Verification

The AE neural network comprises an encoder and a decoder, which are the

neural network with weights and biases. The encoder part of the AE compresses

the input data of the transaction’s payload into a low-dimensional representa-365

tion. On the contrary, the decoder tries to regenerate the input data based on

the low-dimensional output of the encoder. The following mathematical equa-

tions show the working mechanism of an AE [39].

• Input layer: A n dimensional vector V represents the input values for

the encoder or input layer. The vector V can hold different kinds of370

data for instance, temperature readings from the sensors, electrical data,

pressure data etc. Mathematically, the vector V can be written as V =

{v1, v2, v3, ..., vn} where the vn denotes data.The encoder uses the mapping

function in Equation 1 to generate low-dimensional data from the input
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or training data.375

hi = fθ(xi) = s(Wxi + b) (1)

Where, xi is the training dataset given as input to the AE. W = d′ × d,

d′ denotes the hidden layer of the encoder neural network. b denotes the

bias value and finally s defines the activation function.

• Hidden layer: The purpose of the hidden layer of the AE is to learn the

pattern or behavior of the dataset from the input layer so that it can380

identify any misbehaviour or anomaly in unseen data. AE can multiple

hidden layer but to reduce computational overhead, one single layer is

used and one hidden layer performs well in practice[40].

• Output layer: In case of output layer, the generated output from this

layer has the same dimension as input layer and mathematically it can be385

represented as V ′ = v′1, v
′
2, v

′
3, ..., v

′
n}. decoder regenerates the input from

the low dimensional output of the encoder through the mapping function

as stated below-

hi = gθ′(xi) = s(W ′hi + b′) (2)

Similarly, W ′ is the weight matrix and b′ is the bias value.

To learn the hidden pattern of the input data, MSE can be used as a loss func-390

tion in neural networks. When a trained AE is tested on a dataset that is similar

to the training dataset, the AE will provide low reconstruction error, compared

to high reconstruction error for anomalous test dataset. To distinguish among

anomalous IoT data and normal IoT data, a threshold value should be defined

based on the reconstruction error. If the reconstruction error is higher than the395

threshold value for a new, unseen dataset then the new dataset is considered

anomalous data.

18



In
p
u
t D

ata

R
esu

lt

Pu
b
lic K

ey

MSPAuto Encoder

Chaincode Edge Server
(Endorsing Peer)

Edge Server
(Endorsing Peer)

Edge Server
(Endorsing Peer)

Figure 4: The consensus process of the proposed Hyperledger-based IoT network. Three

endorsing peer nodes invoke the chaincode to verify the ID and data from the payload. The

votes of at least 2 out of 3 peer endorsing nodes are required to complete the consensus process.
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Figure 5: This figure depicts the learning curve of the AE model. It shows how loss decreases

with the increasing epochs.

4. Case Study

We have conducted a case study to implement our proposed method. This

section describes that case study that is divided into two subsections. The first400

subsection shows the training, testing and performance metrics of the AE model

for the IoTID20 dataset. The second subsection shows the CC deployment and

working principles of CC with the corresponding block architecture of Fabric.

4.1. Autoencoder

4.1.1. Data Pre-processing405

For the case study, we have considered the IoTID20 dataset [41]. This

dataset is comprised of 80 features of IoT network and has 3 labels. These labels

include binary (normal and anomaly), categorical (normal, DoS, Mirai, MITM,

Scan) and sub categorical (normal, Syn flooding, Brute force, HTTP flooding,

UDP flooding, ARP spoofing, Host Port, OS). Since our proposed model only410

considers the separation of anomalous data from original data, we discarded the

categorical and sub-categorical labels from the IoTID20 dataset. The dataset

contains 40, 073 instances of normal and 585,710 instances of anomalous exam-

ples. We replaced the infinite and missing values with a Python numpy-based

empty placeholder (nan). Also, to scale/normalize the features of the dataset be-415
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tween 0 and 1, we applied the normalized function. Since variables or features

measured in various scales may cause bias during model fitting, the Python

based open-sourced scikit-learn library’s MinMaxScalar function was used to

scale all variables in the range of 0 to 1.

The dataset was split into training and testing sets (67% and 33%, respec-420

tively). That is, 67% of the shuffled normal and anomalous dataset was used

to train the AE model and 33% of the dataset was used to test the model.

The number of input, hidden and output layer units of the AE is 77, 8 and 77,

respectively. The model was trained over 100 iterations (epochs) with a batch

size of 100. Figure 5 shows the training loss and validation loss curves. The425

two are similar to each other and training the model for more than 100 epochs

merely stabilizes the losses. Based on the loss, we set the threshold for anomaly

detection at 0.15.

4.1.2. Evaluation

To evaluate the trained AE with the IoTID20 dataset, we used accuracy,430

precision and recall metrics. These metrics were computed using the following

equations based on [42]

Accuracy =
TP + TN

TP + TN + FP + FN

This equation gives the accuracy of the model, or the portion of the total

dataset that is classified correctly by the AE.

Precision =
TP

TP + FP

Precision defines the ratio of the total number of correctly classified anoma-

lous data points to the total number of predicted anomalous data points.

Recall =
TP

TP + FN

Recall is also known as sensitivity. This metric defines the ratio of the total435

number of correctly classified anomalous data points to the total number of

anomalous data points.
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In the above equations, TP, TN, FP, and FN represent the true positive

rate, true negative rate, false positive rate and false negative rate, respectively.

The TP, TN, FP and FN values, which were 185, 500, 12, 13, 290, and 7, 585,440

respectively, were used to form a confusion matrix. Figure 6 shows the eval-

uation results. We obtained an accuracy of 89.89%, precision of 93.31% and

recall of 96%. The high precision and recall values indicate good performance.

Also, table 2 shows the detection results. It is clear that, when the loss value

for the test dataset is higher than the defined threshold, the data is classified445

as anomalous.

Table 2: Detection results of test data

Loss mae Threshold Anomaly

0.027934 0.15 False

0.029030 0.15 False

0.038291 0.15 False

0.197861 0.15 True

0.056262 0.15 False

0.172202 0.15 True

0.172211 0.15 True

0.130087 0.15 False

0.028450 0.15 False

0.191043 0.15 True

4.2. Chaincode deployment

We have used MF to show the implementation of our CC inside fabrics en-

dorsing peer node and to show the working of our CC. MF is a Hyperledger

fabric network tool developed by Tong Li which enables one to setup and ex-450

pand fabric network, deploy and install CC, invoke transactions, storing the

transactions in the blocks and configuring the channels [43]. CC represents a

piece of program which can be written by GO, Java or NodeJS. We have used

Java for implementing our CC inside MF framework of Hyperledger fabric. In
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Figure 6: Evaluation results of the trained AE model based on accuracy, precision and recall.

our implementation, we have used the methods provided by the CC stub in-455

terface that is init() and invoke() methods. The Init() method is responsible

for initializing the parameters when the CC is installed at each endorsing peer

node. On the contrary, the invoke() method is called when a new transaction

is received by the endorsing peer node. This invoke() method conducts read

and write operations in the ledger. In MF we have put our CC Java code inside460

the CC directory of the vars directory of Minifabric (Minifabric creates a sub

directory inside the working directory where all the required scripts and files are

generated through corresponding commands). First a fabric network is started

through minifab up command which additionally creates a channel and con-

nects all the nodes through this channel. By default a built in CC installs and465

instantiates in the nodes. Therefore we installed our own CC at each peer node

(docker container) through the CC installation command minifab install -n iot-

sensor -v 1.0. After installation, the CC is approved, committed and initialized

by the corresponding Minifabric commands. After successful installation of the

CC, we have called the invoke() method through the invocation command for470

passing some sample data as payload of a transaction. The invoke() method

itself calls the trained AE model for verifying the data. The AE differentiates

the anomalous data from the normal data and returns the result as Boolean

value to the CC. Based on the results the CC writes those sample data inside
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{
  "block_hash": "LjfGHzaXu32S7FD2I2zSHcfLOSsO6ZUxWFJ8o4Jk5Tw=",
  "data_hash": "ViSs58m5oipJof+WXc9hu+td10Aud9yM3xZFHfzxGyA=",
  "number": "1",
  "previous_hash": "sfhuWRUe0UsRXSU2cNUFjcBNNf+WoocIUChA9Z0ABEU=",
  "txs": [
    {
      "args": [
        "invoke",
        "75",
        "1",
        "1",
        "982",
        "1430"
      ],
      "chaincode_id": "iotsensor",
      "tx_id": "78b474aa376357d4d8105eeec4d56cb4a4e5922da0

3d3c6ac07c5673351f7095"
    }
  ]
}

{
  "block_hash": "mVPTtYiMHHcpKa/EUgTY5QhRUSqXRIX2pUPAx0vZGHU=",
  "data_hash": "EEt1JjDMunH5WXqI0TZ0sfG52nV9N9y54wl8tjDN7nc=",
  "number": "2",
  "previous_hash": "LjfGHzaXu32S7FD2I2zSHcfLOSsO6ZUxWFJ8o4Jk5Tw=",
  "txs": [
    {
      "args": [
        "invoke",
        "5310",
        "1",
        "2",
        "0",
        "0"
      ],
      "chaincode_id": "iotsensor",
      "tx_id": "74c1da2f23b1a0a1c1724ae6cf4d5810c291a600788a

105760a97c4596442931"
    }
  ]
}

{
  "block_hash": "LEOxunzybdew7d9YC7RHG+pRZP8B0dsAfRyBBLht6sk=",
  "data_hash": "VALLaePFigWTDQ+6AdxVDDbN8PKNJVgrhc9uBZIttP8=",
  "number": "3",
  "previous_hash": "mVPTtYiMHHcpKa/EUgTY5QhRUSqXRIX2pUPAx0vZGHU=",
  "txs": [
    {
      "args": [
        "invoke",
        "151",
        "0",
        "2",
        "0",
        "2776"
      ],
      "chaincode_id": "iotsensor",
      "tx_id": "9b34aa1990af6e26bfa990bcc8a0ce429b0b8969939a93

d0ed8bc2c3b042dd46"
    }
  ]
}

{
  "block_hash": "zAHVJ0X265Hg0jYnLYa8ff/xwGRb1usEaiKyEQemUpw=",
  "data_hash": "MaQAsHIas7UpssmCkWyX16XtfgV/iZYdTMfPH3u8hcs=",
  "number": "4",
  "previous_hash": "LEOxunzybdew7d9YC7RHG+pRZP8B0dsAfRyBBLht6sk=",
  "txs": [
    {
      "args": [
        "invoke",
        "153",
        "2",
        "1",
        "886",
        "420"
      ],
      "chaincode_id": "iotsensor",
      "tx_id": "af9ade4d7450e64d1a980276259adcff196d6734a52e075

752839439b108a816"
    }
  ]
}

{
  "block_hash": "EAv4oBYfvk2m08ivpvzsh03HwsLIdfDOYAhCLc08T/4=",
  "data_hash": "8tiHmkDGe9R7Rj7G0J/40EI3KQKo0WVMk/rxkzGnnrU=",
  "number": "5",
  "previous_hash": "zAHVJ0X265Hg0jYnLYa8ff/xwGRb1usEaiKyEQemUpw=",
  "txs": [
    {
      "args": [
        "invoke",
        "157",
        "2",
        "1",
        "0",
        "0"
      ],
      "chaincode_id": "iotsensor",
      "tx_id": "a8676f1d2f7ff7f29a1c0d92ee3eec724f537b659ecc8202

db13851491468ca4"
    }
  ]
}

{
  "block_hash": "sfhuWRUe0UsRXSU2cNUFjcBNNf+WoocIUChA9Z0ABEU=",

  "data_hash": "0",
  "number": "0",
  "previous_hash": "0",
  "txs": [
    {
      "args": [],
      "chaincode_id": "",
      "tx_id": ""
    }
  ]
}

A B

C D

E F

Figure 7: Stored transactions in the blocks of the blockchain. After verification through the

AE, the data of the IoT nodes will be stored in the blockchain. (A) block is the genesis block

and the remaining blocks represent 5 different blocks with different data with transaction ID.
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Figure 8: Performance results of the chaincode within the blockchain framework. The perfor-

mance metrics are: maximum latency (3.19 sec), minimum latency (0.92 sec), average latency

(2.84 sec) and throughput (1.3 transactions per second ).

blocks of the fabric (if the returned result is false meaning the passed data is475

not anomalous). Figure 7 shows the output of the block query command of MF

where we have called the invoke() method 5 times and passed different data as

payload. Figure 7 (A) shows the genesis block structure and the rest of them

illustrates the generated block with the verified data from the transactions. We

have also tested our chaincode using Hyperledger caliper module integrated in480

MF through minifab caliperrun command. Fig 8 shows the performance from

caliper report in terms of latency and throughput. It shows that the maximum

latency is 3.19s and the throughput is 1.3 TPS.

5. Conclusion

Data originality verification is essential in data-driven industrial IoT net-485

works to ensure proper maintenance and control of industrial machinery. False

data may be generated due to faulty IoT nodes or anomalous data may be

injected by nefarious actors who provide misleading information to the appli-

cation layer. Recently proposed consensus mechanisms in blockchain-enabled

IIoT networks do not consider data verification issues, and may thus allow stor-490

age of anomalous data in the ledger. Also, several previous studies used pub-
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lic blockchain networks for IIoT networks, which are less secure then private

blockchain technologies. To overcome these problems, we proposed a Hyper-

ledger Fabric network, which is a permissioned blockchain network, and incor-

porated a network anomaly detection machine learning model, AE, with the CC495

to reach a consensus in the network. The CC invokes the AE after receiving

a transaction from the client nodes. Only the verified original data from the

AE is stored in the blockchain through the CC. We trained and tested the AE

using the IoTID20 dataset and used Minifabric to illustrate the CC operation

and block structures with verified data. In our future work, we will reduce the500

complexity of chaincode and enhance the performance in terms of throughput

and latency. Also, the compatibility of using AE in Blockchain IoT system will

be investigated in our future work.
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