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Abstract: Flame-retardant science and technology are sciences developed to prevent the occurrence
of fire, meet the needs of social safety production, and protect people’s lives and property. Rigid
polyurethane (PU) is a polymer formed by the additional polymerization reaction of a molecule with
two or more isocyanate functional groups with a polyol containing two or more reactive hydroxyl
groups under a suitable catalyst and in an appropriate ratio. Rigid polyurethane foam (RPUF) is a
foam-like material with a large contact area with oxygen when burning, resulting in rapid combustion.
At the same time, RPUF produces a lot of toxic gases when burning and endangers human health.
Improving the flame-retardant properties of RPUF is an important theme in flame-retardant science
and technology. This review discusses the development of flame-retardant RPUF through the lens
of bibliometrics. A total of 194 articles are analyzed, spanning from 1963 to 2021. We describe the
development and focus of this theme at different stages. The various directions of this theme are
discussed through keyword co-occurrence and clustering analysis. Finally, we provide reasonable
perspectives about the future research direction of this theme based on the bibliometric results.

Keywords: rigid polyurethane; bibliometrics; flame retardant; expandable graphite; thermal degradation;
composite

1. Introduction

With the rapid development of the social economy and urbanization, high-rise build-
ings have emerged in the city. At the same time, however, building energy consumption has
become an important part of society’s energy consumption. Therefore, the development of
energy-saving buildings has become the consensus of today’s society. Organic insulation
materials are widely used worldwide due to their advantages, such as low density and
excellent insulation properties [1,2]. However, most common organic exterior insulation
materials available today have porous structures and huge specific surface areas that are
very flammable [3–5]. Once ignited, the flame spreads rapidly, while many toxic gases are
produced with significant fire hazards. Therefore, the research and development of fire-safe
exterior wall insulation materials and systems to reduce building fire hazards have become
important themes in today’s urban public safety and building development. Currently
used organic exterior insulation materials are mainly rigid polyurethane foam (RPUF),
expanded polystyrene (EPS), extruded polystyrene (XPS), and phenolic foam (PF) [6–8].
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Polyurethane (PU) is a class of polymer compound containing carbamate (-NHCOO-)-
repeating units in the main chain, generally prepared by polyorganic isocyanate and polyol
reaction. This class of polymer was first synthesized by the German chemist Otto Bayer
and his colleagues in 1936. After theoretical research, industrial processes, and application
research, the PU industry has developed rapidly in the subsequent development. PU
materials with different structures and properties can be prepared using raw materials with
different types and numbers of functional groups [9,10]. Among them, RPUF is produced
by the reaction of polyol and polyisocyanate, which generally accounts for more than 80%
of the total mass of RPUF [11].

The excellent performance of RPUF cannot be achieved without additives. The addi-
tives are flame retardants, catalysts, surfactants, and foaming agents [12]. In the preparation
of RPUF, the following chemical reactions exist simultaneously: (1) foaming reaction be-
tween isocyanate and water; (2) reaction between isocyanate and hydroxyl-containing
compounds; (3) trimerization reaction between isocyanates; (4) chain expansion reaction
of amine-based compounds; and (5) diuret reaction and ureidoformate reaction. In the
presence of a catalyst, these reactions proceed simultaneously at a fast rate, in some cases,
most of the reaction takes place with a few minutes, and, finally, a highly cross-linked
RPUF is prepared.

RPUF has excellent thermal insulation properties with a closed-cell ratio of over 90%
and low thermal conductivity of the air inside its bubble pores. Therefore, RPUF is a
good adiabatic insulation material, even if the thickness is very thin [13–15]. RPUF has
good mechanical strength and still has good dimensional stability at low temperatures.
Specifically, when RPUF was kept at −20 ◦C for 24 h, the linearity of change was less than
1%. RPUF also has excellent aging resistance and long insulation life. Practical applications
showed that RPUF can be used at −190–70 ◦C for up to 14 years. While the use of RPUF is
growing rapidly, it also faces some pressing problems. The limiting oxygen index (LOI) of
RPUF without flame-retardant treatment is only 18%. It is very easy to ignite and burns
quickly, and, in the process of combustion, it releases hydrogen cyanide, carbon monoxide,
and other toxic gases, accompanied by smoke [16]. With the gradual expansion of RPUF
applications, potential fire hazards during use must also be considered. Therefore, it is of
great practical importance to give RPUF flame-retardant properties and low toxicity by
treating it with a flame-retardant treatment [17,18].

Several scientists provided excellent summaries of RPUF [19–22]. For example, a
review of the state-of-the-art design of RPUF was conducted by Zhu et al. [21]. They sum-
marized the reactive-, additive-, and coating-type flame retardants for RPUF. In addition,
they compared the performance of different RPUFs. The use of bibliometrics allows for a
kind of statistically based analysis of the evolution of a topic. This review summarizes the
development of flame-retardant RPUF. This review attempts to summarize and address the
following questions using bibliometrics:

(1) Which countries/companies have made important contributions to the development
of flame-retardant RPUF? What led them to devote themselves to this theme?

(2) Is there an extensive international exchange of cooperation on the theme of flame-
retardant RPUF?

(3) What types of flame retardant can improve the flame retardancy of RPUF? What is
their flame-retardant mechanism?

(4) Have the rapid developments in materials science in recent years had an impact on
the research on this theme?

(5) Are the flame-retardant properties that RPUF exhibits in the laboratory applicable
when used as a building insulation material?

2. Methods

Two pieces of bibliometrics software were used in this systematic literature review. The
first was CiteSpace, developed by Dr. Chaomei Chen, a professor at the Drexel University
School of Information Science and Technology [23–26]. It has become one of the commonly
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used pieces of software in bibliometrics analysis. CiteSpace 5.8R3 was used to calculate
and analyze all documents. COOC is another emerging piece of bibliometrics software [27].
COOC12.6 was used to calculate and analyze all documents. We used the core collection on
Web of Science (SCI-Expanded) as a database to assure the integrity and academic quality
of the studied material. “‘Rigid polyurethane’ retardant”, “‘rigid polyurethane’ flame”,
and “‘rigid polyurethane’ antiflaming” were used as a “title”. The retrieval period was
indefinite, and the date of retrieval was 30 December 2021. A total of 194 articles were
retrieved, spanning the years from 1963 to 2021. The detailed systematic literature search
(preferred reporting items for systematic reviews and meta-analyses, PRISMA) from the
Scopus database is shown in Figure 1.
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this study.

3. Results and Discussion
3.1. Developments in the Research Field
3.1.1. Literature Development Trends

The number of papers published is an important indicator used to measure whether
a theme is widely attracting the attention of scholars. Especially for a theme with a long
history, analyzing the number of papers published can give an idea of whether the field
has seen breakthroughs in its development. Figure 2 shows the annual and cumulative
publications on flame-retardant RPUF from 1963 to 2021. As can be seen from the figure,
the earliest published record on this theme dates back to 1963. James J. Anderson from the



Polymers 2022, 14, 3011 4 of 24

Virgina-Carolina Chemical Company investigated the physical and chemical factors that
affect the flame retardancy of RPUF [28]. His investigation found that the key to improving
the flame resistance of RPUF was to reduce the amount of phosphorus in the additive. The
second-ranked factor was the internal structure of the RPUF, although this was directly
related to the type of polyol used. The following year, two more papers on RPUF were
published, proposing the preparation of RPUF using chlorinated xylene derivatives [29]
and monobrominated toluene diisocyanate [30], respectively. For a long time afterward,
sporadic publications were devoted to synthesizing novel RPUF and the corresponding
property determination. It is worth noting that the publication of papers in this very early
stage was led by chemical companies rather than based in universities or national academic
institutions. On the other hand, the core collection on Web of Science started to include
papers in 1990. Although it retroactively included data from before 1990, not all papers
on RPUF are included in the database due to the rules of searching journals. However,
according to the trend shown in Figure 1, there was no continuous year-by-year publication
on this theme until the beginning of 2005. Therefore, data prior to 1990 do not affect the
main conclusions drawn from the bibliometric analysis of this theme. In the course of
history, the annual number of academic papers presented a rising trend. In addition to the
increase in the total number of academic papers published, the number of researchers and
academic topics also showed a rising trend. However, there is no effective model that can
be used as a background line for contrasting the difference between a topic’s growth and
its historical background. Therefore, when we use bibliometrics to discuss a theme, we
still analyze whether a theme has received attention from the academic community by the
annual publication number.
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Starting from 2005, this theme started to be featured in publications every year, but
the number of annual publications was below five until 2013. Starting in 2013, the number
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of papers on flame-retardant RPUF began a marked upswing and briefly reached a peak
(16 papers) in 2015. Within this period, intumescent, flame-retardant RPUF received special
attention. In particular, in 2013, more than half of the papers focused on the investigation
of intumescent, flame-retardant RPUF [31–34]. This trend was not consistently maintained,
with the annual number of publications showing a significant decrease in 2016 and 2017,
with 5 and 10 publications, respectively. However, this theme started to attract much
attention once again in 2018. So far, the annual publication rate has remained at more than
24 papers. From these historical data, it can be seen that flame-retardant RPUF had a brief
research boom between 2013 and 2015. After two years of silence, the theme has returned
to the forefront and has remained hot.

3.1.2. Journals, Cited Journals, and Research Subjects

Figure 3 shows a tree diagram of the top eight journals that have published a number
of flame-retardant-RPUF-related papers. The Journal of Applied Polymer Science has
published an unexpectedly large number of papers on this theme. Specifically, more than
a quarter of the papers on this theme were published by this journal. This phenomenon
is also relatively rare in bibliometric surveys. This may be because flame-retardant RPUF
is a material directly related to industrial applications. Therefore, the relevant papers
were focused on measuring its functional properties rather than limited to theoretical base
studies. The Journal of Applied Polymer Science is a journal that publishes the properties of
polymeric materials for different applications, making it the most important journal relating
to this theme. In addition, the main content on this theme investigates the flame-retardant
properties of RPUF, so the thermal stability of RPUF and the processes and products of
decomposition were also important targets for investigation, which can explain the second-
ranked journal being Polymer Degradation and Stability. In addition, a significant share
belonging to polymer-related journals can be seen in Figure 3. The remaining journals also
include a journal related to thermodynamics (Journal of Thermal Analysis and Calorimetry)
and a flame-science-related journal (Journal of Fire Sciences). The scopes of these two
journals are also directly related to this theme.
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Figure 4 shows the cumulative number of publications on this topic in the journals
in Figure 3 at different times. Among them, the European Polymer Journal published a
series of papers on this topic before 1994, which was the earliest among all the journals
shown in Figure 3. In addition, the Journal of Applied Polymer Science published a series
of papers on this topic before 2010. Most of the other journals in Figure 3 published papers
on the theme after 2010. However, the analysis shown in Figure 4 had some limitations.
This is because journals are launched in a sequential order. Even classic journals change
their names for a number of reasons. Other journals cease, making it impossible to measure
their contribution to a theme statistically. However, journal analysis can give some hints
on a theme’s publishing strategy. Using flame-retardant RPUF as an example, it can be
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seen that polymer-related journals were preferred for this theme. Journals focusing on
thermodynamics and fire science were also worth considering.
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flame-retardant RPUF.

In addition to the number of papers on the theme published by the journal, the
frequency with which the journal is cited by papers related to the theme is also an important
indicator. Table 1 shows the top 15 cited journals on flame-retardant RPUF. The top three
journals and the order are consistent with the journals in Figure 3, representing that these
journals published a large number of papers in this theme and were also the most cited
journals in this theme. All eight journals in Figure 3 are included in Table 1, representing the
significant role these journals played in advancing this theme. In addition, not surprisingly,
some comprehensive materials science journals were often cited, such as Fire and Materials
and Composites Science and Technology. It is worth noting that the appearance of the two
journals did not follow the pattern derived in Figure 3. The first journal is the fifth-ranked
Industrial & Engineering Chemistry Research. This is a journal that is very well known in
chemical engineering. RPUF’s obvious value can explain its presence and high ranking for
industrial applications. It can even be said that the development of research on this theme
was led by the need for industrial development (based on the conclusions drawn from the
publication of papers on this theme at an early stage in Figure 2). The second journal is
Industrial Crops and Products, ranked 12th, and it is not easy to explain the presence of
agriculture-related journals with a high ranking in this theme. We found two highly cited
papers related to RPUF in this journal [35,36]. They both used castor oil as a polyol for the
synthesis of RPUF. Because of the relationship between castor oil and crops, the journal
published both papers and received considerable attention on this theme.

To further explore the information that journals can provide, we constructed a co-
occurrence network of cited journals related to flame-retardant RPUF (Figure 5). In this
figure, we have not labeled most of the journals that were discussed in Figure 3 and Table 1,
except for Industrial Crops and Products. The figure shows that Industrial Crops and
Products, although it had many citations (large radius of the node), is not in the center of
the co-occurrence network, which means that the paper on flame-retardant RPUF published
in Industrial Crops and Products was not cited by the most published series of journals on
this theme. This often occurs when work on one theme is cross-researched with other areas.
A very similar situation in Figure 5 is also seen for Applied Thermal Engineering. At the
center of the co-occurrence network are some other journals that significantly impacted
this theme but are not listed in Figure 3 and Table 2, such as Cellular Polymers, the Journal
of Composite Materials, the Journal of Industrial Engineering Chemistry, and the Fire
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Safety Journal. Although these journals have not published many papers on this theme
or are highly cited, they link to a very large number of nodes that represent significant
contributions to the development of this theme. In addition, the co-occurrence network
of cited journals of this theme has a distinct feature in that it contains a large number of
patents (the lower part of the network presents dark nodes and lines). The sub-network
formed by these patents further represents the solid industrial background of the theme.

Table 1. Top 15 cited journals on flame-retardant RPUF.

No. Citation Cited Journal

1 159 Journal of Applied Polymer Science
2 155 Polymer Degradation and Stability
3 96 Polymer
4 94 Polymers for Advanced Technologies
5 91 Industrial & Engineering Chemistry Research
6 84 Polymer International
7 69 Journal of Thermal Analysis and Calorimetry
8 68 Fire and Materials
9 68 European Polymer Journal

10 61 Polymer Composites
11 59 Progress in Polymer Science
12 57 Industrial Crops and Products
13 54 RSC Advances
14 49 Journal of Analytical and Applied Pyrolysis
15 49 Composites Science and Technology
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Table 2. List of journals that have appeared in the co-occurrence network in the last two years.

Year Journals Standardizations/Reports

2021

Chemical Engineering and Processing; Current Opinion in Food Science;
Chemical Papers; Applied Biochemistry and Biotechnology; Engineering

Science; Catalysis Reviews; Applied Sciences; Advanced Science;
Environmental Science & Technology Letters; Chemical Society Reviews; ES
Energy & Environment; ACS Materials Letters; Energy Procedia; Additive

Manufacturing; Reviews on Environmental Health; Journal of Cleaner
Production; The Journal of Supercritical Fluids; Materials Science and

Engineering: C; Waste Management; Materials Research Express; Molecules;
ACS Omega

CEN/TC 127N1424

2020

Advances in Cement Research; Adsorption Science & Technology; Austral
Ecology; Bulletin of Materials Science; Agronomy; Archives of Materials
Science and Engineering; Advances in Polymer Technology; Advances in

Materials Science and Engineering; Advances in Civil Engineering; Applied
Mechanics and Materials; Plastics, Rubber and Composites; Applied Acoustics;

Isi Bilimi Ve Teknigi Dergisi; Journal of Coatings Technology and Research;
Journal of Porous Materials; Experimental Thermal and Fluid Science; Solar

Energy Materials & Solar Cells; International Journal of Heat and Mass
Transfer; Surface and Coatings Technology; Advances in Polymer Technology;

Advances in Materials Science and Engineering; Advanced Powder
Technology; Materials

ISO: 566012015; ISO: 8442014;
ISO: 458922017; ISO: 1135742014;

NISTIR:4664; ISO: 83011991;
IOS: 8452009

Table 2 shows which cited journals this theme was extended to for the first time in
2020 and 2021. Based on the data in Figure 2, it is known that this theme was at the
peak of publication in the last four years, and, therefore, it extended to many journals.
Most of the journals in Table 2 are material-science- and chemistry-related journals. These
journals have a direct and more intimate connection to the theme. In addition, this theme
is beginning to receive more attention in environmental journals, such as Environmental
Science & Technology Letters, Reviews on Environmental Health, Austral Ecology, etc.
This may be because RPUF’s environmental impact is starting to be taken seriously. In
2021, cited journals on this theme also included journals on biology and food science,
further representing that the toxicological properties of RPUF may also affect food safety
and biosafety. It is worth noting that the co-occurrence network of cited journals on
this theme was also extensively involved in international standards and reports in recent
years. We have not encountered this phenomenon when analyzing other themes using
bibliometrics [37–41], further illustrating that this theme, although in a research boom at
this stage, already has an extensive range of applications in the industry.

The category of the published paper can reflect the evolution of the theme. Figure 6
shows the evolution of the category of the flame-retardant RPUF over time. As shown
in the figure, there is an obvious path developing in the category for this theme. In the
early stages of the theme, engineering, chemical engineering, chemistry, and polymer
science led the way. This is because RPUF synthesis is directly related to these fields. At
present, the main methods for preparing RPUF in industrial production are the prepolymer
method, semi-prepolymer method, and one-step method [42]. The prepolymer method
reacts polyester or polyether with polyisocyanate to form prepolymer and then mixes the
formed prepolymer with a catalyst, foaming agent, and other preparation materials to
form RPUF. The semi-prepolymer method is the reaction of polyester polyols or polyether
polyols with excess polyisocyanate to form prepolymer intermediates. The end of the
prepolymer intermediate contains isocyanate group and then the formed prepolymer
intermediate, polyester polyol, or polyether polyol is mixed with the preparation materials
such as polyisocyanate, catalyst, and foaming agent to form RPUF [43]. The one-step
method mixes polyester polyol or polyether polyol, polyisocyanate, a catalyst, a foaming
agent, and other preparation materials to directly foam and generate RPUF in one step.
Starting in 1983, this theme began to enter materials science. This is because inorganic
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fillers are beginning to be widely used to improve the flame retardancy of RPUF. Inorganic
fillers generally have large specific heat capacity; heat conduction can also be heat storage.
Therefore, they can control the temperature of the polymer matrix, and it is not easy for
them to reach the thermal decomposition limit [44]. In 2014, this theme began to rapidly
expand into other categories, including agriculture, agronomy, and thermodynamics. The
papers on agriculture and agronomy were on the previously mentioned use of castor oil
as a polyol to synthesize flame-retardant RPUF and test its performance [35,36]. On the
other hand, the discovery of the thermodynamics field played a very important role in
its subsequent development. Gao et al. [45] investigated the thermal degradability and
flame retardancy of RPUF containing intumescent flame retardants. Papers on this theme
were gradually published in thermodynamics-related journals from this work. Material
flame-retardant performance test methods can generally be divided into six categories:
(1) ignition and flammability (such as ignition temperature and limiting oxygen index);
(2) flame propagation (such as tunnel test and radiation plate test); (3) heat release (such as
cone calorimeter and calorimeter test); (4) smoke generation (such as smoke box test and
soot quality test); (5) combustion product toxicity (such as biological tests and chemical
analysis method); and (6) flame resistance (such as building components fire resistance test).
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In 2018, this theme entered the category of forestry for the first time. Lu et al. [46] inves-
tigated the flame-retardant properties of lignosulfonate-based RPUF. Lignin is considered
an excellent carbonizing agent because of its high aromatic ring content and high carbon
content. Starting in 2019, environmental science and ecology started to focus on flame-
retardant RPUF. For example, Xu et al. [47] tried to add diatomite with melamine-coated
zeolitic imidazolate framework-8 to RPUF to improve its flame-retardant and smoke-
suppressing properties. Overall, flame-retardant RPUF is a theme with a long history, but
it does not intersect with too many fields in academic publications. Chemistry, engineer-
ing, polymers, and materials science are the most basic categories related to this theme.
Some other categories involved recently are mainly the subcategories under these fields.
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Although some of these papers were published in journals related to other categories, their
content did not present a solid interdisciplinary character.

3.1.3. Geographic Distribution

Figure 7 shows the top 10 countries with the most publications on flame-retardant
RPUF. China has contributed more papers on this theme than all other countries combined.
This phenomenon may be linked to the massive demand for building insulation materials
in China’s rapid urbanization process. Building insulation material is mainly used to
keep the indoor temperature of buildings constant by reducing indoor heat emission and
preventing outdoor cold penetration, which is generally achieved by applying insulation
materials to the building envelope. Therefore, in areas with freezing weather, good building
insulation material can effectively keep the temperature in the building fluctuating within a
specific range, which can reduce the heating and energy consumption. Developing building
insulation materials with good insulation performance, low cost, and efficient stability
maintenance performance has become a hot spot in Chinese scientific research. RPUF is
widely used in building insulation projects because of its low density, light weight, low
thermal conductivity, and high thermal storage coefficient. However, RPUF is a flammable
material with poor flame-retardant properties, limiting its application as a construction
material. Building fire incidents caused by RPUF occurred from time to time from 2008 to
2012. Therefore, scientists in China continued to modify RPUF for flame retardancy after
2013. They improved the flame-retardant properties of RPUF by adding various functional
flame retardants and also published a large number of papers. In addition to China, Poland,
Turkey, and the USA also made significant contributions to this theme, publishing 8.90%,
4.71%, and 4.19% of the papers.
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Figure 8 shows the time-zone view of the geographic distribution for flame-retardant
RPUF papers. The earlier literature in the core collection on Web of Science did not include
the published countries, so the time-zone view only contains the relationship between
countries from 1982 to 2021. Links between different countries were established based
on papers published in those countries being directly cited. Although China contributed
the vast majority of papers on this theme, it did not become involved until 2008 and was
influenced by a paper published by the USA in 1982. The paper published by China
further prompted several other countries to engage in the theme, including Japan, Turkey,
Spain, and Australia. Poland was involved in this theme in 1994 and triggered the Italian
paper 4 years later. Then, it was not until 2011 that Poland published again on this theme
and triggered the entry of Germany and Lithuania into the theme. In addition, a paper
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published by Vietnamese scientists in 2020 caused South Korea to engage with this theme
in 2021.
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Although not many countries are involved in this theme, there is more frequent
cooperation between different institutions. Figure 9 shows the institutional cooperation
network for this theme. There is a significant cooperative network dominating the scientific
research on this theme. This large collaborative network can be further subdivided into
two smaller sub-networks connected by the Anhui University of Technology and the
China University of Mining & Technology. The University of Science and Technology
of China leads the first sub-network. Important institutions include Fuzhou University,
Anhui Jianzhu University, Southern University of Science and Technology, and Jiaxing
University. The second sub-network is led by Sichuan University and the North University
of China. Important institutions include the South China University of Technology, Tianjin
Fire Research Institute of the Ministry of Public Security, and Qingdao University of Science
and Technology. The theme also includes small cooperative networks, such as Beijing
Technology and Business University, which has published many papers and leads a small
cooperative network. In addition, some independent institutions have also made significant
contributions to this theme. For example, Tongji University has eight published records.

3.2. Keyword Analysis and Evolution of the Field

The most effective way to understand the direction of investigation of concerns in a
theme is the analysis of keywords. Table 3 lists the top 15 keywords in this theme. Since
this theme is about the flame-retardant properties of RPUF, the most frequent keyword
should be PU or flame retardant. However, it is interesting to note that the most frequent
keyword was expandable graphite. Expanded graphite has a flaky graphite structure
and is an intumescent, halogen-free flame retardant that excels in improving the flame-
retardant properties of polymers [48–52]. The hexagonal stacked lamellar structure of
the sp2 hybridization of expanded graphite is treated with acetic acid, sulfuric acid, or
nitric acid, which is inserted into graphite crystals [53]. The flame retardancy of expanded
graphite is mainly in the condensed phase, and it can also significantly reduce the smoke
density during the combustion of polymers [54,55]. When the expanded graphite is heated,
the inserted compounds, such as sulfuric acid, decompose which produces sulfur dioxide
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and water. On the other hand, the expanded graphite undergoes an oxidation reaction in
the presence of an acid, such as the reaction in the presence of sulfuric acid to produce
sulfur dioxide and carbon dioxide [56]. The released gas creates a large pressure between
the lamellae, causing the spacing of the expanded graphite lamellae to increase sharply.
This forms a worm-like, low-density insulation layer on the surface of the polymer matrix
which can effectively block the transmission of heat and oxygen, thus, providing a good
flame-retardant effect [57]. However, the addition of large amounts of expanded graphite
to RPUF can lead to the deterioration of its mechanical properties. Synergistic flame-
retardant or surface-modification methods can reduce the damage to mechanical properties
of RPUF by expanded graphite [58]. This situation is also prevalent for other mechanically
added flame retardants. This explains why mechanical property was the second most
frequently occurring keyword. The keywords related to specific material properties in
Table 3 include density and stability. On the other hand, thermodynamics-related terms
and keywords for changes in material form also appear in Table 3, including fire behavior,
thermal degradation, degradation, and combustion.
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Table 3. List of top 15 keywords for flame-retardant RPUF.

No. Freq Centrality Keywords
1 54 0.19 Expandable graphite
2 44 0.22 Mechanical property
3 42 0.24 Behavior
4 39 0.10 Composite
5 34 0.10 Phosphorus
6 28 0.08 Ammonium

polyphosphate
7 26 0.05 Fire behavior
8 26 0.09 Thermal degradation
9 21 0.08 Density
10 21 0.06 Degradation
11 20 0.11 Nanocomposite
12 18 0.04 Polyol
13 17 0.16 Flammability
14 14 0.03 Stability
15 13 0.04 Combustion
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Phosphorus and ammonium polyphosphate were two high-frequency keywords
(ranked fifth and sixth) because phosphorus-containing flame retardants are widely used
in polymeric materials as a class of halogen-free flame retardants [59,60]. The retention of
phosphorus in the condensed phase reduces the fire hazard, especially when it promotes the
charring of polymers or the formation of inorganic glass-like layers. The presence of phos-
phorus accelerates the dehydration of the polymer, which leads to cyclization, cross-linking,
aromatization, and graphitization. At the same time, the decomposition products of the
phosphorus-containing compounds act as cross-linking agents [61,62]. Then, a charred
layer (possibly an expanded char layer) is formed on the polymer surface. The presence
of polyphosphates can also lead to a glassy inorganic layer [63]. This char or glassy layer
can act as a physical barrier between the gas and condensed phases. Such a protective
layer limits the transfer of combustible volatile gases and oxygen so that the gas yield
from decomposition is significantly reduced. Moreover, the fuel gas is physically isolated
from oxygen, preventing the continuation of the combustion process. In addition to the
condensed phase mechanism, some phosphorus-containing compounds can also function
in the gas phase with a mechanism similar to halogen-containing flame retardants [64–66].
It is believed that phosphorus–oxygen radicals play a significant role. In this case, hydrogen
radicals and hydroxide radicals in the gas phase are replaced by less reactive radicals or
become non-radicals through radical recombination. The disproportionation reactions and
chain reactions of hydrocarbon oxidation in the gas phase are slowed down or interrupted.
This process is called flame suppression and reduces heat production.

We conducted the burst detection of keywords, but only three valid keywords (density,
polymer, and hydroxide) were obtained. The first two of these burst keywords appeared
in 2008 and 2010, respectively, and both lasted for 7 years. This means that the research
on flame-retardant RPUF was mainly focused on the polymer and its basic properties at
that stage. The burst keyword hydroxide appeared in 2019 and continues to appear to this
day. This can be explained by the fact that layered hydroxides have been widely used in
recent years to improve materials’ flame-retardant and smoke-suppression properties. For
example, Wang et al. [67] used expandable graphite wrapped in magnesium hydroxide
nanosheets as a flame retardant for RPUF. The results showed that the residual carbon
edge of expanded graphite could be sealed after combustion after magnesium hydroxide
nanoflakes were encapsulated, which significantly enhanced the expansion performance.
The reaction of magnesium hydroxide nanosheets and isocyanate functional groups im-
proved the interfacial adhesion of expanded graphite to the RPUF matrix. Thus, the cell
structure and storage modulus of the synthesized RPUF were significantly improved.
Peng et al. [68] also investigated the effect of aluminum hydroxide/magnesium hydroxide
on the pore structure, compressive stress, combustion properties, and thermal stability of
RPUF. They found that the addition of aluminum hydroxide improved the performance of
RPUF to be superior to that of the RPUF modified by magnesium hydroxide.

Cluster analysis can further understand the different directions of investigation in this
theme. Figure 10 shows that 12 clusters are formed after clustering the keywords. On the
whole, many clusters have overlapping areas between them, indicating that their contents
had more similarities with each other. Only one cluster does not appear to overlap with
the other clusters. This also reflects that the theme of flame-retardant RPUF did not form a
differentiation in different directions. Table 4 shows a detailed description of the clusters
and their ID, size (number of papers), silhouette, and respective keywords. The following
is a short explanation of each cluster.
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Table 4. Knowledge clusters in the theme of flame-retardant RPUF on keyword co-occurrences for
each cluster.

Cluster ID Size Silhouette Keywords References

0 50 0.867
Expandable graphite; Mechanical property; Composite;

Ammonium polyphosphate; Density; Degradation;
Polyol; Flammability; Combustion; Thermal stability

[69–98]

1 25 0.872
Epoxy resin; Graphene; Thermal property; DOPO;

Nanoparticle; RPUF; Silica; Formulation;
Hypophosphite; Styrene

[47,99–105]

2 24 0.854
Stability; Oil; Phosphazene; Polypropylene

Dimethylmethyl phosphonate; Montmorillonite; Fire
hazard; Thermoplastic polyurethane

[46,76,106–113]

3 24 0.955 Polymer; System; Chemical; Property; Construction;
Retardant behavior; Aluminum; Insulation [114–120]

4 24 0.863
Firebehavior; Nitrogen; Fire retardant; Aluminum
hydroxide; Nanocomposite foam; Layered silicate;

Phosphorus containing compound
[70,78,79,121–124]

5 24 0.907 Behavior; Phosphorus; Performance; Particle;
Mechanism [33,71,73,76,79,84,85,109,125–138]

6 23 0.930 Nanocomposite; Combination; Polyphosphate; PU
foam; Foam [35,82,100,139–146]

7 22 0.852
Thermal degradation; Fire behavior; Fire retardancy;

Halogen free; Thermal decomposition; Additive;
Dimethyl methylphosphonate

[75,81,106,129,130,132,134,145–149]

8 13 0.913 Cyclotriphosphazene; Insulation material; Sample
width; Thermal insulation; PMMA surface [150,151]

9 13 0.940 Coating; Composite particle; Graphite; Thermal
conductivity [87,152–155]

10 12 0.910 Phosphate; Graphene oxide; Phase change material;
Oxide [68,71,83,156]

11 11 0.972 fabrication; Agent; Fire safety; Silicon [47,157]

# 0 RPUF modification: This cluster contains many works and has a high level of
overlap with the regions of a series of other clusters. The main content of this cluster
included the influence of different additives on the flame retardancy of RPUF, for ex-
ample, fly ash [69], char [70], alumina trihydrate, triphenylphosphate [80], expanded
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vermiculite/melamine phenylphosphate composite [73], exfoliated clay [75], phospho-
ramide/expandable graphite [90], etc. Additional works contained other elemental addi-
tions of polyols for RPUF preparation and their effects, such as phosphorus and nitrogen-
containing polyols [76,84]. Most of the work in this cluster is further classified in other
clusters below;

# 1 Composite: The content of this cluster focused on improving RPUF flame-retardant
properties by adding composite materials. For example, Xu et al. [47] synthesized di-
atomite/ melamine-coated zeolitic imidazolate framework-8 composite material as an
additive to improve RPUF. Ye et al. [102] synthesized an expandable graphite–poly(methyl
methacrylate) composite to improve the flame-retardant performance of RPUF. Zhang et al. [103]
chose to synthesize an expandable graphite–methyl methacrylate–acrylic acid composite to
improve the flame-retardant performance of RPUF;

# 2 Stability: The region of this cluster is entirely covered by the regions of several other
surrounding clusters, while its silhouette value is only 0.854, representing that the clus-
tering homogeneity of the keywords is not particularly outstanding. This cluster contains
10 papers. These papers do not have a particularly uniform orientation in terms of subject
matter. Some of the works focused on modifying phosphorus-containing materials [76,117]
and others on the modification of ammonia-containing materials [112,113]. In addition to
this, there were also some works on the detailed performance investigation of traditional
RPUF [108,111]. The most frequently occurring keyword in this cluster was stability. All
these works investigated the stability of the final, synthesized RPUF;

# 3 Phosphate: The content of this cluster was mainly concerned with the effects of
using different phosphates on the properties of RPUF. For example, Hu et al. [117] used
aluminum diethylphosphinate; Zhang et al. [118] chose castor oil phosphate. Generally
speaking, there are two types of phosphorus-containing flame retardant: additive type and
reactive type. The additive type is mainly used to disperse the flame retardant into the
polymer matrix by physical mixing during the processing of the polymer material. This
approach is more convenient and effective and is widely used in the industry. However,
this approach has many disadvantages, such as easy migration and precipitation, poor
compatibility with the polymer matrix, etc. The reactive approach mainly uses some
reactive flame retardant to connect with the polymer matrix through a chemical reaction.
Due to the chemical bond between the flame retardant and the polymer matrix, the material
can maintain its flame-retardant properties for a long time. On the other hand, some works
used bio-based materials; as well as castor oil phosphate, Ranaweera et al. [114] chose
bio-based polyols;

# 4 Mechanism: The content of this cluster focused on the investigation of the fire
behavior and flame-retardant mechanism of different RPUFs. Guenther et al. [121] inves-
tigated the morphological changes of RPUFs with different levels of combustion. They
found that, as the foam density increases, the burning behavior of RPUF shifts towards a
non-cellular material. Some other works focused on understanding the role of different
additives when they are added to participate in flame-retardant behavior;

# 5 Inorganic filler: The addition of inorganic filler to improve the flame retardancy of
RPUF was the focus of this cluster. A series of work focused on adding expanded graphite
to improve the flame retardancy of RPUF [79,125,127,132,138]. Authors of other works
chose alternative carbon materials. For example, Acuña et al. [128] incorporated both
expanded graphite and graphene oxide. In addition to carbon materials, glass is also a very
effective inorganic filler. Bian et al. [126] tried to improve the flame-retardant properties
of RPUF with a hollow glass microsphere. Cheng et al. [131] investigated the difference
between a hollow glass microsphere and glass fiber in improving the flame-retardant
properties of RPUF;

# 6 Rigid polyurethane: This cluster is covered by the range of other clusters around
it. There are 11 papers in this cluster. They all include the phrase “rigid polyurethane”,
which is included in the title. However, they differ in their chosen methods and strategies
to improve RPUF;
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# 7 Thermal degradation: This cluster has the lowest silhouette value of all clusters
(0.852), representing the low similarity of the papers in this cluster. A series of papers in
this cluster focused on improving the flame-retardant properties of RPUF by expanded
graphite [132,145,158–161]. Additionally, a series of works focused on improving modified
phosphates for RPUF flame retardancy [75,81,132,134,145,161,162];

# 8 Flame spread: This cluster contains only two papers. The first paper investigated
flame propagation behavior downward during RPUF combustion [150]. The authors
provided a detailed qualitative analysis of the mechanism of the orientation effect during
flame propagation based on experimental data. The other work investigated the upward
flame propagation behavior during RPUF combustion [151]. These two works provide a
very interesting discussion of the spatial propagation behavior of RPUF during combustion;

# 9 Expandable graphite: This cluster contains only five papers, and, also, its area
overlaps with other surrounding clusters. All the papers in this cluster focused on the effect
of expandable graphite on the performance of RPUF;

# 10 Graphene oxide: The additives chosen for the papers in this cluster were different
from the other papers and included graphene oxide [163], steel slag powder [83], and
N,N′-diethanolaminomethylphosphate [156];

# 11 Zeolitic imidazolate framework: Both works included in this cluster chose to
use the zeolitic imidazolate framework for flame-retardant and smoke-suppression perfor-
mance enhancement of RPUF.

Based on the clues given by the above cluster analysis, the research direction of
flame-retardant RPUF can be briefly summarized as follows:

(1) Additives play a significant role in improving the flame retardancy of RPUF. Most
of the works focused on enhancing the flame-retardant properties of RPUF using
expanded graphite, phosphate, hydroxide, and ammonia-containing additives;

(2) Some new materials are also being tried to increase the flame retardancy of RPUF,
such as graphene oxide and a zeolitic imidazolate framework. Additionally, preparing
composites before adding them to RPUF is an option;

(3) This theme is mainly performance-oriented, and LOI, cone calorimetry, and thermo-
gravimetric analysis are the most commonly used evaluation techniques;

(4) The flame-retardant properties of RPUF are related to the microstructure of RPUF and
the nature of the additives;

(5) RPUFs containing different additives have different flame-retardant mechanisms;
(6) The burning behavior of RPUF toward different spatial regions during combustion is

also a direction of investigation.

4. Conclusions

RPUF is an organic foam material that has attracted significant attention for its excel-
lent thermal insulation properties, adhesion properties, specific strength, and durability.
Currently, RPUF is widely used as a building exterior insulation material. However, it
is highly flammable, which increases the risk of fire in construction materials, especially
when used in high-rise buildings. Therefore, the research on the flame retardancy of RPUF
is an important and urgent task. In this review, we analyzed 194 papers on the flame
retardancy of RPUF between 1963 and 2021 using bibliometrics. The following conclusions
are summarized from the analysis:

(1) The flame-retardant RPUF is a theme with a long history. Chemical companies pub-
lished the earliest series of papers on this theme rather than universities and government-
funded research institutions. As a result, the subject has a solid industrial application
background. This feature has also made the theme largely relevant to the improvement of
flame-retardant performance without the widespread impact of new material discoveries;

(2) Chinese scientists contributed many papers on this theme, probably because of
the massive demand for building insulation materials in China’s urbanization process. In
particular, the high number of high-rise building fires during 2008–2012 directly led to a
research boom in this area. China was not involved in the research at the beginning of
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the theme. However, the contribution of Chinese scientists in this field triggered many
countries to participate in this theme. From 2013 to 2015, there was a first phase of a
research boom on this theme. From 2018 to the present, this theme received widespread
academic attention;

(3) The most common technique for improving the flame retardancy of RPUF is the
addition of additives with flame-retardant properties, of which expandable graphite is the
most commonly investigated material. Halogen-free flame retardants and phosphorus-
containing flame retardants are also very commonly used. In addition, some inorganic
materials are also added to improve the flame-retardant properties of RPUF, such as
graphene oxide, glass fiber, and a zeolitic imidazolate framework;

(4) The investigation of the flame-retardant mechanism is also an integral part of
this theme. RPUFs with other flame-retardant additions have different flame-retardant
mechanisms, but a comprehensive understanding of the flame-retardant properties of
modified RPUFs is a challenging task. On the contrary, because RPUFs have strong
industrial applications, their performance indicators are of more interest to researchers.

Meanwhile, based on the review of this theme, we believe that the following issues
need to be investigated regarding flame-retardant RPUF:

(1) Different flame retardants have different effects on RPUF, and some of these choices
produce very superior performance. However, RPUF is a highly consumed building
insulation material, and the choice of flame retardant needs to be further considered in
light of the cost challenge. Some new materials can be very effective flame retardants due
to their excellent microstructure, but their cost is not suitable for practical application at
this stage. However, it is valuable to investigate the flame-retardant mechanism of RPUF
modification using these materials with characteristic microstructures;

(2) The investigation of the flame-retardant properties of RPUF in this theme was
measured under ideal conditions rather than being imitated when used as building in-
sulation. Therefore, the flame-retardant properties of these materials do not consider the
effects that the building space can bring about. Only a limited number of papers focused
on the combustion behavior of RPUF in different spatial orientations. Therefore, more
future investigations should be focused on simulating the combustion behavior of RPUF in
real situations;

(3) Although the addition of flame retardants can improve the flame-retardant effect of
RPUF, the toxicological properties of the flame retardants themselves should also be taken
into account. Since building insulation materials have a close relationship with human
life, it is also important that flame retardants do not pose a health hazard. In addition,
the decomposition products of the flame retardants themselves when they burn need to
be investigated.
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12. Barczewski, M.; Kurańska, M.; Sałasińska, K.; Michałowski, S.; Prociak, A.; Uram, K.; Lewandowski, K. Rigid Polyurethane
Foams Modified with Thermoset Polyester-Glass Fiber Composite Waste. Polym. Test. 2020, 81, 106190. [CrossRef]

13. Jonjaroen, V.; Ummartyotin, S.; Chittapun, S. Algal Cellulose as a Reinforcement in Rigid Polyurethane Foam. Algal Res. 2020,
51, 102057. [CrossRef]
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