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Summary

Temperature and cell hysteretic effects are two major factors that influence the reliability and safety in long-term 
management of battery-integrated systems. In this paper, a hysteresis-compensated electrical characteristic model 
is established to track the terminal voltage of batteries with the uncertain hysteretic effect of the open-circuit 
voltage. Then, an autoregressive exogenous model with multi-feature coupling is employed for the identification 
of the parameters to make them adaptive to the uncertainties of the temperature and hysteretic effects. After that, 
a novel method for state-of-charge (SOC) estimation based on an adaptive moving window-square root 
unscented Kalman filter is constructed to avoid the filtering divergence problem caused by the negative error 
covariance matrix. Multiple constraints, such as Coulombic efficiency, varying ambient temperatures, and 
hysteresis voltage, are considered for the SOC estimation. Experimental results show that the root-mean-square 
error for SOC calculation can be limited to 0.0211 when the temperature varied up to 40�C and the root-mean-

square error of the voltage measurement noise up to 61.9 mV. The proposed method provides an effective 
way for battery-integrated management of electric vehicles.
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1 INTRODUCTION
Against the background of carbon neutrality, using batteries as the energy source to replace traditional petroleum 
fuels is an important measure to solve environmental problems and future energy crisis.1 In the comparison 
of battery types' performance, such as lead-acid2 and Na-Zn,3 lithium-ion batteries have undoubtedly ranked one 
of the most promising energy storage systems for electric vehicles (EVs) due to their advantages, such as high cycle life, 
high energy density, and environmental friendliness.4 Given the fact that thousands of series and parallel-connected 
high-energy-density batteries are used in the power systems of EVs to address mileage anxiety and maximum power 
requirements,5 a high-performance battery management system (BMS) is critical to ensure their safe and reliable 
operation.
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At present, researchers have made considerable efforts to reveal the complex battery modeling mechanism and 
state-of-charge (SOC) prediction. In the current commercial BMS, many models have been developed to provide 
applications for battery-integrated systems, such as lumped electrical characteristic models,6 one-order resistor-capacitor 
(RC) networks,7 fractional-order models,8 and splice-electrochemical circuit polarization models.9 Their model 
accuracy is higher in the battery type where the hysteretic effect is not obvious and in an environment where the 
external temperature does not change much. However, these battery modeling methods have certain limitations in the 
characterization of the open circuit voltage hysteresis effect, and ignore the impact of ambient temperature on the 
battery modeling. To effectively illustrate these issues, more needs to be known about the internal dynamic hysteretic 
effect of the open-circuit voltage (OCV) and the external temperature time-varying characteristics. The research of 
Yu et al.10 shows that the hysteresis phenomenon of the battery makes it difficult to obtain the OCV-SOC curve accurately. 
Therefore, it is a valuable work to summa-rize and analyze the occurrence and coupling of the hyster-esis characteristics.

In most of the current literature, the battery equivalent circuit modeling is usually realized by ohmic impedance and 
resistance-capacitance links of different orders. Among them, the ohmic internal resistance is used to characterize the 
transient dynamic characteristics of the terminal voltage, and the resistance-capacitance link is used to characterize the 
gradual dynamic characteristics of the terminal voltage. However, the hysteresis effect inherent in the open circuit voltage 
is rarely mentioned in the literature, which contributes to the inaccuracy of battery modeling. For some battery types, such 
as lithium manganese oxide,11 lithium nickel cobalt aluminum oxide,12 and lithium nickel manganese cobalt oxide, the 
hysteretic effect of the OCV is not particularly obvious.13 When modeling and analyzing the battery behavior for the 
above-mentioned materials, a simple and effective processing method  is to take  the  average  value of the OCV during 
the charging and discharging processes.9,14 On the one hand, the error impact caused by the simplified method is not too 
obvious. However, it is appropriate for the online embedded application requirements of the BMS. Nevertheless, this 
simplified modeling approach is not suitable for lithium iron phosphate (LFP) batteries commonly used in EVs.15,16 To 
assess the uncertainty of the hysteretic effect, our group tested the OCV characteristics of LFP cells in early research 
experiments on lumped parameter electrical characteristics modeling.6,17 The experimental results show that the SOC 
value of the same OCV fluctuates between 0% and 20% during the charge and discharge state transition. Given the fact that the 
OCV of the LFP cell has a strong uncertainty, it is imperative to carry out targeted modeling for the OCV of LFP batteries.

In addition to the hysteresis effect of the OCV, changes  in ambient temperature, especially for applications at 
extreme temperatures,18 also have a large impact on the performance and state estimation of the battery model. It is 
worth noting that the change of ambient temperature shows strong uncertainty, which is mainly caused by the 
complex and changeable use environment of the battery.19 Temperature mainly affects important parameters such as 
battery capacity and internal impedance.20 Specifically, related studies have shown that the capacity varies by up to 15% 
under different ambient temperatures.21-23 Although the capacity of the battery can be estimated under the current 
technology,24 the hysteresis effect of the open circuit voltage and the uncertainty of the ambient temperature change 
are still the main reasons for the poor performance of the LFP battery. Therefore, the hysteretic voltage compensation 
model considering the time-varying effect of temperature is more promising.

Whereas, it is worth noting that most of these modeling strategies only estimate the model parameters at the 
moment. Future parameter prediction of the battery's model is more important for SOC estimation, and it seems that 
it cannot be obtained by the above-mentioned modeling methods. The SOC directly affects the user's choice of driving 
mode and future behavioral plans for the EV. Additionally, many internal state parameters, such as state-of-
power,25 remaining useful life, and state-of-energy,26,27 are indirectly related to the with SOC in the on-board BMS 
of the lithium-ion battery. For instance, the joint estimation of SOC and state-of-energy can predict the available 
drivable distance for EVs.28 Generally, a proper evaluation of SOC not only optimizes the management of the battery-
integrated system, but, most importantly, improves the safety of EVs during operation. Because the fact that the 
lithium-ion battery is a nonlinear system and the uncertainty of many factors needs to be considered during the 
application process, it is difficult to directly derive the analytical expression for the SOC estimation.29,30 Therefore, an 
estimator based on an efficient numerical calculation method is needed to achieve accurate SOC estimation. Simple SOC 
estimation methods such as the ampere-hour (Ah) integration31 and the OCV32 methods are the earliest to be applied to 
the BMS. Nonetheless, due to the drawbacks of open-loop estimation, these methods cannot adapt to changes in 
hysteresis voltage and varying ambient temperatures.

For the model-based SOC closed-loop estimation strategy, the accuracy of model parameter identification 
needs to be taken as the constraint condition to ensure reliable SOC estimation accuracy. Representative methods of 
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closed-loop estimation include the particle filter-based method proposed by Wang et al.,33 the dual-correction 
extended Kalman filter proposed by Shi et al.,34 and other adaptive estimation methods such as weighted 
fusion and proportional-integral.35,36 Also, the SOC estimation accuracy is interfered with by the model, parameter 
identification results, and a variety of uncertain factors. For this reason, a joint SOC estimator with multi-domain 
coupling and multi-algorithm fusion is usually developed. For example, an adaptive asynchronous parameter 
identification strategy is proposed to replace the traditional online identification method under single time 
scale in Reference [6] Meanwhile, the deep transfer neural network with multiscale distribution adaptation is used 
in Reference [37] In addition, some novel algorithms have excellent performance in battery SOC prediction 
ability. The more typical ones include Hu et al.38 by establishing a fractional-order equivalent circuit model and 
using a hybrid genetic algorithm/particle swarm optimization method for parameterization, which improves the 
modeling accuracy of the battery. Wang et al.39 used a new covariance matching-electrical equivalent circuit 
modeling method to improve the tracking effect of terminal voltage and the estimation accuracy of SOC. In 
addition to the model-based SOC closed-loop estimation strategy, meta-heuristic optimization algorithms have 
been applied to the estimation of battery state of charge by researchers. For example, Qiao et al.40 proposed an 
intelligent down-weighted firefly particle filter algorithm, and realized the real-time accurate estima-tion of the 
state of charge on the second-order RC equivalent circuit model. Li et al.41 proposed an improved whale 
optimization algorithm to optimize the prediction process of the feedforward neural network, and further realize 
the accurate representation of the non-linear characteristics of the battery.

The above methods meet the online application of battery-integrated systems to a certain extent. However, in 
the long-term and changeable battery usage environment, the ability of these estimators to adjust online 
according to different load conditions and varying ambient temperatures is highly reduced. This paper 
establishes a hysteresis-compensated electrical characteristic model to accurately describe the battery operating 
mechanism. The hysteretic effect equation is iteratively coupled with the state-space equation. Then, the 
model-based parameters are identified online with a high-efficiency recursive least squares method under 
varying ambient temperatures. Finally, an adaptive moving window strategy is introduced into the square root 
unscented Kalman filter to avoid the filtering divergence caused by the negative error covariance matrix for SOC 
estimation.

The remainder of this paper is organized as follows: Section 2 describes the battery model, including the 
hysteresis-compensated electrical characteristic model structure, the online parameter identification method, 
and the adaptive moving window-square root unscented Kalman filter based SOC estimation. Section 3 comprises 
the experimental procedure and analysis for the parameter identification results and proposed method validation, 
Section 4 is the conclusion.

2 MATHEMATICAL  ANALYSIS

2.1 Hysteresis-compensated RC circuit network

The hysteretic effect is one of the major factors that influence the accuracy of the internal state estimation for 
lithium-ion batteries. Specifically, the hysteresis effect is that there is a strong uncertainty in the OCV-SOC func-
tion during the battery charge-discharge transition. This is a description based on an experimental phenomenon, 
which mainly occurs at the moment when the battery transitions from the charged state to the discharged state, or 
from the discharged state to the charged state. For this reason, that most studies neglect to refine the characteri-
zation of hysteresis effects, a hysteresis-compensated n-order RC circuit network is established to solve the influ-
ence of hysteresis effect on model-based parameter char-acterization and state estimation. The modeling considers 
multiple constraints such as Coulombic efficiency and varying ambient temperatures changes to achieve the 
hysteresis voltage characterization. The model structure is shown in Figure 1.

In Figure 1H represents the hysteresis module, which is used to characterize the hysteresis effect of the OCV. R0 

represents the ohmic resistance, Uh represents the voltage across the hysteretic resistor, E represents the ideal 
voltage source, and Cb represents the cumulative capacitance. Where E and Cb together represent the OCV as UOC, and
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FIGURE 1 Hysteresis-compensated n-order resistor-capacitor

circuit network

UL represents the terminal voltage of the battery. Rn and Cn are the polarization resistance and capacitance 
for the nth RC circuit respectively. Un represents the diffusion voltage across the nth RC circuit, and URC 

represents the total diffusion voltage across the nth RC circuit. UZ represents the total voltage across the parallel 
circuit between R0 and the nth-order RC circuit. I represents the charge and discharge current of the battery. 
The OCV based on the hysteresis-compensated n-order RC circuit comes from the optimized Nernst 
electrochemical empirical equation, and its feasibility and effectiveness are demonstrated in References [6, 33]. 
Its function value reflects the voltage optimally at both ends of the battery after no loading or shelving, as shown in 
Equation (1).

4

UOC Skð Þ¼ f Skð Þ¼m1þm2 ln Skð Þþm3 ln 1�Skð Þ 1Þð
In Equation (1), Sk represents the SOC at time k, m1 to m3 are the coefficients of the equation, and the value is 

determined by the experimental data combined with the recursive least squares (RLS) method. Combined with the 
principle of zero-state and zero-input response in circuit theory, the full-response equation of the diffusion voltage of 
this model is shown in Equation (2).

U1,kþ1

...

Un,kþ1

2664
3775¼

exp �Δt=R1C1½ � � � � 0

... . .
. ...

266664
377775

U1,k

...

Un,k

266664
377775

þ

0 � � � exp �3Δt=RnCn½ �
R1 1� exp �Δt=R1C1½ �f g

...

Rn 1� exp �Δt=RnCn½ �f g

266664
77775Ik

ð2Þ
In Equation (2), Δt represents the sampling time step, Ik represents the current of the system at time step k. When the 

battery switches from the charging and dis-charging states to the resting state, the voltage of the ohmic resistor drops to 
zero instantly. With the zero-input response of the parallel RC circuit, the voltage across the circuit gradually decays to 
zero. At this time, the terminal voltage of the battery should theoretically be equal to the OCV value. However, it is 
observed that the value is not equal in actual application due to the hysteretic effect of the battery. Through the previous 
research and analysis in the laboratory, it is observed that the strength of the hysteretic effect has a nonlinear 
relationship with the degree of battery usage.10 Therefore, this study adopts a nonlinear decay equation to model the



hysteresis effect. The mathematical expression for the calculation of the hysteretic voltage is shown in 
Equation (3).

Uh,kþ1¼ exp � ηIkεΔt=QNj jð ÞUh,k

þ 1� exp � ηIkεΔt=QNj jð Þ½ �sgn Ikð ÞM Skð Þ
M Skð Þ¼ UOC,chg Skð Þ�UOC,dchg Skð Þ� �

=2

8>><>>: ð3Þ

In Equation (3), QN represents the rated battery capacity, η is the Coulombic efficiency, and ε is the hysteretic decay 
rate adjustment factor. UOC,chg and UOC,dchg represent the OCV during the charging and discharging phases respectively. 
It should be clarified that the OCV variation during the battery charging-discharge conversion can be obtained in 
advance through experiments, and the battery capacity and coulomb efficiency parameters can also be calibrated in 
advance through experiments. Therefore, using the nonlinear attenuation equation shown in Equation (3) to simulate 
the hysteresis effect of the battery does not increase the computational burden of modeling too much. Traditionally, the 
SOC of battery is defined as the ratio of the percentage of remaining capacity to the rated capacity.42 Furthermore, the 
calculation of the reference value of SOC can be realized by the Coulomb counting method, which has been proved to be 
highly effective in calculating battery SOC.43 The calculation of the reference value of SOC by using the Coulomb 
counting method is shown in Equation (4). Also, the terminal voltage output equation based on the hysteresis-
compensated n-order RC circuit network is obtained, as shown in Equation (5).

Skþ1 ¼ Sk� Ik �ηΔt=QN ð4Þ

UL,k ¼UOC,k�Uh,k�
Xn
j¼1

Uj�R0Ik (UOC,k ¼ f Skð Þ ð5Þ

In Equation (5), Skþ1 represents the SOC at time k þ 1, UL,k represents the output voltage of the model at time k,
and U j represents the voltage across the jth group of RC pairs.

2.2 Model-based online parameter identification

 The estimation accuracy of the equivalent circuit model (ECM) is often positively correlated with the 
complexity of the model structure. For that reason, various factors should be weighed in practice, and then a 
suitable battery  model should be selected. Also, the battery model in thecommercial battery-integrated system 
should meet the requirements of simplicity and high accuracy. As suggested by References [4, 18, 33], the first-
order RC circuit network based on the hysteretic effect can characterize most of the dynamic performance of the 
battery while meeting the requirements of terminal voltage prediction accuracy, and the low modeling complexity 
makes it easy to apply in embedded systems. Therefore, this paper uses a first-order hysteresis-compensated electrical 
characteristic model (H-CECM) to carry out follow-up research. Using the first-order backward difference (FOBD), 
combined with the diffusion voltage full-response equation shown in Equation (2), the discretization equation 
suitable for model parameter identification is expressed as Equation (6).

UZ,k ¼UOC,k�UL,k�Uh,k ¼U1,kþR0Ik
¼ exp �Δt=R1C1ð ÞU1,k�1þ 1� exp �Δt=R1C1ð Þ½ �R1Ik�1þR0Ik

¼ R1C1= R1C1þΔtð Þ½ �UZ,k�1þ R0þR1= R1C1þΔtð Þ½ �Ik� R0R1C1= R1C1þΔtð Þ½ �Ik�1

ð6Þ

5

According to the calculation results of the above equations, an autoregressive exogenous model used to 
identify all parameters in the H-CECM is obtained, as shown in Equation (7).
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        In Equations (8) to (12), Gk is the gain matrix of the RLS algorithm at time step k. Σk is the error covariance matrix at 
time step k.  4t is the sampling interval.    k is the estimated value of the parameter matrix at time step k. In the iterative 
cycle of the above RLS algorithm, using Equation (2) and multiple sets of constant current charge-constant current discharge 
data, the charge and discharge OCV-SOC function of the battery can be obtained. The Coulombic efficiency η involved in the 
hysteresis voltage and the actual capacity of the sample battery is obtained by standard capacity calibration experiments. The 
value of ε is determined by the undetermined coefficient using the mathematical relationship shown in Equation (3). In this 
paper, the identification result of the hysteretic attenuation rate adjustment factor is ε 1/4 1:672 � 10�3.

2.3 | AMW-SRUKF for SOC estimation

Accurate estimation of SOC is a key issue for battery-integrated systems. When the battery operates at different 
ambient temperatures, it is necessary to consider multiple influencing factors such as dynamic changes in energy 
supply and the noise effect. Therefore, to explore a high-precision and high-robust state prediction method, it is 

       In Equation (7), θk and φk are the coefficient vector and data input vector of the autoregressive exogenous 
model respectively. Y k is the output vector of the auto-regressive exogenous model. As an effective method to 
solve the system identification problem, RLS is used in this paper to realize the full-parameter identification of 
the H-CECM. According to the equation expression of the autoregressive exogenous model, combined 
with the experimental data input vector, the main iterative update process of the RLS algorithm is as 
follows:

Initialization: At the time k ¼ 0, initialize the coefficient matrix and error covariance matrix:

bθ0 ¼E θ0½ �P
0 ¼E θ0�bθ0� �

θ0�bθ0� �T
� �8><>: ð8Þ

At the time k¼ 1,2,…, repeat:

1. Calculation the Kalman gain matrix

Gk ¼
X

k�1
φk= 1þφk

T
X

k�1
φk

� �
ð9Þ

2. Update the error covariance matrixX
k
¼
X

k�1
�Gkφk

T
X

k�1
ð10Þ

3. Calculation of the coefficient vector

bθk ¼bθk�1þGk Yk�φk
Tbθk�1

� �
ð11Þ

4. Separation of variables to identify the parameters of
the model

R0,k ¼ b1,k=a1,k
R1,k ¼ a1,kb1,k�b2,k½ �= a1,k a1,kþ1ð Þ½ �
C1,k ¼�a21,kΔt= a1,kb1,k�b2,k½ �

8><>: ð12Þ

bθ
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In Equations (13) and (14), w1
k,w

2
k,w

3
k and vk are established with a zero-mean Gaussian white noise with 

multivariate normal distributions and covariance matrices as w1
k � N 0,Q1ð Þ, w2

k�N(0, Q2), w3
k � N 0,Q3ð Þ, wk 

� N 0,Qkð Þ, vk � N 0,Rð Þ, and Qk ¼ diag Q1,Q2,Q3½ �.
From the perspective of the prediction effect, the observer based on the unscented Kalman filter (UKF)/

extended Kalman filter (EKF) method is suitable in terms of robustness. However, when the battery cell is used under 
highly complex conditions and there are rounding errors in numerical calculations, the UKF method cannot ensure that 
the covariance of its state variables is always positive. At the same time, the performance of the UKF/EKF-based observer 
decreases sharply or even diverges. More importantly, neither the UKF nor the EKF method can accurately track the 
statistical characteristics of noise, making it a problem of cumulative errors in the SOC estimation process. To reduce 
the computational complexity and improve the estimation accuracy of the SOC, a novel adaptive moving window-square 
root unscented Kalman filter (AMW-SRUKF) method based on an adaptive moving window covariance tracking 
strategy is proposed and applied in this work. Specifically, AWM is a strategy that can adaptively track the covariance 
of noise, and has excellent performance in solving the problem that traditional methods cannot accurately track the 
statistical characteristics of noise. The specific implementation steps are as follows:

Initialization: 
i
At the time 

… 
k ¼ 1, randomly generate initial particles x0 i ¼ 1,2, ,nð Þ, and initialize their 

covariance matrix:

precision and high-robust state prediction method, it is necessary to solve the noise problem of voltage sensor 
measurements and current sensor measurements in the BMS first. As a solution, by modeling uncertainties of 
current and voltage as the process noise wk and measurement noise vk respectively. Then, the establishment of the 
state-space equation based on the H-CECM is shown in Equations (13) and (14).

yk ¼ f xk,ukð Þþ vk ¼UOC,k�Uh,k�
Xn
j¼1

Uj�R0Ikþ vk ð14Þ

xkþ1 ¼AkxkþBkukþwk

¼
1 0 0

0 ARC 0

0 0 Ah,k

2664
3775

Sk

URC,k

Uh,k

2664
3775þ

�ηΔt=QN 0

BRC 0

0 1�Ah,k

2664
3775 Ik

sgn Ikð ÞM Skð Þ

" #
þ

w1
k

w2
k

w3
k

2664
3775 ð13Þ
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0 ¼E xi0�E x0

�
i

� 		
xi0�E x0
�

i
� 	 T	h

Li0 ¼ chol Pi
0


 �
8<: ð15Þ

Pi0

 �

represents the Cholesky decomposition of the state variable error covariance   where chol
decomposition factor.

 Pi0, and Li0 represents the 

i

At the time k¼ 2,3,…,N , repeat:

1. Construction of a sigma point set and the correspond-
ing weights

xik�1 ¼ xbi
i
k�1, i 0

xik
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi¼p

Li
k

xik

�1 ¼ xbk�1þ
�1 ¼ xbik�1�

nffiffiffiffiffiffiffiffiffiffiffiffiffiþ λð Þffi
nþ λð Þp

Li
k

�1, i¼ 1…n

�1, i¼ nþ1:::2n

8>><>>: ð16Þ

ω0
m ¼ γ= nþ γð Þ

ωc
0 ¼ γ= nþ γð Þ 1þ �α2þβ

ωi
m ¼ωi

c ¼ 1= 2 nþλð Þ½ �, i¼ 1:::2n

8><>: ð17Þ



where n is the dimension of the state variable, N is the total number of sample sequences, γ is the scaling factor, and 
its value is calculated as γ ¼ α2 n þ kð Þ n� . α represents the spreading factor. β represents the pretest distribution
factor. k is an auxiliary scale factor that satisfies k þ n ≠ 0.

2. One-step prediction of the state variable

xbkjk�1 ¼
2Xn

i¼0

ωi
mx

i
kjk�1 ð18Þ

3. Perform Cholesky decomposition on the error covariance matrix of the state variable and update is decomposition
factor

bLx,k ¼ chol
ffiffiffiffiffiffiffiffiffiffi
ω1:2n
c

q
x1k

:
j
2
k-1
n �xbkjk-1� �

, Qk

nh pffiffiffiffiffiffiio
ð19Þ

8

Lx,k ¼ cholupdate bLx,k, abs ωc
0

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� 	ffi� �
x0kjk�1� xbkjk�1 ,

(
)

ð20Þ

where Lbx,k and Lx,k, respectively, represent the Cholesky decomposition value and the updated value of the state
variable error covariance at time step k, and the cholupdate �f g  function is the update of the Cholesky
decomposition.

4. One-step prediction of observation variable

ybkjk�1 ¼
2Xn

ωi
my

i
kjk�1 ð21Þ

sign(ω_c^o)sign(ωco)

i  0

5. Perform a Cholesky decomposition of the error covariance matrix of the observation variable and update its 
decomposition factor

bLy,k ¼ chol
ffiffiffiffiffiffiffiffiffiffi
ω1:2n
c

q
y1k

:
j
2
k
n
�1� ybkjk�1

� �
,

ffiffiffiffiffi
R

nh p
k ð22Þ
io

bLy,k,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� 	ffi
abs ωc

0
q � �

y0kjk�1� ybkjk�1 ,

(

sign ωc
0

� 	
Ly,k ¼ cholupdate

)
ð23Þ

where Lby,k and Ly,k, respectively, represent the Cholesky decomposition value and the updated value of the error 
covariance matrix of the observation variable at time step k.



6. Calculation of the error covariance matrix of the state and the observation variables

Pxy,k ¼
X2n
i¼0

ωi
c xikjk�1�bxkjk�1

h i
yikjk�1�bykjk�1

h iT
ð24Þ

7. Calculation of the gain matrix

Kk ¼Pxy,k Ly,kL
T
y,k

� ��1
ð25Þ

8. Update system's state variable

bxkjk ¼bxkjk�1þKk yk�bykjk�1

� �
ð26Þ

9. Update error covariance matrix of the state variable

Lk ¼ cholupdate bLx,k,KkLy,k, �1
n o

ð27Þ
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10. Calculate the innovation covariance function

Ek ¼ 1
m

kX
i¼k�mþ1

� �
yk� ybkjk�1

� �
yk� ybkjk�1

T
ð28Þ

where, m is the adaptive window factor. Ek is the innovation covariance function at time k, and its value is used for 
the real-time update of system noise and observation noise.

11. Update the covariance values of process noise andmeasurement noise

TRk ¼Ek�CkPkCk
!t

(
Qk ¼KkEkKk

T þEk !
(

þ∞)Pk!0 Qk ¼KkEkKk
T þEk

Rk ¼Ek

ð29Þ

As the iteration progresses, the value of Pk will eventually tend to zero, that is when Rk tends to be 
equal to Ek. In the whole iterative cycle, the Cholesky update in Equations (20) and (23) replaces the  time 
update function in the square root unscented Kalman filter (SRUKF) method ensuring the positive semi-
definiteness of the error covariance matrix. The AMW-SRUKF method takes the weighted average of 
the variance of the innovation of the first m epochs to realize the real-time update of the current covariance 
noise. It is worth noting that the AMW-SRUKF method is mainly used to solve the problem that the 
traditional method cannot accurately track the statistical characteristics of noise and the accumulated error 
in the SOC  estimation process. Since the whole algorithm does not introduce other unknown parameters in 
the iterative process, it will not increase the computational complexity of the embedded calculation of the 
subsequent BMS. Also, this paper uses root-mean-square error (RMSE) and mean absolute percentage 
error (MAPE) to describe the model and the SOC estimation effect, and the calculation method is shown in 
Equation (30).

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

Xn
i¼1

_
yi� yi
� 2	s

, MAPE¼ 1
N

Xn
i¼1

yi y
_

i



 


y

�
i

�100%

ð30Þ
In Equation (30), yi is the actual SOC value, byi is the estimated SOC value, and N is the total number of input 

samples.
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2.4 Coupling principle and pseudo-code framework

The estimation accuracy of battery SOC is affected by many constraints such as Coulombic efficiency, varying 
ambient temperatures and hysteresis voltage. In battery-integrated system applications, the calculated SOC 
should satisfy all the above constraints. Following the rule and the state-space equation of H-CECM, the overall 
coupling principle of the presented SOC estimation using AMW-SRUKF method is shown in Figure 2.

The AMW-SRUKF method ensures the positive definite covariance of the true state variables, and realizing the 
adaptive tracking of the statistical characteristics of the system's noise. It should be noted that when realizing the 
model parameter identification and internal state estimation in the battery-integrated system, one need to pay attention 
to the problem of computational complexity caused by multiple constraints. Based on the modeling mechanism of H-
CECM and the iterative criterion of AMW-SRUKF method, the overall SOC calculation pseudocode frame-work 
can be listed in Algorithm 1.

3 EXPERIMENTAL  ANALYSIS

3.1 Battery specifications and experimental platform

Taking into consideration the battery usage environment, to explore the accuracy of the H-CECM under time-
varying ambient temperatures, the LFP battery with rated capacity of 10 Ah and charging temperature range of 0�C to 
55�C is selected as the test object for this study. The experimental device and the selected battery specifications 
are shown in Figure 3. The equipment of the platform mainly includes large-rate charge and discharge test 
equipment for power cells (CT-4016-5V100A-NTFA) and a three-layer independent temperature control high and 
low-temperature test chamber equipment (DGBELL BTT-331C). Also, the entire experiment charging and 
discharging process and data collection are controlled by the host.

3.2 Experimental procedure and model identification

In view of the complex and changeable application sce-narios of batteries, it is necessary to consider the uncertainty of 
temperature changes in the modeling. Specifically, the direct impact of temperature changes on battery modeling 
mainly includes changes in OCV-SOC function, changes in capacity, and changes in hysteresis voltage, which further affect 
the model parameter identi-fication results and SOC estimation accuracy. Therefore, this study focuses on the uncertainty 
of temperature when verifying the accuracy of the model and the accuracy of the algorithm. By setting the wide 
temperatures of 5C, 15C, 25C, 35C, and 45C, the temperature test chamber is used to perform the capacity correction 
test, the OCV-SOC test, the hysteresis voltage compensation test, the HPPC test, and the self-defined dynamic stress test 
(DST), and then complete the model accuracy verification under different ambient temperatures. It is worth noting that the 
charging temperature range of the selected lithium iron phosphate battery samples is between 0C and 55C. Therefore, 
considering the Coulomb efficiency and the data set requirements for OCV-SOC fitting, the temperature point distribution 
points of 5C, 15C, 25C, 35C, and 45C are selected. A brief description of each step of the experiment is as follows.

3.2.1 The capacity correction test

Under the control of the host, the ambient temperature of the battery sample is changed by adjusting the 
thermostat. Then, use the standard charging current (1C) and the standard discharging current (0.2C) to 
conduct a cyclic charge-discharge test on the sample battery. The actual capacity of the battery at 25�C is taken as 
the nominal capacity, which is 9.9826 Ah, and test the actual capacity of the battery sample at wide 
temperatures of 5�C, 15�C, 25�C, 35�C, and 45�C, as shown in Figure 4A. After multiple cycles of testing, the 
battery capacity test results and the calculation results of the Coulombic efficiency are shown in Table 1. The 
ratio of the actual temperature at the above temperature to the nominal capacity measured at 25�C is 
taken as the value of the Coulombic efficiency. By the least square fitting method, the Coulombic efficiency 
value at full temperature is obtained. The calculation results of the Coulombic efficiencey and the fitting curves 
are shown in Figure 4B.
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3.2.2 The OCV-SOC test

At wide temperatures of 5�C, 15�C, 25�C, 35�C, and 45�C, using a standard discharge current (1C) to conduct 
a constant current discharge experiment on a full-capacity battery, and the battery sample is allowed to rest 
for two hours after the experiment for each ambient temperature. Then, the OCV-SOC curves under varying 
ambient temperatures are obtained, as shown in Figure 4A. According to the OCV characterization 
equation shown in Equation (1), the curve fitting function is performed based on the experimental results of OCV-SOC 
under varying ambient temperatures. The coefficients of the curve fitting function are shown in Table 2.

FIGURE 2 Overall coupling principle of the presented state-of-charge estimation method

3.2.3 The hysteresis voltage compensation experiment

Simultaneously with the OCV-SOC test, a constant-current charging experiment is performed on the empty 
battery using a standard charging current (0.2 C) at wide temperatures of 5�C, 15�C, 25�C, 35�C, and 45�C. After 
each temperature experiment, the battery sample rests for 2 h. Then the OCV-SOC experimental curves under 
varying ambient temperatures are obtained. Then, the result of M(Sk) is shown in Figure 4D.

3.2.4 The HPPC test

At wide temperatures of 5�C, 15�C, 25�C, 35�C, and 45�C, the standard HPPC test is performed on the battery, 
the specific steps of the HPPC experiment can be found in Reference [9]. The current and voltage curves at 25�C 
are shown in Figure 5A-1,A-3. The Figure 5A-2,A-4 are enlarged views of a single pulse of current and voltage. In 
this paper, the HPPC experimental results at different temperatures are selected as the basis for model parameter 
identification.



3.2.5 The self-defined DST test

At wide temperatures of 5�C, 15�C, 25�C, 35�C, and 45�C, perform self-defined complex DST experiments on the 
battery for further verification of model fidelity and algorithm superiority at varying ambient temperatures. The 
experimental steps are as follows: Step 1: using a current rate of 0.5 C, a constant current discharge is applied for 60 s; 
Step 2: using a current rate of 0.2 C, a constant current discharge is applied for 20 s; Step 3: shelve for 10 s; Step 4: 
using a current rate of 0.5 C, a constant current charge is applied for 20 s; Step 5: shelve for 10 s; Step 6:1 C current 
constant current discharge for 120 s; Step 7: for the iterative cycle steps, Steps 1 to 6 are repeated until the end of the 
cycle. The DST full cycles and single-cycle experimental curves are shown in Figure 5B.

According to the above experiment, at wide temperatures of 5�C, 15�C, 25�C, 35�C, and 45�C, based on the 
results of HPPC experiments, the model is identified with the RLS algorithm. It should be noted that the RLS 
method has low computational complexity and is acceptable in terms of accuracy, and is often used in system 
identification. The results of the identification of each parameter are shown in Figure 6.
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ALGORITHM 1 Overall pseudo-code framework for SOC calculation

1 Procedure: pseudo-code of AMW-SRUKF method based SOC estimation
for k = 12

3 for i = 1 to n
4
5

Randomly generate initial particles xi0 i¼ 1,2,…,nð Þ
Initialize the covariance matrix Pi

0 by Equation (15)

6
Calculation of the decomposition factor Li0 using Equation (15)

end for
7 end for
8 while k<N
9 for k¼ 2 to N
10 for i¼ 1 to n
11
12
13
14
15
16
17
18
19
20
21
22
23

Calculate a sigma point set and the corresponding weights by Equations (16) and (17)
One-step prediction of the state variable using Equations (18)
Calculate the Cholesky decomposition value Lbx,k by Equation (19)
Update the decomposition factor Lx,k by Equation (20)
One-step prediction of observation variable using Equation (21)
Calculate the Cholesky decomposition value Lby,k by Equation (22)
Update the decomposition factor Ly,k by Equation (23)
Calculate of the error covariance matrix Pxy,k by Equation (24)
Calculate the gain matrix Kk by Equation (25)
Update system's state variable by Equation (26)
Update error covariance matrix Lk by Equation (27)
Calculate the innovation covariance function Ek by Equation (28)
Update the covariance values of process noise and measurement noise by Equation (29)

24 end for
25
26

end for
end while

27 end procedure



The experimental results in Figure 6, SOC  (1) represents  the actual SOC value, and its unit is normalized. The Figure 
6A-1 shows the identification results of the internal ohmic resistance under varying ambient temperatures. Its value 
increases as the temperature decreases, and the higher the temperature, the less obvious the resistance change is during the 
entire SOC levels. The Figure 6A-2 shows the identification results of internal polarization resistance under varying 
ambient temperatures. Its value is not greatly affected by the variation of the ambient temperature. The higher the 
temperature, the smaller the resistance. The Figure 6A-3 shows the identification results of polarized capacitors at varying 
ambient temperatures. The general trend is that the higher the temperature, the larger the capacitance. The Figure 6B-1 is 
the comparison of the terminal voltage output under the HPPC working condition at 25�C, which is used as a model 
verification at a single temperature. The Figure 6B-2 shows the partial enlarged terminal voltage output curve under the 
HPPC working condition at 25C . It can be observed in Figure 6B-3 that at 25C , the maximum prediction error of the model 
terminal voltage is 0.05 V, with an accuracy of 98.81%. It shows that the parameter identification results based on the RLS 
algorithm have high reliability and can be used for subsequent SOC verification.

3.3 Evaluation of terminal voltage prediction accuracy

To verify the performance of the proposed H-CECM, the self-defined DST experiments are performed on selected 
battery sample at different temperatures. The measured and estimated results of the battery terminal voltage are shown 
in Figure 7. The experimental results show that the estimated terminal voltage of H-CECM matches the measured 
value well. It is worth noting that it can also be found from the experimental results that the estimation error of the 
model will increase slightly at the end of the discharge. This is mainly caused by the inevitable measurement error in the open 
circuit voltage experiment. Specifically, at the end of discharge, the OCV of the battery shows a rapid drop, which inevitably 
causes errors in its measurement. And further, the RMSE and MAPE are used to quantitatively evaluatetheperformanceofthe H-
CECM,asshownin Table 3.
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FIGURE 3 Experimental

platform. Left: equipment

device; Right: Battery

specifications

From the evaluation results in Table 3, the MAPEs of the terminal voltage prediction based on H-CECM at 
wide temperatures of 5�C, 15�C, 25�C, 35�C, and 45�C, are 1.65%, 0.38%, 0.77%, 0.10%, and 0.27% respectively. 
Under the same temperature conditions, the RMSEs of the terminal voltage prediction based on H-CECM are 0.0559, 
0.0217, 0.0312, 0.0619, and 0.0119 V respectively. Compared with the predicted results of terminal voltage at 25C and 
45C in Reference [33] (the predicted RMSEs of terminal voltage at 25C and 45C are 0.0342 V and 0.0361 V), the 
accuracy of the model constructed in this paper is improved by 0.0030 V and 0.0242 V. This result implies that, under 
varying ambient temperatures, the constructed H-CECM achieves high accuracy of the terminal voltage.



3.4 Evaluation of SOC estimation efficiency

The actual application of lithium-ion batteries is insepa-rable from variations in ambient temperature, and an 
intelligent SOC estimation method must adapt to different ambient temperatures. Based on the self-defined 
DST complex working conditions experimental data, the estimation effects of the AMW-SRUKF algorithm under varying 
ambient temperatures are obtained. By comparing the estimation accuracy and convergence speed of the SRUKF and the 
AMW-SRUKF method using key performance metrics, the proposed algorithm's robustness and strong adaptability are 
verified. The estimation and error results under the self-defined DST complex conditions at wide temperatures of 5C, 
15C, 25C, 35C, and 45C, are shown in Figure 8.
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TABLE 1 The Coulombic efficiency

values under varying ambient

temperatures

Temperature (�C) 5 51 52 35 45

Actual capacity(Ah) 8.1208 9.1321 9.9826 10.3729 10.4117

Nominal capacity(Ah) 9.9826 9.9826 9.9826 9.9826 9.9826

Coulombic efficiency 0.8135 0.9148 1.0000 1.0391 1.0430

TABLE 2 Coefficient identification

results of open-circuit voltage (OCV) at

varying ambient temperatures

Temperature (�C) 5 15 25 35 45

m1 3.354 3.362 3.371 3.332 3.358

m2 0.062 0.073 0.103 0.045 0.074

m3 �0.0024 0.0063 0.0120 �0.0065 0.0056
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The experimental results shown in Figure 8 show that the estimator based on AMW-SRUKF method performs 
better than the traditional SRUKF method at different ambient temperatures. In addition, benefiting from the 
adaptive moving window covariance tracking strategy, the proposed method will not produce the problem of 
accumulated error that is not conducive to the system and the filtering divergence caused by the negative covariance in the 
estimation process, which makes the operation of the system more stable. Furthermore, the quantitative calculation results 
of RMSE and MAPE are shown in Table 5.

As can be seen from the results in Table 4, the MAPEs of the SOC observations based on AMW-SRUKF 
method at wide temperatures of 5�C, 15�C, 25�C, 35�C, and 45�C, are1.85%, 0.70%, 0.21%, 0.21%, and 0.33%
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TABLE 3 Evaluation of terminal voltage prediction accuracy

using root-mean-square error (RMSE) and mean absolute

percentage error (MAPE)

Temperature 5�C �1 C5 �2 C5 �3 C5 �4 C5

RMSE (V) 0.0559 0.0217 0.0312 0.0619 0.0119

MAPE (%) 1.6500 0.3800 0.7700 0.1000 0.2700
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FIGURE 8 Model verification results under the custom DST condition at varying ambient temperatures. (A-1) state-of-charge (SOC)

estimation at 5�C; (A-2) Partial enlarged at 5�C; (A-3) SOC error at 5�C; (B-1) SOC estimation at 15�C; (B-2) Partial enlarged at 15�C; (B-3)
SOC error at 15�C; (C-1) SOC estimation at 25�C; (C-2) Partial enlarged at 25�C; (C-3) SOC error at 25�C; (D-1) SOC estimation at 35�C; (D-
2) Partial enlarged at 35�C; (D-3) SOC error at 35�C; (E-1) SOC estimation at45�C; (E-2) Partial enlarged at 45�C; (E-3) SOC error at 45�C

16

TABLE 4 Comparison of root-mean-square error (RMSE) and mean absolute percentage error (MAPE) values under varying ambient

temperatures

Temperature 5�C �C15 �C25 �C35 �C45

Method SRUKF
AMW-
SRUKF SRUKF

AMW-
SRUKF SRUKF

AMW-
SRUKF SRUKF

AMW-
SRUKF SRUKF

AMW-
SRUKF

RMSE (1) 0.0338 0.0211 0.0158 0.0087 0.0035 0.0028 0.0036 0.0028 0.0068 0.0042

MAPE (%) 3.1200 1.8500 1.3700 0.7000 0.2800 0.2100 0.2200 0.2100 0.5400 0.3300



respectively. The MAPEs of the SOC observations based on traditional SRUKF method at wide temperatures of 
5�C, 15�C, 25�C, 35�C, and 45�C, are 3.12%, 1.37%, 0.28%, 0.22%, and 0.54% respectively. This result shows that the 
MAPE of SOC prediction based on the proposed method is less than that of the traditional SRUKF method over a 
wide temperature range. Furthermore, the RMSEs of the SOC observations based on AMW-SRUKF method at 
wide temperatures of 5�C, 15�C, 25�C, 35�C, and 45�C, are 0.0211, 0.0087, 0.0028, 0.0028, and 0.0042 
respectively. Under the same temperature conditions, the RMSEs of the SOC observations based on SRUKF 
method are 0.0338, 0.0158, 0.0035, 0.0036, and 0.0068 respectively. It can be concluded that under the same 
temperature conditions, the RMSE of SOC prediction based on the proposed AMW-SRUKF method is smaller 
than that of the traditional SRUKF method. This result shows that the SOC prediction of the proposed method has 
a maximum RMSE of 0.0211 at the wide temperatures of 5�C, 15�C, 25�C, 35�C, and 45�C. This is 0.0089 less than 
the RMSE of the SOC prediction based on the UPF method in the Reference [33] (the RMSE of the SOC 
prediction based on the UPF method is less than 0.3 at the range of 10�C, 25�C, and 45�C). This comparison of 
results fully verifies the high-precision performance of the proposed AMW-SRUKF method.

4 CONCLUSIONS

High-precision modeling and accurate estimation of state-of-charge are indispensable in advanced battery 
management systems. This paper introduces a method for battery modeling and state-of-charge estimation in 
detail. First, a hysteresis-compensated resistance-capacitance circuit network model is established to 
achieve accurate modeling of the hysteresis effect of the battery open-circuit voltage. On this basis, an adaptive 
moving window square root unscented Kalman filtering algorithm is developed, and considering multiple 
constraints such as Coulomb efficiency, uncertainty of ambient temperature changes, and hysteresis voltage to

achieve high-precision estimation of battery state-of-charge. The experimental results show that the terminal 
voltage RMSE and MAPE based on the hysteresis com-pensation resistor-capacitor network model are limited 
within 61.90 mV and 1.65%, respectively, within the tem-perature range required by the battery. Under the high-
precision model parameter identification results, the RMSE and MAPE performances based on the developed 
state-of-charge estimation algorithm are significantly improved at various temperatures. The proposed modeling 
method and experimental results provide an effective way for battery-integrated management of electric vehicles or 
micro-grid application.

ACKNOWLEDGEMENT
The work is supported partly by the National Natural Sci-ence Foundation of China (Grant No. 62173281 and 
61801407), partly by China Scholarship Council (Grant No. 201908515099), partly by Southwest University of 
Science and Technology Student Innovation Fund Project (Grant No. CX21-018), and partly by National College 
Students Innovation and Entrepreneurship Training Program (Grant No. S202110619017). Thanks to the sponsor, C.F., 
we would like to express our gratitude to RGU for the support.

DATA  AVAILABILITY  STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonablerequest.

ORCID
Haotian Shi https://orcid.org/0000-0001-8120-8310     Shunli Wang https://orcid.org/0000-0003-0485-8082 

Junhan Huang https://orcid.org/0000-0002-8009-7863 Wenhua Xu https://orcid.org/0000-0002-2607-7685

REFERENCES

1. Wan BY, Tian LX, Fu M, Zhang GY. Green development growth momentum under carbon neutrality scenario. J Clean Prod. 
2021;316:128327.

2. Jiang SD, Song ZX. A review on the state of health estimation methods of lead-acid batteries. J Power Sources. 2022;517: 230710.

17

https://orcid.org/0000-0001-8120-8310
https://orcid.org/0000-0001-8120-8310
https://orcid.org/0000-0003-0485-8082
https://orcid.org/0000-0003-0485-8082
https://orcid.org/0000-0002-8009-7863
https://orcid.org/0000-0002-8009-7863
https://orcid.org/0000-0002-2607-7685
https://orcid.org/0000-0002-2607-7685


3. Zhang ZQ, Huang GX, Tang XL, et al. Zn and Na promoted Fe catalysts for sustainable production of high-valued olefins by CO2 
hydrogenation. Fuel. 2022;309:122105.

4. Dillon SJ, Sun K. Microstructural design considerations for Li-ion battery systems. Curr Opin Solid State Mater Sci. 2012;16:
153-162.

5. Katsuyama Y, Kobayashi H, Iwase K, Gambe Y, Honma I. Are redox-active organic small molecules applicable for high-voltage 
(>4 V) lithium-ion battery cathodes? Adv Sci. 2022; 9(12):2200187.

6. Shi HT, Wang SL, Wang LP, et al. On-line adaptive asynchro-nous parameter identification of lumped electrical characteristic 
model for vehicle lithium-ion battery considering multi-time scale effects. J Power Sources. 2022;515:230725.

7. Sun JL, Ma Q, Liu RH, Wang TR, Tang CY. A novel multiobjective charging optimization method of power lithium-ion batteries 
based on charging time and temperature rise. Int J Energy Res. 2019;43(13):672-7681.

8. Yu P, Wang SL, Yu CM, Jang C, Shi WH. An adaptive fractional-order extended Kalman filtering for state of charge 
estimation of high-capacity lithium-ion battery. Int J Energy Res. 2022;46(4):4869-4878.

9. Shi HT, Wang SL, Carlos F, Yu CM, Fan YC, Cao W. Improved splice-electrochemical circuit polarization modeling and optimized 
dynamic functional multi-innovation least square parameter identification for lithium-ion batteries. Int J Energy Res. 
2021;45:15323-15337.

10. Yu P, Wang SL, Yu CM, Shi WH, Li BW. Study of hysteresis voltage state dependence in lithium-ion battery and a novel 
asymmetric hysteresis modeling. J Energy Storage. 2022;51: 104492.

11. Darma MSD, Lang M, Kleiner K, et al. The influence of cycling temperature and cycling rate on the phase specific degradation of a 
positive electrode in lithium ion batteries: a post mortem analysis. J Power Sources. 2016;327:714-725.

12. Raugei M, Winfield P. Prospective LCA of the production and EoL recycling of a novel type of Li-ion battery for electric vehicles. J 
Clean Prod. 2019;213:926-932.

13. Lang M, Darma MSD, Kleiner K, et al. Post mortem analysis of fatigue mechanisms in LiNi0.8Co0.15Al0.05O2-LiNi0.5Co0.2M-
n0.3O2-LiMn2O4/graphite lithium ion batteries. J Power Sources. 2016;326:397-409.

14. Khalik Z, Donkers M, Bergveld HJ. Model simplifications and their impact on computational complexity for an 
electrochemistry-based battery modeling toolbox. J Power Sources. 2021;488:229427.

15. Zhang HM, Huang JY, Hu RH, Zhou DQ, Khan HUR, Ma CX. Echelon utilization of waste power batteries in new energy 
vehicles: review of Chinese policies. J Power Sources. 2020;206: 118178.

16. Li Y, Yang J, Song J. Design principles and energy system scale analysis technologies of new lithium-ion and aluminum-ion 
batteries for sustainable energy electric vehicles. Renew Sustain Energy Rev. 2017;71:645-651.

17. Shi HT, Wang SL, Carlos F, Yu CM, Fan YC CW. Online full-parameter identification and SOC estimation of lithium-ion battery 
pack based on composite electrochemical - dual circuit polarization modeling. IOP Conf Ser: Earth Environ. 2021;675:012192.

�8

18. Wu LX, Pang H, Geng YF, Liu XF, Liu JH, Liu K. Low-complexity state-of-charge and anode potential prediction for 
lithium-ion batteries using a simplified electrochemical model-based observer under variable load condition. Int J Energy Res. 
2022;46(9):1-15.

19. Wang SL, Fang YC, Yu CM, et al. A novel collaborative multi-scale weighting factor-adaptive Kalman filtering method for the 
time-varying whole-life-cycle state of charge estimation of lithium-ion batteries. Int J Energy Res. 2022;46(6):1-15.

20. Guo SS, Yang RX, Shen WX, Liu YS, Guo SG. DC-AC hybrid rapid heating method for lithium-ion batteries at high state of charge 
operated from low temperatures. Energy. 2022;238: 121809.

21. Du YT, Fujita K, Shironita S, et al. Capacity fade characteristics of nickel-based lithium-ion secondary battery after calendar 
deterioration at 80 degrees C. J Power Sources. 2021;501: 230005.

22. Choudhari VG, Dhoble AS, Panchal S, Fowler M, Fraser R.
Numerical investigation on thermal behaviour of 5 � 5 cell configured battery pack using phase change material and fin
structure layout. J Energy Storage. 2021;43:103234.

23. Ruan HJ, Sun BX, Zhang WG, Su XJ, He XT. Quantitative anal-ysis of performance decrease and fast-charging limitation for lithium-
ion batteries at low temperature based on the electro-chemical model. IEEE Trans Intell Transp Syst. 2021;22:
640-650.

24. Wang ZP, Song CB, Zhang L, Zhao Y, Liu P, Dorrell DG. A data-driven method for battery charging capacity abnormality 
diagnosis in electric vehicle applications. IEEE Trans Transp Electrif. 2022;8(1):990-999.

25. Li WH, Fan Y, Ringbeck F, Jost D, Sauer DU. Unlocking electrochemical model-based online power prediction for lithium-ion 
batteries via Gaussian process regression. Appl Energy. 2022;306:118114.

26. Zhang SZ, Zhang XW. Joint estimation method for maximum available energy and state-of-energy of lithium-ion battery under 
various temperatures. J Power Sources. 2021;506:230132.

27. Lai X, Huang YF, Han XB, Gu HH, Zheng YJ. A novel method for state of energy estimation of lithium-ion batteries using particle 
filter and extended Kalman filter. J Energy Storage. 2021; 43:103269.

28. Shrivastava P, Soon TK, Bin Idris MYI, Mekhilef S, Adnan SBRS. Combined state of charge and state of energy 
estimation of lithium-ion battery using dual forgetting factor-based adaptive extended kalman filter for electric vehicle applications. 
IEEE Trans Veh Technol. 2021;70:1200-1215.

29. Shi HT, Wang SL, Carlos F, Yu CM, Li XX, Zou CY. Adaptive iterative working state prediction based on the double 
unscented transformation and dynamic functioning for unmanned aerial vehicle lithium-ion batteries. Meas Control. 
2020;53:1760-1773.



32. Bian XL, Wei ZG, Li WH, Pou J, Sauer DU, Liu LC. State-of-health estimation of lithium-ion batteries by fusing an OCV 
model and incremental capacity analysis. IEEE Trans Power Electron. 2022;37:2226-2236.

33. Wang YJ, Chen ZH. A framework for state-of-charge and remaining discharge time prediction using unscented particle 
filter. Appl Energy. 2020;260:114324.

34. Shi HT, Wang SL, Carlos F, Yu CM, Fan YC, Cao W. A novel dual correction extended Kalman filtering algorithm for 
the state of charge real-time estimation of packing lithium-ion batteries. Int J Electrochem Sci. 2020;15:12706-12723.

35. Lyu ZQ, Gao RJ, Li XY. A partial charging curve-based data-fusion-model method for capacity estimation of Li-ion battery. 
J Power Sources. 2021;483:229131.

36. Chi XC, Lin F, Wang YX. Disturbance and uncertainty-immune on board charging batteries with fuel cell by 
using equivalent load fuzzy logic estimation-based back stepping sliding-mode control. IEEE Trans Transp Electrif. 
2021;7:249-1259.

37. Bian C, Yang SK, Miao Q. Cross-domain state-of-charge estimation of li-ion batteries based on deep transfer neural 
network with multiscale distribution adaptation. IEEE Trans Transp Electrif. 2021;7:1260-1270.

38. Hu XS, Yuan H, Zou CF, Li Z, Zhang L. Co-estimation of state-of-charge and state of health for lithium-ion batteries based on 
fractional-order calculus. IEEE Trans Veh Technol. 2018;67(11): 10319-10329.

39. Wang SL, Fang YC, Yu CM, Jin SY, Fernandez C, Stroe DI. Improved covariance matching-electrical equivalent modeling 
for accurate internal state characterization of packing lithium-ion batteries. Int J Energy Res. 2022;46(3):1-15.

40. Qiao JL, Wang SL, Yu CM, Yang X, Fernandez C. A novel intelligent weight decreasing firefly-particle filtering method 
for accurate state-of-charge estimation of lithium-ion batteries. Int J Energy Res. 2022;46(5):1-15.

41. Li H, Wang SL, Islam M, Bobobee ED, Zou CY, Fernandez C. A novel state of charge estimation method of lithium-ion 
batte-ries based on the IWOA-AdaBoost-Elman algorithm. Int J Energy Res. 2022;46(4):1-15.

42. Tang XP, Wang YJ, Yao K, He ZW, Gao FR. Model migration based battery power capability evaluation considering uncer-
tainties of temperature and aging. J Power Sources. 2019;440: 227141.

43. Tang XP, Wang YJ, Zou CF, Yao K, Xia YX, Gao FR. A novel framework for Lithium-ion battery modeling considering 
uncertainties of temperature and aging. Energ Conver Manage. 2019;180:162-170.

Gao YZ, Liu KL, Zhu C, Zhang X, Zhang D. Co-estimation of state-of-charge and state-of- health for lithium-ion batteries using an 
enhanced electrochemical model. IEEE Trans Ind Electron. 2022;69:2684-2696. 
Ren LC, Zhu GR, Wang JV, Luo BY, Kang JQ. Comparison of robustness of different state of charge estimation algorithms. J Power 
Sources. 2021;478:28767.

30.

31.

19


	coversheet_template
	SHI 2022 Battery hysteresis compensation (AAM)
	coversheet_template
	SHI 2022 Battery hysteresis compensation (AAM)
	Battery hysteresis compensation modeling and state-of-charge estimation adaptive to time-varying ambient temperature conditions
	1  INTRODUCTION
	2  MATHEMATICAL ANALYSIS
	2.1  Hysteresis-compensated RC circuit network
	2.2  Model-based online parameter identification
	2.3  AMW-SRUKF for SOC estimation
	2.4  Coupling principle and pseudo-code framework

	3  EXPERIMENTAL ANALYSIS
	3.1  Battery specifications and experimental platform
	3.2  Experimental procedure and model identification
	3.2.1  The capacity correction test
	3.2.2  The OCV-SOC test
	3.2.3  The hysteresis voltage compensation experiment
	3.2.4  The HPPC test
	3.2.5  The self-defined DST test

	3.3  Evaluation of terminal voltage prediction accuracy
	3.4  Evaluation of SOC estimation efficiency

	4  CONCLUSIONS
	ACKNOWLEDGEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES

	Blank Page
	Blank Page
	Blank Page
	Blank Page





