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Abstract: Improved thermal management in high temperature tribological systems requires 

novel developments in lubricants. Motivated by combining nanoparticle and magnetorheological 

plastomer (MRP) features, this research paper deals with the analysis of the high-temperature 

magnetohydrodynamic squeeze flow of a Casson nanofluid between parallel disks with the 

Fourier-type boundary conditions including radiation. Rosseland’s diffusion flux and the 

Buongiorno nanoscale model are used. Suction and injection effects at the disks are also 

considered as is viscous heating. Robin (Fourier) boundary conditions are included and the 

Buongiorno nanoscale model is used which enables the simulation of nanoparticle mass 

diffusion, Brownian motion and thermophoresis. The emerging nonlinear boundary value 

problem is solved with the bvp4c routine in MATLAB routine with appropriate boundary 

conditions at the disks. The effects of squeeze number, Hartmann number, Brownian motion 

parameter, Prandtl number, Eckert number, thermophoresis parameter, Casson viscoplastic 

rheological parameter and thermal radiation parameter for both disk suction and injection cases 

and also with equivalent and different Biot numbers at the disks, are presented graphically. 

MATLAB solutions are validated with earlier published results.  Drag force increases with 

greater magnetic field strength. Increasing squeezing parameter substantially modifies the 

velocity distribution causing a deceleration near the disk surfaces but an acceleration further 

from the disks. Elevation in Prandtl number and Eckert number results in a significant 

enhancement in temperature but a strong depletion in nanoparticle concentration for both equal 

and unequal Biot numbers at the disk surfaces. Nanoparticle concentration is depleted at the disk 

surfaces with increasing Brownian motion parameter values. With an increase in the Casson 

viscoplastic parameter, temperature decreases i. e. cooling is induced, whereas nanoparticle 

concentration increases. The simulations show that significant temperature elevation is produced 

with increasing Brownian diffusion, viscous dissipation and radiative flux effects and that 

combining nanoparticles and viscoplastic effects offers a good thermal management mechanism 

in squeezing lubrication.  
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Nomenclature: 

A           Suction/ Blowing parameter 

B Strength of magnetic field 

0B           Strength of magnetic field 

Cfr          Skin friction coefficient 

1 2,Bi Bi    Biot number 

TD        Thermophoretic diffusion coefficient 

BD Brownian motion coefficient 

Le Lewis Number  

,a H         Positive constants  

k Thermal conductivity 

S Squeeze number  

Nt   Thermophoresis parameter 

Nb  Brownian motion parameter 

Nur         Nusselt number 

Shr          Sherwood number 

( )h t          Distance between the two disks 

Nu           Nusselt number 

Pr Prandtl Number 

P Pressure  

/r z         Space coordinate  

T Temperature  

C Concentration 

hC Concentration at the upper disk 

wC      Concentration at the lower disk 

,u w           Velocity components 

0w Suction/blowing velocity 

hT Temperature at the upper disk 

wT        Temperature at the lower disk 
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mT Mean fluid temperature 

M Hartmann number 

Rer Reynolds number 

pC Specific heat 

f Dimensionless stream function 

wq Surface heat flux 

Green Number: 

 Similarity variable 

 Heat capacity  

 Thermal diffusivity

 Dynamic Viscosity  

 Electric conductivity 

  Casson non-Newtonian parameter 

 Density  

 Dimensionless Temperature

 Dimensionless Concentration

 Kinematic viscosity

1. Introduction

Squeezing flow is of fundamental interest in engineering sciences and applications include radial 

diffusers, turbine engines, rotating wafers, bearing system lubrication, aircraft landing gear, 

automotive shock absorbers, hydraulic lifts etc.  Such flows often feature multiple physical 

effects including heat transfer, mass transfer, unsteadiness, electromagnetics, lubricant rheology 

etc. Many diverse studies of such flows have been communicated including Çelik and Öztürk [1] 

(on thermal squeezing), Kang et al. [2] (on magnetic squeeze film dampers), McIClark [3] (on 

slurry squeezing dynamics), Bég et al. [4] (orthopaedic magneto-tribology), Naduvinamani et al. 

[5] (machine bearings), Bhat and Deberi [6] (annular magnetic plate lubrication) and Lin et al.

[7] (squeeze-film air bearings).  Such fluids also offer attractive properties for anti-corrosion and
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anti-oxidation protection, prolonged working life and boosted heat dissipation which are key 

aspects of modern lubrication engineering. Walters [8] highlighted the superior load journal-

bearing performance of non-Newtonian liquids (e.g. viscoelastic multigrade oils) identifying the 

relaxation time and enhanced pressure dependence as key beneficial factors. Non-Newtonian 

fluids require a nonlinear relationship between stress and strain and the Newtonian classical 

viscous flow model can be retrieved as a special case. They include paints, gels, greases, mineral 

oils, synthetic oil, silicon fluids, polymers etc. Various mathematical models have been 

employed to simulate the squeezing flows of non-Newtonian fluids which may also be 

electrically conducting (magnetic polymer lubricants). Ohno and Hirano [9] confirmed the many 

advantages of non-Newtonian lubricants (e.g. viscoplasticity, viscoelasticity, relaxation and 

retardation) Motivated by the superior performance of rheo-lubricants, many analytical and 

computational investigations of non-Newtonian squeeze film flows have appeared in recent 

years. Hayat et al. [10] used a homotopy method to derive convergent series solutions for 

magnetohydrodynamic squeezing flow of a third grade Reiner-Rivlin viscoelastic fluid between 

approaching disks with Joule and viscous heating effects.  Muravleva [11] derived asymptotic 

solutions for the axisymmetric squeeze flow of a viscoplastic fluid, identifying a pseudo-plug 

region in which the leading order equation predicts a plug and deploying a slip yield boundary 

condition at the disks. Xu et al. [12] studied theoretically and experimentally the squeeze flow 

behaviors (including compressive, tensile, and oscillatory squeeze behaviors) of 

magnetorheological plastomers (MRPs), noting that magnetic field, particle distribution, and 

particle concentration significantly modify the stress and flow behaviour and that MRPS 

significantly outperform conventional lubricants.  Phan-Thien and Walsh [13] derived similarity 

solutions for squeezing flow of an Oldroyd-B viscoelastic fluid. Muravlev [14] conducted both 

asymptotic and numerical studies (accelerated proximal gradient and augmented Lagrangian 

methods) of the axisymmetric squeeze flow of a viscoplastic Casson fluid using no-slip and slip 

yield boundary conditions at the wall. Shamshuddin et al. [15] used both MATLAB and the 

successive Taylor series linearization method (STSLM) with Chebyshev interpolating 

polynomials and Gauss-Lobatto collocation, to analyze the mixed bioconvection 

magnetohydrodynamic squeezing flow with first order homogenous destructive chemical 

reaction between parallel plates. Çelik and Öztürk [16] discussed  the squeezing flows between 

parallel disks, of which one disk is impermeable and the other is porous, in the presence of 
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magnetic field using Gegenbauer Wavelet Collocation Method (GWCM). GWCM is generalized 

form of the Legendre, Chebyshev and second kind Chebyshev wavelets. From the numerical 

results, it was observed that GWCM was convergent even in the case of a small number of grid 

points.  Heat transfer and entropy generation due to laminar natural convection in a square cavity 

filled with non-Newtonian nanofluid was  analyzed by Kefayati [17] using Finite Difference 

Lattice Boltzmann Method. It was concluded that the augmentation of the power-law index 

caused heat transfer to drop while increase in volume fraction of nanoparticles augmented it. 

Entropy generation due to fluid friction and heat transfer was rised as Rayleigh number 

enhanced.  

The above studies did not consider high temperature lubrication. In a number of 

squeezing flows, excessive heat buildup within the bearing is one of the main factors that can 

warn of impending failure. In extreme cases radiative heat transfer is invoked. This has been 

observed in railroad catastrophic bearing failure [18] where engineers have identified that 

neglection of radiative heat effects (generally observed above 150 Celsius) leads to premature 

thermal damage of the bearing system. Body-to-body radiation arises, and this necessitates the 

inclusion of radiative heat flux in mathematical models. Such models may also feature complex 

boundary conditions for ambient temperature, emissivity etc [19-21]. Radiative heat transfer in 

squeezing flows also arises in magnetic recording technologies [22-25] where thin film non-

Newtonian interfaces at the head-disk interface experience significantly high thermal loads. 

Several researchers have considered radiative squeezing flows of non-Newtonian lubricants.  

Mohyud-Din and Khan [26] presented homotopy solutions for unsteady dissipative squeezing 

flow of a viscoplastic fluid between an upper impermeable disk approaching a lower porous disk. 

They deployed a Rosseland diffusion flux model noting a significant elevation in temperature 

both in the core gap region and at the disk surfaces. A similar investigation was reported by 

Khan et al. [27] who also computed skin friction coefficient and local Nusselt number at both 

disks. Hayat et al. [28] computed the radiative squeezing flow of a magnetic second grade 

Reiner-Rivlin viscoelastic fluid with convective (Robin i.e. mixed) boundary conditions between 

approaching circular disks. They found that temperature is substantially elevated with radiation 

due to a reduction in mean absorption coefficient. They also showed that radial velocity exhibits 

a two different types of behavior by enlarging the magnetic parameter and that suction and 

injection modify both velocity and temperature distributions markedly. Heat transfer and entropy 
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generation on laminar natural convection of non-Newtonian nanofluids in the presence of an 

external horizontal magnetic field in a square cavity was analyzed by Kefayati [29]. 

Augmentation of the volume fraction and Rayleigh number enhanced all kinds of entropy 

generations of heat transfer, fluid friction, and the magnetic field. Bilal and Urva [30] studied the 

effects of nonlinear radiation and mixed convection for the Casson nanofluid through the thin 

needle. They claimed that the drag force over the fine needle was enhanced for the higher 

buoyancy ratio parameter and the rate of mass transfer was raised for the higher activation 

energy parameter. 

As noted earlier, heat dissipation and control is a significant challenge in lubrication 

(squeezing) systems. Thermal management has therefore become a major focus in recent years in 

many industries where tribological systems feature e. g. aerospace, energy, heavy machinery, 

biomechanics, rail transit etc. An important development in this regard has been the introduction 

of nanofluids [31] instead of conventional fluids in the mid-1990s.  Engineered at the nanoscale, 

nanofluids are colloidal suspensions of conventional base fluids e.g. lubricating oils doped with 

nanoscale metallic or carbon-based particles. Different types of nanofluids can be manufactured 

by suspending manually metals, carbides, oxides, nanotubes or nitrides of nano-size in the base 

fluid. The base fluids can be either Newtonian or non-Newtonian fluids and may be electrically 

non-conducting or magnetohydrodynamic fluids. In technical applications non-Newtonian fluids, 

as elaborated earlier, offer significant advantages over Newtonian fluids including superior 

oxidation inhibition, thermal dissipation, viscosity and decreased surfacial damage to bearing 

surfaces. Many elegant mathematical models have been developed for simulating nanofluid 

dynamics. Among the most popular is the two-component Buongiorno nanoscale model [32] 

which has the advantage of including a nanoparticle mass conservation (volume fraction) 

equation and also thermophoretic and Brownian dynamics effects. Although other approaches 

have been developed for nanoscale heat transfer [33], they are less compatible with viscous fluid 

dynamics analysis (e.g. squeezing hydrodynamics) and therefore Buongiorno’s model remains 

very widely deployed since it permits the analysis of the nanoparticle concentration field (mass 

diffusion of nanoparticles).  A number of works have been communicated in nanofluid squeezing 

flows in recent decades, motivated by the considerable thermal enhancement achieved by 

nanofluids without the agglomeration or clustering problems associated with larger (micron) 

sized particles. Hayat et al. [34] derived homotopy solutions for magnetohydrodynamic 
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squeezing flow of a Buongiorno nanofluid between parallel disks, observing that 

suction/injection at the walls noticeably alter velocity and temperature distributions and that 

increasing Brownian motion and thermophoresis parameters both elevate temperatures and 

nanoparticle concentrations.  

Magnetohydrodynamic, non-Newtonian and other complex nanofluid flows have also 

been examined for other applications. Laminar mixed convection of non-Newtonian nanofluids 

in a square lid-driven cavity in the presence of a vertical magnetic field was analyzed by 

Kefayati [35]. It was found that  the augmentation of Richardson number decreased heat transfer. 

Also the fall of the power law index declined heat transfer for different Richardson numbers.  

Hamid et al. [36]  numerically analyzed the MHD flow of a nanofluid in converging/diverging 

channels through the Galerkin approach. The behavior of Prandtl numbers was increasing for 

temperature profile, while it was decreasing for concentration profile for both converging and 

diverging channels. Moreover, Lewis’s number and Brownian motion parameter enhanced the 

concentration of fluid for both channels. The significance of velocity second slip model of non-

Newtonian fluid on peristaltic pumping in existence of double-diffusivity convection in 

nanofluids and induced magnetic field was deliberated by Akram et al. [37].  They found that the  

pressure gradient was maximum in case of square wave. Further  increase in stability of 

thermophoretic effects resulted in greater mass flux due to temperature rise which increased 

nanoparticles concentration.  Aly and Mohamed [38]  addressed the dispersion of the solid 

particles in nanofluid flow throughout the double-diffusive convection under the impacts of 

buoyancy ratio, magnetic field and three different boundary conditions. They showed that the 

variations on the boundary conditions of heat and mass differentiate dramatically the direction of 

solid particles dispersion in a cavity. Heat dissipation effect of a ferrofluid on natural convection 

flow in a cavity with linearly temperature distribution at the presence of an external magnetic 

source was studied by Kefayati [39]. It was found that the addition of the nanoscale 

ferromagnetic particle provoked the magnitude of velocity in the cavity to plummet noticeably. 

Heat transfer and entropy generation on laminar natural convection of non-Newtonian nanofluids 

in a porous square cavity was analyzed using  Finite Difference Lattice Boltzmann Method by 

Kefayati [40].  It was found that the enhancement of the volume fraction augmented heat transfer 

and the entropy generations. Kefayati [41] studied laminar mixed convection of non-Newtonian 

nanofluids in a two sided lid-driven enclosure in the presence of a horizontal magnetic field. 
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Results drawn were that  the augmentation of Richardson number decreased heat transfer. The 

addition of nanoparticle augmented heat transfer for a variety of parameters examined.  Soomro 

et al. [42] examined the impact of Brownian motion and thermophoresis on MHD stagnation 

point nanofluid flow toward vertical stretching surface using the non-Newtonian Prandtl fluid 

model. Their study revealed that, in the buoyancy opposing flow region, the heat transfer rate 

increased, and the mass transfer rate decreased due to an increase in Brownian motion. Unsteady 

mixed convection flow and heat transfer of radiating and reacting nanofluid with variable 

transport properties in a microchannel filed with a saturated porous medium by taking into 

account the convective boundary conditions was researched by Rikitu et al. [43]. Both the heat 

transfer and the mass transfer rates at both sides of the microchannel walls were higher for large 

values of suction/injection Reynolds number, porous medium shape parameter and variable 

viscosity parameter. Afshar et al. [44] studied free convection of nanofluid as well as entropy 

generation inside a porous cavity loaded with nano-encapsulated phase change materials 

(NEPCMs). The results demonstrated that the various profiles of the wavy base section could 

affect the heat transmission features as well as fluid flow remarkably. Further it was also 

observed that all the profiles of entropy enhanced with increasing wave amplitude. The impact of 

non-dimensional fusion temperature on the free convection of conducting nanofluid within a 

porous enclosure filled with nano-encapsulated phase change materials (NEPCMs) was studied 

by Sattar et al. [45].  They concluded that the contribution of NEPCM enriched the heat transfer 

criterion due to improving thermal conductivity and heat capacity for the fusion temperature of 

the particles. They also found that higher Rayleigh number boosted average Nusselt number. The 

natural convection of a magnetohydrodynamic nanofluid in an enclosure under the effects of 

thermal radiation and the shape factor of nanoparticles was analyzed numerically using the 

control-volume-based finite element method by Chamkha et al. [46]. Their findings 

demonstrated that the laminate-shaped nanoparticles have a more notable impact on the average 

and local Nusselt numbers than other nanoparticle shapes. Magnetic nanofluid natural convection 

in the porous enclosure considering Brownian motion was studied by Dogonchi et al. [47] 

numerically using Control Volume Finite Element Method.  Their results indicated that the 

intensity of the convective flow has a direct relationship with the Rayleigh number and Darcy 

number while it has a reverse relationship with the Hartmann number and inclination angle of the 

magnetic field. The incremental impact of nonlinear thermal radiation on heat transfer 
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enhancement due to Darcy–Forchheimer flow in MnFe2O4-Casson/water nanofluids from a 

stretched rotating disk was researched by Sachin et al. [48].  They claimed that an increase in 

thermal radiation boosted the heat propagating into the fluid leading to a thicker thermal 

boundary layer. Fluids with non-Newtonian behavior were shown to produce higher entropy 

generation rates compared to Newtonian fluids. Entropy generation in a nanofluid-filled semi-

annulus cavity with nanoparticle shape effects was investigated by Seyyed et al. [49]. Their 

results showed that the Nusselt number and entropy generation number are escalated by 

increasing the Rayleigh number and the nanoparticle volume fraction. 

More recently, several other interesting studies of magnetic nanofluid squeezing heat 

transfer have been communicated. Saidi et al. [50] used Runge-Kutta quadrature to compute the 

radial, tangential and axial velocities, pressure gradient, temperature and concentration 

distributions for transient hydromagnetic squeezing flow of a nanofluid with the Buongiorno 

model. Ahmed et al. [51] used Hamilton-Crosser and Brinkman nanoscale models with Adomian 

decomposition, variation of parameter (VPM) and Runge-Kutta quadrature to examine 

nanoparticle shape factor effects (for bricks, platelets and cylinder geometries) in transient 

squeezing flow of magneto-nanofluid between two parallel disks with viscous heating. They 

observed that a sharper temperature elevation is computed for brick shaped nanoparticles. Other 

studies on nanofluid squeezing include Das et al. [52] (who included slip effects), Bég et al. [53] 

(who used a  B-spline collocation method to verify the homotopy solutions of Hayat et al. [34] 

and also computed torques at the upper and lower disks), Sobamowo and Akinshilo [54] (who 

used a Tiwari-Das nanoscale model to study hydromagnetic squeezing flow of Cu-water and Cu 

kerosene nanofluids with a regular perturbation method). Thermal radiation effects on reactive 

magnetic nanofluid squeezing flow were explored by Ullah et al. [55] who showed that 

temperatures are augmented with both stronger radiative heat flux and Brownian diffusion 

effects. 

In the present work, motivated by simulating the high temperature squeezing behavior of nano-

doped magnetorheological plastomers (MRPs) [12], a mathematical model is derived for 

radiative squeezing flow of magnetohydrodynamic viscoplastic nanofluid between coaxial 

circular disks. This problem has thus far not received the attention of the scientific community. 

MRPs are known to achieve a higher yield stress under squeeze flow than conventional 
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magnetorheological fluids and when further modified with nanoparticles are expected to hold 

significant promise in thermal management in lubrication systems. The Buongiorno nanoscale 

model and the Casson yield stress rheological model are used. The Casson model has been very 

popular in lubrication rheological studies as it quite accurately simulates actual viscoplastic 

lubricants [56-59] and is relatively simple mathematically. To generalize the thermal analysis, 

Fourier boundary conditions are implemented at the disks. Also known as Robin boundary 

conditions or convective boundary conditions in heat transfer [60, 61], they are a weighted 

combination of Dirichlet boundary conditions and Neumann boundary conditions and allow for a 

more complex characterization of squeezing transport phenomena. The conservation equations 

are reduced to ordinary differential equations with the aid of similarity transformations. A 4th 

order Runge-Kutta solver (MATLAB bvp4c) [62] is deployed to obtain numerical solutions for 

the emerging nonlinear, coupled ordinary differential boundary value problem. Verification of 

solutions for special cases in the literature is included. Extensive visualization of the impact of 

key rheological, nanoscale, magnetic and thermophysical parameters on transport characteristics 

(velocity, temperature, nanoparticle concentration etc) are provided.  

2. Thermo-magnetic rheological nanofluid squeezing flow model

The physical domain (see Fig. 1) of interest comprises the unsteady squeezing flow of an 

electrically conducting viscoplastic (Casson) nanofluid between two parallel disks. 

Unidirectional (axial) thermal radiative flux is included as is viscous heating.  The distance 

between disks is  ( ) ( )
1/2

1h t H at= − .   A magnetic field is applied perpendicular to the plane of 

the disks (i.e. axially) and has strength ( ) ( )
1/2

0 1B t B at
−

= − .  Edge effects at the disks are ignored 

as is surface roughness i. e. the disks are smooth. The lower porous disk is situated at 0z =  

which is stationary (suction or injection are present) and the upper impervious disk is positioned 

at ( )z h t=  and is moving with the velocity ( )
1/2

1 / 2a H at
−

− towards the lower disk.  Hall 

current and magnetic induction effects are ignored. ( ),w hT T and ( ),w hC C denote the 

temperatures and nanoparticle concentrations at the lower disk and upper disk respectively. 

Rosseland’s diffusion flux approximation is implemented for radiative transfer and is valid for 

optically thick lubricants.  
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Under these approximations, the conservation equations for the regime may be presented 

following Hayat et al. [63] and Hashmi et al. [64] as:  

0
u u w

r r Z

 
+ + =

 
,   (1)   

( )
2 2

2

2 2 2

1 1 1u u u P u u u u
u w B t u

t r z r r z r r r

 


  

     −  +   
+ + = + + + − −  

         
,                 (2) 

2 2

2 2

1 1 1w w w P w w w
u w

t r z z r z r r




 

     −  +   
+ + = + + +  

         
,    (3) 

2 22 2

2 2

2 2 2 22

2

1

1
2 2 2 2 2

T
B

m

P P

DT T T T T T C T C T T T
u w D

t r z r r r z r r z z T r z

qu u w u w u w

C r r z r r z r C

 





                   
+ + = + + + + + +                               

              
+ + + + + + −        

              

,r

z

 (4) 

2 2 2 2

2 2 2 2

1 1T
B

m

DC C C C C C T T T
u w D

t r z r r r z T r r r z

           
+ + = + + + + +   

           
.    (5) 

The upper disk and the lower disk boundary conditions are prescribed respectively as: 

( )

( )( )20, , , ,h h

z h t

dh T
u w k h T r z t T C C

dt z =


 = = − = − = 

at ( ) ,z h t=    (6) 

( )0
1

0

0, , ,0 ,
1

w w

z

w T
u w k h T T r C C

zat =

− 
= = − = − =  −

     at 0.z=  (7) 

The notations used in the above equations are as follows:  density ( ) ; pressure ( )p ; 

dynamic viscosity ( ) ; Casson parameter , c is the critical value of  ; specific

heat ( )PC ; thermal diffusivity ( ) ; thermal diffusion coefficient ( )TD ; Brownian motion 

coefficient BD , radiative heat flux ( )rq ; thermal conductivity ( )k ; mean fluid temperature 

( )mT , velocity along r direction ( )u ; velocity along ( )z direction; temperature ( )T ; 
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concentration ( )C ; suction/injection velocity ( )0w ;  ratio of heat capacity of the nanoparticles to 

the heat capacity of the fluid ( ) ;  thermophoretic diffusion coefficient ( )BD  and Brownian 

motion coefficient ( )BD .   Further details of the Casson model are given in the Appendix. 

The radiative heat flux rq is (for details see Modest [63]) analyzed with the Rosseland

model: 

( )4*

*

4

3
r

T
q

k z

 −
=


(8)        

The coefficient of mean absorption is 
*k  and  the Stefan-Boltzmann constant is 

* . Considering 

4 4 33 4h hT T T T − + , (9) 

It follows from Eqn. (8) that: 

( )h t

z - axis

0B

0z =

( ) ( )
1/2

1z h t H at= = −

w

u

v

Upper solid disk (moving) 

Lower porous disk 

(stationary) 

Axial magnetic field 

Nanoparticles 

Figure 1 Physical representation of the problem 
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* 3 2

* 2

16

3

hr
Tq T

z k z

− 
=

 
. (10) 

Equation (10) after including Eq. [10] become 

2 22 2

2 2

2 2 2 22

2

1

161
2 2 2 2 2

T
B

m

P P

DT T T T T T C T C T T T
u w D

t r z r r r z r r z z T r z

u u w u w u w

C r r z r r z r C

 





                   
+ + = + + + + + +                               

             
+ + + + + + −        

              

* 3 2

* 2 2
.

3

T T

k H z

 



(11) 

For the purpose of non-dimensionalization, following group of similarity transformation are 

defined 

( )
( ) ( )

( )

1

0

, , ,
2 1 1 1

, ,
1

h h

w h w h

a r a H z
u f w f

a t a t H a t

B T T C C
B t

T T C Cat

  

 

−
= = =

− − −

− −
= = =

− −−

       (12) 

Insertion of Eqn. (12) in Eqns. (1) to (5) (after eliminating pressure gradient) yields the following 

trio of momentum, energy and nanoparticle species conservation ordinary differential equations:  

( )'''' ''' '' ''' 2 ''1
3 2 0,f S f f ff M f






 +
− + − − = 

 
(13) 

( ) ( )

( )

' ' ' ' ' ' '2

2 '2 ''2

4
1 Pr 2 Pr

3

Pr 12 0,

Rd S f Nb Nt

Ec f f

     



 
+ + − + + 

 

+ + =

(14) 

 ( )' ' ' ' ' '2 0,
Nt

LeS f
Nb

   + − + =   (15) 

The transformed boundary conditions at the lower and upper disks are: 

( ) ( ) ( ) ( ) ( )' '

10 , 0 0, 0 0 1 , 0 1f A f Bi  = = = − =   at 0, =  (16) 

( ) ( ) ( ) ( ) ( )' '

2

1
1 , 1 0, 1 1 , 1 0

2
f f Bi  = = = =      at 1 = , (17)
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Here 
2

2

a H
S


=  (squeezing number); 0w

A
a H

=  (suction/injection parameter at the lower disk); 

2 2

0B H
M




= (Hartmann magnetic body force number); 

( ) ( )

2

1

2 1P w h

a r
Ec

C T T at

 
=   − − 

(Eckert viscous heating number); Pr



= (Prandtl number); 

e

Le
D


= (Lewis number); 

* 3

*

4 hT
Rd

kk


= (radiation parameter); 

( )2

2

2

1H a t

r


−
= (dimensionless length parameter); 

( ) ( )

( )
T w hp

mf

C D T T
Nt

C T



 

−
= (thermophoresis parameter); and 

( ) ( )

( )
B w hp

f

C D C C
Nb

C



 

−
=

(Brownian motion parameter). 

The positive values of A  denote suction and negative values denotes injection of the 

viscoplastic nanofluid from or into the lower disk.  The case A = 0 implies that the lower disk is 

solid. 

The skin friction coefficient ( )frC i.e. dimensionless surface shear stress, the Nusselt

number ( )Nur i.e. dimensionless wall heat transfer rate, and the Sherwood number ( )Shr i.e. 

dimensionless nanoparticle species transfer rate, at a disk surface are defined as: 

( )

( )

( ) ( )2

1/2

, ,

2 1

rz z h t w w
fr

w h B w h

Hq H j
C Nur Shr

k T T D C C
aH

at





=
= = =

− − −
 
 − 

,          (18) 

where, 

( ) ( ) ( )

, ,rz w w B

z h t z h t z h t

u w T C
q k j D

z r z z
 

= = =

        
= + = − = −     

        
 .              (19) 

In terms of the variables in Eqns. (6) and (7), we get: 

( ) ( ) ( ) ( ) ( )
2

1/2 1/2'' ' '

2
Re 1 , 1 1 , 1 1r fr

H
C f Nur at Nu Shr at Sh

r
 = = − = − = − = − (20)

 Here  
( )

1/2
1

Re
2

r

r a H at



−
= is a squeezing Reynolds number. 
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3. Numerical Solutions with MATLAB bvp4c and Validation

The ordinary differential boundary value problem defined by Eqns. (13)-(15) with 

boundary conditions (16, 17) is highly nonlinear and analytical solutions are intractable. 

Moreover, the presence of boundary conditions of the Fourier type renders the boundary value 

problem more complicated. A computational solution is therefore sought. A MATLAB routine 

based on a numerical method bvp4c is deployed. Extensive details of this solver are given in 

Kierzenka and Shampine [43]. Many engineering problems have been successfully solved by this 

method. Table 1 details the comparison of the results obtained by MATLAB bvp4c with the 

homotopy solutions of Hashmi et al. [34]. The comparison is made considering the absence of 

nanoparticles, radiation and length effects in the present model. The skin friction values are equal 

up to four decimal places and hence the present MATLAB code is verified for accuracy.   

Table 1 Comparison table for Skin friction coefficient ( )1f   for different values of M  and  

S for 2, 1, 0.1, 0, 0, 0A P Le Nt Nb Ec = = = = = = = =

M S ( )1f 

Present 

1 2 10Bi Bi= =

Present 

1 21.0, 10Bi Bi= =

Hashmi et al [34] 

0 1 7.53313247 7.53313247 7.53316579 

2 1 8.26383886 8.26384197 8.26387231 

3 1 9.09725938 9.09726618 9.09732572 

5 1 11.3492988 11.3493158 11.3492890 

1 0.1 8.97546290 8.97546290 8.97552394 

1 0.5 8.34917873 8.34916801 8.34924578 

1 1 7.72190940 7.72191376 7.72194601 

1 2 6.94081636 6.94082584 6.94077326 

4. Results and Discussion

Figs. 2-9 illustrate the MATLAB bvp4c results obtained for velocity, temperature and 

nanoparticle concentration with various parameters. Figures 2a and 2b display the impact of 
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squeezing parameter, S  for both suction and blowing ( A ) on the velocity, temperature and 

nanoparticle species concentration profiles for identical Biot numbers at the disks ( )1 2Bi Bi=  and

unequal Biot numbers at the disks ( )1 2Bi Bi . As noted earlier for suction ( )0A   and for

blowing i.e. lateral mass flux into the lower disk ( )0A  . The velocity is reduced near the disk

surfaces (=0 at the lower disk and  = 1 at the upper disk) up to 4   in the gap region, and 

then raises as S expands.  These figures also reveal that the velocity contours for suction are 

opposite to the injection for all values of Bi .  

The effect of magnetic number, M  on the flow is plotted in Figures 3a and 3b. The 

velocity (radial) grows  near the disks; while in the center, it declines for 1 2Bi Bi=  and 1 2Bi Bi . 

Further one can also conclude that the influence of M  is more predominant at the upper disk 

relative to the lower disk.  
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Table 2 Effect of   on temperature with   

. 

( ) 

1 2 10Bi Bi= = 1 21.0, 10Bi Bi= =

 0 = 1 = 10 = 0 = 1 = 10 =

0 1.14096439 1.167061275 1.19679198 1.587959079 1.703060238 1.83434617 

0.2 1.183723126 1.18388357 1.19316294 1.50090673 1.56691012 1.65134262 

0.4 1.026995808 1.00340585 0.99656619 1.25003687 1.27459025 1.32266608 

0.6 0.870956750 0.84205266 0.82873223 1.02266771 1.02731770 1.05230052 

0.8 0.698094688 0.65826276 0.63517532 0.78825841 0.76862122 0.76857930 

1.0 0.306086132 0.28129480 0.26663594 0.33635413 0.31834096 0.31142719 

Table 3 Effect of different values of  on Nusselt number, skin friction coefficient and 

Sherwood   number for . 

( )1f  ( )1− ( )1−


1 2 10Bi Bi= = 1

2

1.0,

10

Bi

Bi

=

=

1 2 10Bi Bi= = 1

2

1.0,

10

Bi

Bi

=

=

1 2 10Bi Bi= = 1

2

1.0,

10

Bi

Bi

=

=

0.1 8.85128394 8.85128660 -3.0097824 -3.32265546 1.73993148 1.64367188 

0.5 8.48672784 8.48674643 -2.8867398 -3.23135726 1.58239175 1.47989364 

1.0 8.26328333 8.26328684 -2.8129480 -3.18340964 1.48457414 1.37701069 

5.0 7.88154991 7.88154964 -2.6900187 -3.12208903 1.31276067 1.19350542 

10 7.80650070 7.80650155 -2.6663594 -3.11427189 1.27787314 1.15571216 
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Figures 4a and 4b, depict the response of Casson parameter  on the velocity for any 

values of Bi  and for injection and suction conditions. This parameter augments the shear term in 

the transformed momentum Eqn. (13), 
1

f




 +
 

 
.When 0A  , in the injection case, the 

velocity decreases up to 0.5 =  and then increases; a similar trend is noticed in suction case up 

to 0.4 = .  In Figures 4c, d and 4e, the influence of Casson viscoplastic parameter,  on the heat 

and nanoparticle concentration fields are presented. In Figures 4c and 4d it is seen that the 

impact of   is more pronounced on temperatures at the lower (porous) disk than that at the 

upper (solid) disk. There is a weaker elevation in nanoparticle concentration field as shown in 

Figures 4e and 4f when compared with the temperature field.  

The effects of the Pr  on  temperature,   are captured in Figures 5a and 5b for 1 2Bi Bi=

and 1 2Bi Bi . There is a speedy growth in    as Pr  is accentuated owing to the addition of 

viscous dissipation effects.  For liquid-like materials which have the property of low viscosity 

and high thermal conductivity, there will be correspondingly smaller values of  Pr . Large values 

of  Pr  represent higher viscosity liquids e.g. lubricants, oils, greases etc. The effect of the 

Prandtl number Pr  on the nanoparticle concentration profiles is depicted in Figures 5c and 5d 

for identical and distinct Bi .  The reverse trend is observed with a change in Prandtl number, in 

nanoparticle concentration,   relative to the temperature field, .  In other words as Pr  is 

inflated,  depletes and its influence is diminished at the lower disk when matched with the 

upper disk for 0A  and vice versa for 0A  .  Analogous results are seen for the effects of 

Eckert number, Ec  and length parameter,   on ,u   and   as with Pr  and hence not presented. 

The effects of radiative parameter, Rd  on   and   are depicted in Figures 6a to 6d. Upgrading 

the values of Rd , which correspond to stronger thermal conduction and weaker radiative flux, 

reduce  ; however they increase nanoparticle concentration magnitudes,   for both equal and 

unequal Biot numbers Bi at the two disks. The influence of Rd is more effective at the lower 

disk than at the upper disk on the temperature field   and the opposite behavior is computed for 

nanoparticle concentration,  .   

Figures 7a-7d illustrate the influence of Brownian motion parameter, Nb on   and   

for 
1 2Bi Bi=  and 1 2Bi Bi .  The larger values of Nb (which correspond to physically smaller 
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sized nanoparticles in the Buongiorno model [28]) is to elevate magnitudes of  both   and   for 

any values of Bi .  However the response is more prominent for 2A = −  (injection at lower disk) 

when compared to 2A =  (suction at the lower disk) for both   and  .  Similar results are 

obtained for the influence of thermophoresis parameter, Nt  and therefore not presented.   

The combined influence of Nb  and Nt  on Nur  and Shr  for 
1 2Bi Bi=   and 1 2Bi Bi

are depicted in Figs. 8a, b and 9a, b respectively. The Nusselt number values Nur are 

considerably enhanced with an increment in Nb  and Nt  (Figs 8a,b) whereas and the Sherwood 

values are depressed by enlarging  Nb  but increased with greater Nt  (Figs. 9a,b).  Heat transfer 

to the disk surfaces is therefore intensified with stronger Brownian motion and thermophoretic 

body force effects whereas nanoparticle mass transfer to the disk surfaces is depleted with 

stronger Brownian motion but enhanced with thermophoresis effect. 

  Table 2 displays the effect of Casson rheological parameter,   on  . As   increases, 

  is escalated up to  0.4 =  and then it is declined for all values of Bi .  Table 3 portray that as 

Casson viscoplastic parameter   increases,  both skin friction and Sherwood numbers are 

reduced whereas the Nusselt number, Nur  is enhanced for any values of  Bi . Overall significant 

effects are computed in the model with the inclusion of rheological, radiative and nanoscale 

effects, indicating that these effects are important to simulate in practical magnetorheological 

squeezing lubrication systems.  

5. Concluding Remarks

Squeezing flow of a magnetorheological nanofluid with radiative heat transfer and 

viscous heating effects between parallel disks has been investigated theoretically using Fourier-

type boundary conditions. Buongiorno’s nanofluid model and Rosseland’s diffusion flux 

approximation are deployed to analyse nanoscale and radiative effects. A nonlinear ordinary 

differential boundary value problem is derived using appropriate similarity transformation. 

Numerical solutions for the nonlinear system of differential equations were carried out by a 

MATLAB routine bvp4c. The MATLAB solutions have been verified for special cases in the 

literature. The simulations have shown that: 

(i) Drag force in squeezing the fluid flow through the disks increases with greater

magnetic field strength i.e. strong deceleration is induced.
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(ii) Increasing squeezing parameter substantially modifies the velocity distribution

causing a deceleration but an acceleration further from the disks.

(iii) Increasing the Brownian dynamics and thermophoresis parameters results in a

boost in temperature and nanoparticle concentration.

(iv) Nanoparticle concentration is suppressed at the disk surfaces with increasing

Brownian values.

(v) For suction and injection cases, the impact of all parameters on the temperature

distributions are similar. However, opposite effects are computed for the

concentration of the nanoparticles in comparison with the temperature.

(vi) With an increase in the Casson viscoplastic parameter, temperature decreases

whereas nanoparticle concentration increases.

(vii) Increasing radiative parameter (i.e. weaker radiative flux and stronger thermal

conduction contribution) depresses temperatures.

(viii) Elevation in Prandtl number, Eckert number and length parameter results in a

significant enhancement in temperature but a strong depletion in nanoparticle

concentration for both equal and unequal Biot numbers.

The present simulations have adopted a Casson viscoplastic formulation for the rheology of the 

magnetic nanofluid lubricant. Future investigations may address more complex non-Newtonian 

models e.g. micropolar models [65] and will be communicated imminently.  
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Appendix 

The rheological equation of the Casson fluid is defined (following Mohyud-Din and 

Khan [26], and Khan et al. [27]) as follows: 
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where B dynamic viscosity of the non-Newtonian fluid, yp is yield stress of the fluid and   is

the product of the component of deformation rate with itself, i.e., ij ije e = ,( self-product of 

component of deformation rate with itself)  where ije is the ( ),
th

i j component of the 

deformation rate.  For n< 1 the fluid is pseudoplastic (shear-thinning), for n > 1 it is dilatant 

(shear-thickening). Further:  
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Here c is the critical value of the said self-product.  If shear stress is less than the yield stress

applied to the fluid, the fluid acts like a solid, whereas if shear stress exceeds the yield stress, 

motion is initiated. Examples of Casson fluid are jelly, foodstuffs, tomato sauce, gels, honey, 

certain polymers, soup, blood under certain shear rates, etc. 
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