
ATZENI, A., LYLE, J. and FAILY, S. 2014. Developing secure, unified, multi-device, and multi-domain platforms: a case
study from the webinos project. In Ruiz-Martinez, A., Marin-Lopez, R. and Pereniguez-Garcia, F. (eds.) Architectures
and protocols for secure information technology infrastructures. Hershey: IGI Global [online], chapter 12, pages 310-

333. Available from: https://doi.org/10.4018/978-1-4666-4514-1.ch012

© IGI Global. This document is available exclusively for personal and non-commercial usage. Permission for
any other usage, including posting this document to any other general sites (such as arXiv, ResearchGate or
Academia.edu) must be requested from the publisher. https://www.igi-global.com/about/rights-
permissions/content-reuse/

This document was downloaded from
https://openair.rgu.ac.uk

Developing secure, unified, multi-device, and
multi-domain platforms: a case study from the

webinos project.

ATZENI, A., LYLE, J. and FAILY, S.

2014

https://doi.org/10.4018/978-1-4666-4514-1.ch012
https://www.igi-global.com/about/rights-permissions/content-reuse/
https://www.igi-global.com/about/rights-permissions/content-reuse/

Architectures and
Protocols for Secure
Information Technology
Infrastructures

Antonio Ruiz-Martínez
University of Murcia, Spain

Rafael Marín-López
University of Murcia, Spain

Fernando Pereñíguez-García
University of Murcia, Spain

A volume in the Advances in Information
Security, Privacy, and Ethics (AISPE) Book
Series

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2014 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

 Library of Congress Cataloging-in-Publication Data

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

Architectures and protocols for secure information technology infrastructures / Antonio Ruiz Martinez, Rafael Marin-Lopez
and Fernando Pereniguez Garcia, editors.
 pages cm
 Includes bibliographical references and index.
 ISBN 978-1-4666-4514-1 (hardcover) -- ISBN 978-1-4666-4515-8 (ebook) -- ISBN 978-1-4666-4516-5 (print & perpetual
access) 1. Information technology--Security measures. 2. Computer networks--Security measures. I. Martinez, Antonio
Ruiz, 1976-, editor of compilation. II. Marin-Lopez, Rafael, 1977-, editor of compilation. III. Garcia, Fernando Pereniguez,
1984-, editor of compilation.
 QA76.9.A25A73 2014
 005.8--dc23
 2013020692

This book is published in the IGI Global book series Advances in Information Security, Privacy, and Ethics (AISPE) (ISSN:
1948-9730; eISSN: 1948-9749)

Managing Director:
Editorial Director:
Production Manager:
Publishing Systems Analyst:
Development Editor:
Assistant Acquisitions Editor:
Typesetter:
Cover Design:

Lindsay Johnston
Joel Gamon
Jennifer Yoder
Adrienne Freeland
Monica Speca
Kayla Wolfe
Travis Gundrum
Jason Mull

310

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 12

Developing Secure, Unified,
Multi-Device, and Multi-

Domain Platforms:
A Case Study from the Webinos Project

ABSTRACT

The need for integrated cross-platform systems is growing. Such systems can enrich the user experience,
but also lead to greater security and privacy concerns than the sum of their existing components. To
provide practical insights and suggest viable solutions for the development, implementation, and deploy-
ment of complex cross-domain systems, in this chapter, the authors analyse and critically discuss the
security-relevant decisions made developing the Webinos security framework. Webinos is an EU-funded
FP7 project, which aims to become a universal Web application platform for enabling development
and usage of cross domain applications. Presently, Webinos runs on a number of different devices (e.g.
mobile, tables, PC, in-car systems, etc.) and different Operating Systems (e.g. various Linux distribu-
tions, different Windows and MacOSx versions, Android 4.x, iOS). Thus, Webinos is a representative
example of cross-platform framework, and even if yet at beta level, is presently one of the most mature,
as a prototype has been publicly available since February 2012. Distilling the lessons learned in the
development of the Webinos public specification and prototype, the authors describe how potential threats
and risks are identified and mitigated, and how techniques from user-centred design are used to inform
the usability of security decisions made while developing the alpha and beta versions of the platform.

Andrea Atzeni
Politecnico di Torino, Italy

John Lyle
University of Oxford, UK

Shamal Faily
University of Oxford, UK

DOI: 10.4018/978-1-4666-4514-1.ch012

311

Developing Secure, Unified, Multi-Device, and Multi-Domain Platforms

INTRODUCTION

People use multiple devices with different form
factors every day. These devices provide access
to similar services but in different ways - native
apps, Websites, mobile-specific Websites, etc. As
such, these devices are interacting with each other
more often, either to synchronize data or to provide
cross-device user experiences, e.g., using a smart
phone as a remote control for a smart TV, or having
a companion application to a live TV programme.
These new activities, scenarios and cross-domain
user experiences require greater communication
and increase the potential for misuse.

For example, Gloria likes to personalize her
online experience by setting application prefer-
ences, but also for privacy reasons she retains
separate online identities. Gloria may be used
to adopting a mobile device for one identity and
a laptop for another, each of which covers two
separate contexts. With smart systems and identity
providers both available, Gloria’s device may
switch from one identity to another, but Gloria
may be unaware of this switch if she set up her
device to move between services without any in-
tervention. In fact, she may not be aware which
identity is exposed unless her activities are such
that she would be conscious of an identity switch.

Every different device may make a different
trade-off considering authentication, authoriza-
tion, and usability. For example, some devices may
only infrequently ask the user to authenticate in
order to minimize the use of a small keyboard or
screen. However, when devices are used together,
their different settings may conflict and either harm
the user experience or reduce the system’s security.

Security control can introduce usability
problems (Schneier, 2009) as configuring and
then using complex security features, like access
control systems, can be difficult, time-consuming
and fundamentally at odds with the primary goals
of the end user. As each new platform may have a
different system and interface for doing this, the
access control problems in cross-device systems
are magnified.

How security problems can be addressed in
such a complex scenario without losing focus
on the usability of the system is the topic of this
chapter. The chapter describes a case study in
multi and cross-device access control based on the
Webinos project. The Webinos project has designed
and implemented a cross-platform application
environment which allows developers to create
applications which can communicate seamlessly
between each platform. This includes the develop-
ment of a personal device network (Niemegeers
and Heemstra de Groot, 2002) which attempts to
solve many of the related problems. User-centred
design techniques are one of the most important
points in our approach. Users are personified as
specific entities (like Gloria), with skills, attitudes
and motivations, to avoid talking about generic
users” who might become contradictory when
based on solely on the imagination of developers.

This chapter is structured as follows: section
2 introduces the Webinos project and gives a
high-level technical overview, as well as listing
desired goals, implementation details and the
most important concepts related to the Webinos
architecture. Section 2 also introduces related
work on similar architectures to inform our se-
curity framework. Section 3 explains in detail
how we approached the key usability problems.
Section 4 states the main threats we identified in
the cross-domain Webinos platform. Section 5
introduces the security of the Webinos execution
environment. Section 6 describes the different
types of authentication mechanisms introduced
in Webinos. Section 7 highlights how to secure a
communication session to avoid confidentiality
and integrity losses. Section 8 addresses the core
of the access control system: the policy framework.
Section 9 approaches another task performed
as part of Webinos: the security analysis of the
APIs introduced in Webinos so far. Section 10
briefly describes the need for a secure storage to
keep confidential information in our cross-device
system. Section 11 finally discuss our findings in
a multi-platform system and draws conclusions.

312

Developing Secure, Unified, Multi-Device, and Multi-Domain Platforms

BACKGROUND

Webinos

Webinos is a cross-device application platform for
mobile Web applications and widgets. It provides
applications with a set of APIs for accessing local
resources, such as sensors and address books, as
well as APIs for communication with other devices
and services. The platform aims to create a seam-
less multi-device user experience through data
synchronization and a consistent access control
system. Webinos is supported on four main device
domains: PCs, smartphones, in-car systems and
set-top boxes. The Webinos project (The Webinos
Consortium, 2012c) consists of a consortium of
over twenty partners, including mobile network
operators, device manufacturers, industry research
institutions, universities and software companies.

Webinos is suitable for augmenting common
scenarios like the following: Helen and her family
see an advert on television for a skiing holiday and
decide to book it using their TV. Automatically,
their calendars are updated, the car navigation
system adds the destination, and a post is added to
Helen’s social network. On the long car journey,
Helen plays a game with her children using their
in-car entertainment system and her smartphone.
A few minutes later, Helen’s parents call, and she
invites them to take over playing the game with
the children remotely, giving her a much-needed
break (a set of scenarios and use cases are avail-
able in the Webinos deliverables [The Webinos
consortium, 2012d]).

The platform was designed with the following
high-level goals in mind:

• Interoperability of applications across the
four device domains. Each application can
communicate with others on the same de-
vice, with another device belonging to the
same user, or with an unknown device
elsewhere.

• Compatibility achieved through standard
JavaScript APIs. This allows applications
to run on multiple devices with minimal
modification.

• Security and privacy for users and applica-
tion developers.

• Adaptability allowing applications and
devices to take advantage of information
about the current environment.

• Usability through the creation of a seam-
less experience for users of applications
across multiple devices.

The Webinos runtime has been officially
implemented so far for three target platforms:
Android for smartphones and tablets, Windows
for PC, and Linux variants for in-car systems and
set-top boxes (other unofficial versions exist, e.g.,
for MacOSX and iOS).

Webinos is based around the concept of per-
sonal zones, as shown in Figure 1, and consists
broadly of three components, as listed in Table 1.

A user’s personal zone is the set of all their
devices. Each personal zone has a personal zone
hub (PZH), which coordinates communication,
synchronizes data and provides access to devices
from the Internet. All other devices have a Web
Runtime (WRT) (much like a browser) which
displays Web applications and process widgets.
The Web runtime has been extended with a We-
binos plug-in to connect it to a local Personal
Zone Proxy (PZP), which implements APIs, pro-
vides local access control and communicates with
the personal zone hub.

The hub is responsible for discovering Internet
services and appropriately routing requests from
and to each device in the zone. The hub must be
constantly online and addressable, so that any
device on the Internet can potentially commu-
nicate with devices within the zone. This allows
for remote data sharing and resource usage both
within and between personal zones. The proxy will
cache all routing information, so that when a hub
is not accessible (e.g. when a device loses network

313

Developing Secure, Unified, Multi-Device, and Multi-Domain Platforms

access) the proxy can perform many of the same
tasks and support peer-to-peer communication.
The Webinos architecture is therefore federated:
each user has their own personal zone hub and
each device has its own proxy. The hub is a key
component in the architecture because it provides
a central location for storing and synchronizing
data, but also because it has many useful security
features. The hub can act as a trusted party. In one

example application it is used to host personal data
rather than trusting it to the application provider.

The hub can be installed on any device, but
we have implemented it to be either a cloud-based
virtual platform or installed on a home router.
The personal zone hub is an essential component
within Webinos and potentially useful for any Web
application middleware.

Figure 1. Overview of Webinos

Table 1. Personal zone components

Component Key Features and Capabilities

Personal Zone Hub (PZH) Constantly available and addressable, routes messages, acts as a certificate authority. The hub
provides a Web-based user interface to control the personal zone and audit activity.

Personal Zone Proxy (PZP) Implements most of the Webinos JavaScript APIs, and provides policy-driven access control.
As the name suggests, it proxies requests between the PZH and the Web runtime

Web Runtime (WRT) The user interface to Web applications and widgets.

314

Developing Secure, Unified, Multi-Device, and Multi-Domain Platforms

Component Technologies

The Webinos project makes use of several existing
technologies and frameworks.

For initial user registration and subsequent
management of the personal zone through a Web
interface on the personal zone hub, Webinos uses
OpenID. OpenID is a decentralised identity and
authentication system for Web-based systems. It
allows users to register with an identity provider
(IdP) and then re-use this provider when authen-
ticating to other Websites. For example, when
registering with an online Web forum, the end user
can specify their identity provider and then will
be redirected to this provider to authenticate. The
identity provider will send the forum an identity
assertion proving that the user has ownership of
the claimed identity. This allows users to have
fewer identities and authentication credentials,
and means that they do not have to give passwords
to potentially untrustworthy third party services.

The Webinos implementation uses NodeJS,
an open source JavaScript runtime for distributed
network applications (Joyent, Inc., 2012). NodeJS
had to be ported to Android, but was then available
on all target platforms. The rest of the platform
was written in device-agnostic JavaScript as well
as some native C++.

RELATED WORK

The emerging field of cross-platform security is
only partially covered by well-established security
research on home and personal area networks,
which focus on logically or physically co-located
collection of devices, like in a home wireless
network. Security is only partially covered since,
for example, a home network tends to use only
one medium, such as WiFi, and therefore cannot
encompass mobile devices and connection via
mobile device networks.

Since the Webinos project is an attempt to make
the creation of secure cross-device platform, it

addresses the security and privacy issues of the
new scenarios’ increased connectivity, applying
some concepts and adapting and evolving previous
security solutions when needed.

In particular,

• Kinkelin et al. (2011) adopted a method to
create device-user link and trust relation-
ship among different (home) networks. We
extend the solution to the mobile world and
add certificates exchange.

• UPnP Device Protection Service (UPnP
Forum, 2011) is interesting for combina-
tion of certificates and device pairings,
which is also our approach, but we adopted
a simpler schema of level of privileges and
hierarchies.

• SHAMAN (Mitchell and Schaffelhofer,
2004; SHAMAN Project, 2002) investi-
gated the personal CA concept that we
borrowed, but we make different assump-
tions about the place of the personal CA,
which is cloud based and in principle al-
ways available.

• UIA (Ford et al., 2006) proposed a simi-
lar but more general solution. We argue
that, in practice, a Webinos-like structure
would be the most common way in which
this solution would be realised, consider-
ing the necessity of dealing with Network
Address Translation and mobile networks.
Differently from UIA, we introduce a fur-
ther step of usability leveraging on exist-
ing user identities when available (e.g. in
social networks).

Where previous proposal failed to convincingly
cover a particular usage scenario, we tried to fill
the gap. The main gaps we identified are mostly
related with user acceptability of the security
mechanisms.

• Web PKI are not suitable for users of Web
servers and their devices, as the scarce use

315

Developing Secure, Unified, Multi-Device, and Multi-Domain Platforms

of client certificates on the public Web
demonstrates. This means that two users
of the Web cannot identify each other with
secure and robust mechanisms.

• A home network tends to use only one me-
dium, such as WiFi, thus Home PKI can-
not interoperate with mobile networks,
and therefore cannot encompass mobile
devices which often connect from remote
locations via mobile data

• User PKIs have usability problem, and are
not integrated with social networks

Our focus on user experience in Webinos is
motivated by some milestone articles on usable
security: Whitten and Tygar (1999) suggests that
security needs a usability standard that is different
from those applied to ‘general consumer software’,
while Sasse et al. (2001) advocates properly ap-
plying standard usability design techniques for
addressing security problems, interest in HCI-
security is also witnessed by specific sessions at
major conferences (e.g. Faily et al., 2013).

The decision to use domain certificates to
bootstrap a PKI is based on what we believe users
will accept. By incorporating the complex PKI
mechanisms into the underlying Webinos middle-
ware, specifically in the PZH (in principle always
available in the “cloud”), we have made the PKI
metaphor usable for end users who might other-
wise be unwilling to invest in PKI management.

Mobile Application Projects

Android is an open source platform derived from
Linux 2.6, shaped for mobile devices. Android
security (And, 2012) is based on two different
mechanisms: sandboxing and access control based
on read-write-execute permission tuple.

Each Android application is hosted in a Dalvik
VM, which is an optimized interpreter for resource
(power, memory) scarce devices. Each application
runs sandboxed (isolated) from each other in its
own instance of the Dalvik virtual machine. The

kernel is responsible for sandboxing management.
Each instance of the Dalvik virtual machine rep-
resents a Linux kernel process. Applications must
declare needed permissions for capabilities not
provided by the sandbox, so the system prompts
the user for consent (at install time). Permission
may be enforced at the time of a call into the
system, starting an activity (i.e. an application
component), sending and receiving broadcasts,
accessing and operating on a content provider,
and binding to or starting a service.

The second security mechanism is essentially
the same of Linux OS. Files and data held by an
application are isolated from other applications
enforced by the Android Linux kernel and tradi-
tional Unix file permissions. To access data from
another application, it must first be exposed via
a content provider accessed by the message bus.

To ensure application integrity and authentic-
ity, applications must be signed with a certificate
whose private key is held by their developer. The
certificate identifies the author of the application
and does not need to be signed by a certificate
authority.

iOS previously known as iPhone OS (iOS,
2010), is a Unix-like operating system developed
by Apple for its smartphones and tablets. In iOS,
every application is sandboxed during installation.
The application, its preferences, and its data are
restricted to a unique location in the file system
and no application can access another application’s
preferences or data. In addition, an application
running in iOS can see only its own keychain
items. The keychain is used to store passwords,
keys, certificates, and other secrets.

Its implementation, therefore, requires both
cryptographic functions to encrypt and decrypt
secrets, and data storage functions to store the
secrets and related data in files. To achieve these
aims, Keychain Services calls the Common Crypto
dynamic library. Digital signatures are required
on all applications for iOS. In addition, Apple
adds its own signature before distributing an iOS
application. Apple does not sign applications

316

Developing Secure, Unified, Multi-Device, and Multi-Domain Platforms

that have not been signed by the developer, and
applications not signed by Apple simply will not
run (Mac, 2010a, 2010b).

Webinos has incorporated several useful ideas
from mobile operating systems’ security:

• Code signing, to prevent installation/in-
stantiation of non-trusted applications (i.e.
not authenticated and/or not modified by
non-authorized parties and/or provided by
untrusted parties).

• Sandboxing, to prevent unwanted influenc-
es of one application to another one and or
to the runtime.

• A security policy framework, that is as sim-
ple as possible to avoid usability problems
and lead to misconfiguration, but expres-
sive enough to allow detailed access con-
trol to any key features and functions.

BONDI (bon, 2009) is a composite specifi-
cation allowing Web applications (widget and
Web pages) to interoperate over BONDI defined
execution environments. The security framework
introduced in BONDI allows different forms of
security policy to be expressed based on widget
resource signatures (compliant with W3C Wid-
gets 1.0 digital signature specification [W3C
Widgets, 2011]). Signatures associated to each
widget are also used to assure provenance and
integrity. It allows blacklisting and/or whitelist-
ing of widgets, authors, and Websites. The model
identifies identity types, resources, attributes and
conditions that can be expressed in an XML-based
interchange format.

While Webinos took inspiration from this work,
he management of a security policies can be a
source of usability problems, particularly given
BONDI’s focus on mobile devices rather than
device owners. In the following section we will
describe how we improved access control system

to cope with these multiple domains, and studies
were carried out to improve usability.

Usability

In addition to enabling the convergence of differ-
ent device platforms, we also designed Webinos
to meet the expectations of a broad user base.
This meant that not only would Webinos need
to be secure in light of a broad range of risks,
these risks would need to be addressed without
compromising the user experience of Webinos-
enabled applications. The consequences of failing
to do this are well reported in the HCI Security
literature. For example, Whitten & Tyger’s seminal
work on the usability of PGP (Whitten and Tygar,
1999) illustrates how, despite developing an aes-
thetically pleasing graphical user interface, users
were unable to correctly configure and use PGP to
encrypt email; this was because the mental models
used by the developers of PGP were at odds with
those associated with its end users. Surprisingly,
insights into how to incorporate human factors into
the design of secure systems have been limited,
despite the growing interest in HCI-Security at
both Information Security and HCI conferences.
This is slowly beginning to change, as evidenced
by dedicated sessions at major conferences (e.g.
Faily et al., 2013); however, the state-of-the-art
for designing usable security remains the appli-
cation of classic user-centred design techniques
to voice the security expectations of a system’s
stakeholders.

To account for these user expectations, we
created and extensively used behavioural speci-
fication of archetypical users called personas.
Personas (Cooper, 1999) are artefacts designed
to deal with programmer biases arising from the
word user. These biases can lead to programmers
bending and stretching assumptions about users
to meet their own expectation. To address these

317

Developing Secure, Unified, Multi-Device, and Multi-Domain Platforms

biases, designers explicitly develop for specific
user profiles; these represent the target segment
of the system or product being designed. This ap-
proach brings two benefits. First, designers only
have to focus on those requirements necessary to
keep the target persona happy. Second, the idiosyn-
cratic detail associated with personas makes them
communicative to a variety of stakeholders. Since
their initial proposal over a decade ago, Personas
have become a mainstay in User-Centred Design,
with articles, book-chapters, and even a book
(Pruitt and Adlin, 2006) devoted to the subject
of developing and applying them to support us-
ability design. Personas have also been found to
be useful as a tool for eliciting requirements for
secure systems (Faily and Fléchais, 2010).

When designing Webinos, personas were used
to surface assumptions that different project team
members held about prospective users.

Despite their popularity, the process for devel-
oping personas is often methodologically weak,
with little concrete guidance available about how
to begin personas development effort, and how to
structure their analysis. To address these weak-
nesses, we devised methodologically grounded
process to develop them. This led to several “end-
user” and “developer” personas (The Webinos
Consortium, 2011).

Personas were also used to inform threat mod-
elling by the creation of attacker personas. The
adversarial element is an intrinsic part of the design
of secure systems, but usually assumptions about
attackers and threat is often limited or stereotypi-
cal. One component of a threat is a threat agent,
the person or organisation who is motivated to
fulfil the threat by attacking the system. We used
attacker personas to model these agents, using
an approach for developing them which is both
grounded and validated by structured data about
attackers (Atzeni et al., 2011).

These personas were created in the same way
as other Webinos personas, but their character-
istics were based on data sources about known
attackers. The attacker personas were chosen to be
representative of OWASP (OWASP Foundation,

2011) human threat agents. To mitigate the risk
of developing irrational attacker models, we chose
not to model rare but possibly very dangerous at-
tackers, such as government or organised-crime
sponsored professional hackers; accurate informa-
tion about such attackers is not generally available.

The grounding of attacker personas is based
on three important characteristics: they are rep-
resentative of known attacker classes; they are
representative of criminals convicted for com-
mon online crimes; and they are situated within
the context of Webinos by design and workshop
discussions. As a result, supplemental threat mod-
elling artefacts appeared more realistic, because
they were grounded in what a concrete attacker
can and is willing to do.

THREAT MODEL

As detailed in section 2, the Webinos platform
can be split into two key components:

• An application runtime environment (the
WRT, essentially an environment provid-
ing Web browser’s functionalities) for exe-
cuting applications securely and providing
APIs for accessing local resources.

• An overlay network connecting devices
belonging to different people and on differ-
ent networks to support multi-device use
cases.

As such, threats tend to exist either at the ap-
plication execution or network layer. In addition,
we must consider the impact of physical threats
such as device loss, theft or interference during
maintenance. We also consider threats to data
storage.

Threats were identified by approaching the
problem through a structured risk-analysis ap-
proach, which also addressed human factors. We
developed a model of Webinos based on the IRIS
(Integrated Requirement and Information Secu-
rity) meta-model (Faily and Fléchais, 2010), fed

318

Developing Secure, Unified, Multi-Device, and Multi-Domain Platforms

by the Webinos user and attacker personas. The
attacker personas were grounded in data sources
accredited by the security community, such as the
Common Attack Pattern Enumeration (CAPEC)
(The MITRE Corporation, 2012) and The Open
Web Application Security Project (OWASP) ‘Top
Ten Project’ (OWASP foundation, 2011). In addi-
tion, as part of the development of Webinos, we
identified misuse and misusability cases (Faily and
Fléchais, 2011) and threats early on in the design
phase and applied security pre-mortems (Faily et
al., 2012) to elicit sources of threats.

Application Environment Threats

Threats to the application environment are broadly
the same as threats to any Web browser, but with
the added impact of new device APIs and services
being misused. We identified Webinos-specific
threats and attacks including:

1. Unauthorised use of APIs and remote
resources through content injection (XSS/
CSRF): A vulnerable application could be
trusted by the end user but load malicious
JavaScript from a third party. This JavaScript
could take advantage of the application’s
privileged status and misuse the APIs that
it has access to. For example, misusing the
messaging API to send unauthorised text
messages to premium numbers.

2. Vulnerability exploitation in the under-
lying device platform through Webinos
APIs: If a Webinos API to access a local
resource, such as a sensor, was implemented
in native code and contain a buffer overrun
or similar attack, a Web application could
exploit this to gain access to the system.
This would allow the machine to be added
to a botnet, or for user data to be stolen.

3. Eavesdropping on communication
between applications and Webinos:
Applications served over HTTP are vulner-

able to requests and responses (which may
contain valuable data or credentials) being
intercepted and modified.

4. Application Denial of Service by competing
application developers. If Web applications
are competing for users, then one might
attempt to exploit a vulnerability to render
the other unusable and drive people to al-
ternatives. For example, a content injection
attack could deface the Web application or
crash on start-up.

5. Applications capturing hidden analytics
about end users. In particular, Webinos al-
lows for recording of user context evolution,
and provides an API (the context API [The
Webinos Consortium, 2012b]) to allow ap-
plication to access these data. This might
be misused to track the user’s activities and
behaviour in unwanted and privacy-invasive
ways.

6. Device availability loss through battery
exhaustion: Malicious or poorly developed
Web applications might run resource-inten-
sive code and exhaust the battery of a mobile
device, rendering it temporarily unusable.

7. Cross-site scripting (XSS): If an insecure
application loads JavaScript injected by a
malicious third party, it could result in loss
of data or cause the Web application to
misbehave.

8. Theft of identity credentials: If an attacker
gains access to the user’s OpenID credentials
used to log into the PZH, this could result in
loss of confidentiality and integrity of stored
data, loss of access to administration console,
impersonation, loss of other credentials.

9. Man in the Browser’ attacks: Malicious
plugins might be installed which are able to
steal Web application data.

10. Evasion of access control policies through
use of non-Webinos APIs: If the underly-
ing device platform offers alternative ways
of accessing device resources, a Webinos

319

Developing Secure, Unified, Multi-Device, and Multi-Domain Platforms

application might use them to circumvent
the access control system.

11. Spoofing of PZH administration page
to steal user credentials: The user might
be tricked into entering credentials into an
unauthorised page through spoofing.

12. Use of accidentally-enabled test code and
experimental APIs in Webinos deploy-
ments: If the Webinos platform was devel-
oped with test code that remained enabled
after deployment, attackers could misuse
this capability to bypass policy controls or
exploit the platform.

13. User linkability through fingerprinting
browser APIs: The addition of new browser
APIs would make it easier for advertisers
to track the same user between sites; they
would have a similar set of APIs available.

14. Two-factor authentication defeat through
misuse of Webinos messaging APIs: The
Webinos messaging APIs might allow a Web
application to view SMS messages used as
a second factor of authentication.

15. Misconfigured access controls exploita-
tion: if users set overly permissive access
control policies, applications may be able
to gain unexpected access to resources.

16. Identification of weak policies through
context framework: Since the context
framework log also policy usage, poorly
restricted access to context data can allow
policy related information leakage.

17. Insecure storage of Webinos data: Offline
Web application data might become avail-
able to local malware, or to a thief who has
gained physical access to a device.

18. Failure to check permissions on access
requests: A weakness in the Webinos
implementation could be exploited to gain
unauthorised access to APIs.

While several more threats and attacks still
remain, this list does provide useful coverage of

threats to the Webinos application environment and
test cases for the specification and requirements.

Network Threats

Threats to a Webinos personal zone may impact the
security of every device within it. The following
threats and attacks have been identified and must
be mitigated in the architecture.

1. Insecure key storage and use: The Webinos
platform uses PKI to identify devices. If a de-
vice key was stolen or copied by an attacker,
they would be able to join another device to
the personal zone and either impersonate the
user or gain access to other services.

2. Unauthorised joining of a personal zone:
A user’s PZH might allow an unauthorised
user to add a new device to the personal
zone. This attack might be hard to detect and
would allow a range of misuses of personal
devices.

3. Impersonating a friend when requesting
access the user’s personal zone: If Mallory
is able to impersonate Bob, he could do this
to create a connection to Alice’s personal
zone and access her resources. This may be
possible if Alice is not sure of how Bob can
be identified, or if Bob’s user credentials are
easy to guess or steal.

4. Unauthorised enrolment of a user device
to a malicious personal zone hub: Before
a personal zone proxy is configured to point
to the user’s personal zone hub, an attacker
might force it to join another, malicious hub
without the user realising. This would then
give the attacker access to Alice’s device
and allow the attacker to impersonate Alice.

5. Unauthorised transfer of data from secure
to insecure devices: If one Webinos device
is well-secured and difficult to access, an
attacker might use a less secure device to
access it via Webinos.

320

Developing Secure, Unified, Multi-Device, and Multi-Domain Platforms

Physical and Environmental Threats

1. Misuse of physical access to access data
stored on remote devices: Similarly to the
previous attack, this involves a malicious
engineer or technician misusing their access
to a device during maintenance (such as a
car during its annual service) to access data
stored on the rest of the personal zone.

2. Exploiting NFC capabilities to imperson-
ate users via a relay attack: Alice’s NFC
reader might be made available over Webinos
and then relay attacks could allow Eve to
impersonate her NFC device for mobile
payment or identity theft.

3. Exploiting Bluetooth capabilities: Since
Bluetooth is developed for easy connectivity,
often it is used in “mode 1” (no encryption
and authentication), and thus bluetooth con-
nections allow for impersonation, eavesdrop-
ping and connection hijacking.

Data at Rest

The following components in Webinos will be
storing data.

1. Applications may store data locally on each
device, as well as using data (such as media
files) exposed by each device. To support
this, an application specific, isolated stor-
age area is made available to each Webinos
application. In addition, Webinos can also
expose arbitrary data storage. Access to
arbitrary data storage will be mediated by
policies and require a different permission.
Isolated storage from one application is never
exposed to another.

2. Devices. Each device with a PZP will store
some or more of the following:
a. Application data
b. Data in policies, certificates, and pref-

erences. This may include the names
of applications the user has installed,

the devices they use and their friends’
identities. It is therefore considered
private.

c. Browser histories and system logs
d. Context data (a temporary log file), if

enabled.
e. Downloaded widget data contain-

ing potentially valuable intellectual
property

3. Cloud-based components (PZH, online
services) may store:
a. Context data
b. Data in policies, certificates, and pref-

erences. This may include the names
of applications the user has installed,
the devices they use and their friends’
identities. It is therefore considered
private.

c. Application data (outside of Webinos
control)

We therefore identify the following threats
in Table 2.

In the sections that follow, we will describe
how these threats have been addressed.

Trusted Execution Environment

Threats like unauthorized use of APIs and re-
sources, application denial of service, cross site
scripting, man in the browser demand a trusted
environment of execution to be mitigated.

The security of the Webinos execution environ-
ment is specified to achieve security properties,
starting from some assumptions. The Webinos
core components, i.e. the PZH, the PZP and the
Webinos runtime system are assumed as trusted,
so, threats involving the corruption of code while
on the device or modification of the runtime itself
are not considered.

However, these components are considered
at different level of security. While the PZH is
the core of the security framework, it is usually
placed in particularly secure place (e.g. in the cloud

321

Developing Secure, Unified, Multi-Device, and Multi-Domain Platforms

under control of personal zone provider) and little
can be done in case of its violation, information
available to the PZP and the WRT are minimized
to mitigate information leakage if compromised.

Webinos components of the runtime system
allows execution on the base of the application
trust, which can be given through certificates
signed by a recognised authorities and/or through
user authorisation (secured by a previous au-
thentication) at application install or runtime.
The only authorised applications shall be from
signed, trusted sources, which may be defined by
the manufacturer, network provider, or end user.

The Webinos runtime must be able to control
all application (origin) authenticity and integrity,
and this for the firun time before being installed or
updated, and Webinos must protect the integrity
of application instances as they are transferred
between devices. Application integrity and au-
thenticity is enforced by the Webinos system, in
particular the personal zone proxy which acts also
as policy enforcement point.

At the same time the system must restrict the
application from loading untrustworthy external

code, when embedded in a downloaded page (e.g.
in a <script> tag) The external source must either
be an HTTPS location, trusted by the Webinos
system, or the script must has a signature file
linked in the HTML.

Ambiguities in security information must be
avoided, i.e. Webinos personas shall be able to
easily recognize Webinos applications running
and the authority that certified them and Webinos
personas should be able to the Webinos policy
editing tool shall allow policy specification based
on assets recognizable by the user and based on
comprehensible actions and effects.

The Webinos runtime shall protect policies
from tampering or modification by unauthorised
applications, by exploiting mechanisms to isolate
them in memory and in the file system.

Default behaviour should be set to a conserva-
tive posture, to avoid common problem of weak
configuration left untouched. The installation
(or filef use) of an application is the time when a
trust decision must be made. By default, unless
there are good reasons (based on a conscious deci-
sion of the end user), applications should not be

Table 2. Reference threats for data at rest

Threat Description Attacker Motivation

Native malware Malware is installed on Webinos-enabled
device and is used to access and transmit
application data to a third party. This may be
targeted to particular apps or users

Irwin Corporate espionage or discrediting an
existing application. Monetary gain.

Device theft A Webinos-enabled device is stolen and data
is down loaded by the thief.

David Most likely selling the device, but this
could be a targeted attack on an indi-
vidual or corporation

Webinos malware A malicious Webinos application accesses
user data

Frankie Stealing personal data for personal or
monetary gain, may be looking for cre-
dentials or credit card details.

Online data leak A PZH provider exposes their entire file
system by mistake. This compromises the
certificates, keys and settings of each user

Gary May be discrediting former employee, or
may be looking for recognition from the
user community

App content theft A Webinos widget data is stolen by another
developer

Jimmy Monetary gain – copying valuable IPR

Data blackmail User data is encrypted and the key held by an
attacker. The user is extorted to get back their
personal data

Ethan Monetary gain

322

Developing Secure, Unified, Multi-Device, and Multi-Domain Platforms

installed. If there is doubt about the provenance
of the application—whether it is from the right
source and has the right name—it should also
not be installed

IDENTITY AND AUTHENTICATION

The problem of user authentication and identity
management was identified as one of the most
sensitive within the Webinos security group.
Threats like unauthorised joining of a personal
zone, spoofing of PZH page, friend impersonation,
and unauthorised enrolment can be mitigated by
proper authentication mechanisms.

Since Webinos provides for local and remote
access, in different domains, and from different
platform, the provided identity management
mechanisms should be usable by a large variety
of users and for a large variety of purposes (i.e.
it should be suitable in principle for all end user
personas, difficult to trespass for attacker personas,
and possible to exploit for developer personas).

Webinos should allow for identification of
the user to any Webinos device and application
while paying attention to privacy issues. (e.g. a
blind answer to any identity request would allow
for information leakage, thus there is the choice
to not respond to any request by any device, at
least not before some trust relationship has been
established).

The unusual Webinos approach requires
identification for devices with multiple users on
one device (e.g. TV system), thus a one-to-one
device-user relationship cannot be always assumed

Many reference personas developed in Webinos
(e.g. Peter), would distressingly manage mul-
tiple authentications and multiple authentication
systems. Thus, Webinos should expose a single
sign-on experience when possible. This problem
is even more difficult, as Webinos must interact
with services on the Web which adopt different
authentication schemes (e.g. OAuth), as much

seamlessly as possible, while preserving the
security of the authentication.

To allow for transparency, the user should know
the less of different identities (to not mention of
different identity providers) while the appropri-
ate identity required to access services should be
always accessible.

To allow for simplicity, existing identities (e.g.
Google) should be re-used when possible, but
only if appropriate. For example, authentication
to a specific device often depends on an identity
agreed between the user and the device OS (e.g.
finger print, user name/password, etc.), and the
device does not need to rely on a third party identity
provider to perform authentication. In this case,
adopting a third party identities could enable
denial of service attacks due to unavailability of
the third party identity provider, while not reduc-
ing the identities already adopted by the person.

Identity management through certificates
and public key infrastructure is also a valuable
point, since it allows for a solid framework and
for securing communications, with the strong
contraindication that almost all Webinos reference
personas cannot understand the PKI metaphor,
due to their technical background.

Final aspect to consider is that authentica-
tion is a requirement to solve security problems,
but has its own security requirements that must
be addressed, in particular is desirable to carry
it on a secure channel, to achieve integrity and
confidentiality of the exchanged authentication
credentials. To challenge these requirements, in
Webinos we developed five independent authen-
tication mechanisms to handle the combination
of users, devices and applications, while hiding
complexities and re-using identities. In the next
sections we detail these five mechanisms, two
related to the users, two to the devices and one
to applications.

323

Developing Secure, Unified, Multi-Device, and Multi-Domain Platforms

Users

Users in Webinos are primarily identified via
an OpenID (OpenID, 2013) account URI. This
may be a URL or email address. This identity is
used to authenticate the user to the personal zone
hub’s Web interface and administer the personal
zone. How the authentication occurs is up to the
OpenID provider. However, on some devices users
may forego the OpenID authentication in favour
of they device-held private key and certificate.
For devices with constrained user interfaces, this
prevents users from repeatedly having to enter
passwords. Furthermore, allow for re-use of exist-
ing identities if so desired by the user.

Users may also authenticate to the underlying
platform via a device specific mechanism, wrapped
using the Webinos authentication API. This allows
them to take advantage of any fingerprint readers,
screen-locks or other systems. This authentication
is only used by the authentication API and to au-
thenticate the user if they want to make changes
to the local platform. E.g., enabling or disabling
a local service. Also in this case, the choice is to
not introduce new identities but instead re-use
what already available and known by the user.

Devices

Devices are identified by their public key cer-
tificate, issued by the personal zone hub. The
private key is stored using a platform-provided key
store facility, such as Gnome Keyring on Linux
or Keychain Services on OS X. Certificates and
keys are used as part of the mutually-authenticated
TLS connections established between devices in
the personal zone.

Certificates are granted to devices when they
are enrolled into the personal zone. Enrolment hap-
pens through the user visiting their personal zone
hub and obtaining a temporary short authentication
token. This token is then used when the device
connects over TLS to the hub, who exchanges it
for a certificate. The authentication metaphor is
here more complex, but it is acceptable since it is

performed transparently by the end user that likely
could misunderstand and misuse certificates and
public key mechanisms.

Applications

Applications are identified by the name they are
given in the widget manifest, as well as a set of
signatures from various authorities. When running
in a widget runtime, they have a recognised origin
referring to the author’s own domain, if it exists.
The signature scheme is based on the W3C Widget
Signatures standard w3c-widget and recognised
origins are described in WAC core specifications
(The Wholesale Application Community, 2012).

SESSION MANAGEMENT

A functioning Webinos network consists of mul-
tiple devices, multiple servers, and multiple ap-
plications. It requires the interaction of PZPs and
PZHs belonging to different users, over multiple
different networks.

In Webinos there are many notions of session
at different levels, due to the different types of
possible communications. In particular,

• Intra Personal Zone Sessions that are es-
tablished among PZPs and PZH for any
type of communication, particularly for
authentication and exchange of data infor-
mation. The PZH is permanently address-
able on the Internet, and requires that the
information exchanged in the session are
secure.

• Synchronization is special case of intra
zone sessions, which is required to seam-
lessly migrate information among differ-
ent devices in the personal zone, like user
data and identity information, certificates,
context events and stream, application data
and so on. Since synchronisation touches
a number of sensitive objects, it can create
major issues if leaked.

324

Developing Secure, Unified, Multi-Device, and Multi-Domain Platforms

• Inter Personal Zone Sessions which can
be created when accessing services on
devices/servers outside the user personal
zone (e.g. a service on a friend’s device).
These sessions (for example, between two
applications in two different zones) are
mediated by a suitable enforcement point
entity in each of the two zones personal
zone (for anyone of the two zones, a PZP
on the device where the service is provided
or is requested, and/or the PZH of the oth-
er zone). As special case, it is sometimes
necessary to route messages between two
PZH’s to allow monitored communications
between applications and services on dif-
ferent zones

Different sessions for different usage enables
threats like eavesdropping on communication
between applications, Spoofing of PZH adminis-
tration pages as well as unauthorized joining of a
personal zone and friend impersonation.

Another aspect is that the developer personas
we elicited (namely, Jessica and Jimmy) are not
incline to pay attention to the security and privacy
of the users, unless legally obliged to. Thus, Webi-
nos should provide a mechanism both easy to use,
and to implement. While lack of care in protecting
user security and privacy may have many roots
(from time pressure to inexperience), and while a
systematic re-education of Web developers would
greatly improve user security, still sessions require
protection now, since session data may contain
private information, and may be even possible to
use a hijacked session to impersonate a user on an
application. From the other hand, the hijacking or
unauthorised disclosure of Web session is feasible
even inexperienced attackers, as widely available
tools like Firesheep and FaceNiff can show.

In Webinos we mitigate this by imposing pri-
vacy and authentication protocols to implement
the following properties.

• Traffic between zones and services is en-
crypted to make snooping traffic more
difficult.

• Client-server sessions are mutually au-
thenticated. This mutual authentication in-
cludes, user and device.

• Traffic can be monitored at the PZH for
anomalies. For example sudden changes
in IP address, can be challenged be asking
the device to re-authenticate. This helps
mitigate against real time token stealing
attacks.

To achieve this goal we impose a mandatory
use of Transport Layer Security (TLS) (Dierks
and Rescorla, 2008) and relevant extensions, and
to allow this PZPs need to be installed securely
on devices PZP installation bootstrap. Once this
“Intra Personal Zone Pairing” is done, the estab-
lished long term trust relationship between that
PZP and the PZH can be exploited to build up
secure sessions.

DISTRIBUTED ACCESS
CONTROL POLICIES

A key security feature provided by Webinos is a
policy-based access control system. This medi-
ates every attempt by an application, device and
user to use a Webinos API. This is designed to
limit the privileges of applications which may be
trusted to access certain features but not others.
For example, a ‘news’ application might request
access to geolocation data in order to find the most
relevant stories, but does not require the ability
to send SMS or use the camera. Following the
principle of least privilege has been proven effec-
tive in other application frameworks (Felt et al.,
2011) and Webinos attempts to do the same. We
believe a properly developed access control system
would limit a number of identified threats, like

325

Developing Secure, Unified, Multi-Device, and Multi-Domain Platforms

unauthorised use of APIs and remote resources,
improper use of non-Webinos APIs, exploitation
of poor access control configuration.

However, the distributed and heterogeneous
nature of Webinos, along with the ability to form
ad-hoc peer-to-peer collaborations creates chal-
lenges, as described in previous work (Lyle et
al., 2012).

Firstly, the devices in a user’s personal zone
must have a synchronised and consistent set of poli-
cies. Because different devices come online and
offline at different times (a car, for example, might
not be used for a week or two) it is necessary to
aggressively check that the most recent policies are
in place before making access control decisions.
Although a default-deny policy would prevent
out-of-date devices from doing too much harm,
revocation of application permissions becomes a
slower process. Synchronisation is therefore a core
requirement of the Webinos policy framework.

Another challenge is integrating privacy
controls. Rather than simple access control for
confidentiality, users of applications may want
assurance that their personal data is not misused
or disclosed to third parties. While these require-
ments are ultimately impractical to enforce—Web
applications given access to personal data will
always be capable of sharing them with remote
servers—it would be helpful for users to be in-
formed of how applications intend to use their data.

For example, the news application might state
that it only uses geolocation to filter results, and
that this is not shared with any third party. Such
statements can then be matched against the user’s
preferences and a more informed decision can be
made about whether to grant the application access
to this resource. The challenge that Webinos is
facing is to integrate security and privacy controls
without introducing excessive complexity.

While Webinos tries to build on existing
work in policy enforcement, another challenge is
adapting more limited access control systems to a
more complicated environment. The initial plan
for Webinos was to use the BONDI-defined (bon,
2009) XACML-based (Godik and Moses, 2005)

policy enforcement language and framework,
but this turned out to need modification. BONDI
policies do not support cross-device interaction or
multiple users. Policies must also be able to refer
to a dynamically changing set of features, as new
APIs may be added by new applications.

Finally, the policy framework had to take into
account the different level of confidence in user
identity that each application has. For example, a
mobile device may be assumed to always belong
and be used by one person. However, a shared
television might regularly be used by several
people, including guests. This means that policies
need to refer to the authentication level of the user,
and may need to request re-authentication before
permission can be granted.

The Webinos policy framework is based on
XACML, but with the reduced vocabulary de-
fined by the BONDI policy engine (bon, 2009).
The BONDI approach has also been adapted to
allow the subject of policies to refer to the device
and user. Abstractly, Webinos policies are usually
composed in the following way, where device T
is the target device and device R is the request-
ing device:

User U can access Feature F of Device T
through application A on Device R.

An example using XACML syntax is shown in
Table 3, for user jessica@example.com’s mobile
device, denying access to the contacts API. Taken
from the Webinos Consortium (2012a).

Note that policies refer to features of APIs
rather than APIs themselves. This is because APIs
may include both low- and high-risk functions,
such as reading SMS versus sending SMS. Poli-
cies are defined in the policy.xml file on each
platform. New policies are created through user
actions: when an application is installed, it prompts
the user to allow or deny the application installa-
tion and to grant access to requested APIs. This
approval is translated into XACML and added to
the policy file. The policy implementation archi-
tecture also follows from XACML, with policy
enforcement (PEP), decision (PDP), information
(PIP), and access (PAP) points. On Webinos,

326

Developing Secure, Unified, Multi-Device, and Multi-Domain Platforms

policy caching is required for requests to remote
devices in order to improve efficiency, making
the PDP cache (PDPc) a core component.

Synchronisation of policies is implemented
through the PZH, which each proxy queries when
it starts to receive changes. Each proxy may also
make changes to policies (for example, installing
a new application) but these require authorisation
at the PZH. PZPs also contain an exceptions.xml
file in the same format.

This file is not synchronised between devices,
and is designed to set broad policies that do not
need to be changed remotely. This limits the im-
pact of one malicious device attempting to change
policies for the whole personal zone.

To describe data handling policies, the XAC-
ML-based architecture has been adapted using

extensions from the PrimeLife project (Ardagna
et al., 2009). This allows Webinos to make ac-
cess control decisions based on both the request
context and user preferences. Webinos applica-
tions contain a manifest which let developers give
reasons for requesting access to APIs as well as
stating obligations with regards to how they will
store data. An example excerpt from a manifest
is given in Table 4.

THREAT-AWARE API
DEVELOPMENT

The Webinos platform offers a set of APIs to expose
the device and the personal zone’s capabilities
to applications. These include an authentication

Table 3. Example of denying access policy

<policy-set combine=”deny-overrides”>
 <policy combine=”first-applicable”>
 <target>
 <subject>
 <subject-match attr=”id” match=”appID”/>
 <subject-match attr=”version” match=”1.0”/>
 <subject-match attr=”user-id”
 match=”pzh.isp.com/jessica@example.com/Jessica’s+Mobile/App”/>
 </subject>
 </target>
 <rule effect=”deny”>
 <condition combine=”or”>
 <resource-match attr=”api-feature”
 match=”http://www.w3.org/ns/api-perms/contacts.read”/>
 </condition>
 </rule>
 <rule effect=”permit”> ...</rule>
 <rule effect=”deny” />
 </policy>
</policy-set>

Table 4. Privacy-related excerpt of the manifest file

<ProvisionalAction>
 <AttributeValue>http://Webinos.org/geolocation</AttributeValue>
 <AttributeValue>#pseudo-analysisDHP</AttributeValue>
 <DeveloperProvidedDescription language=”EN”>
 The geolocation feature is required by this application in
 order to customise search results.
 </DeveloperProvidedDescription>
</ProvisionalAction>

327

Developing Secure, Unified, Multi-Device, and Multi-Domain Platforms

API, which provides to authorized applications
the current authentication status of users, and
may ask the runtime to (re)authenticate the user;
discovery which allow applications to discover
services without any previous knowledge of the
service, and many others (the complete list and
description is available in the official deliverable
(The Webinos Consortium, 2012b).

Each API may have unique security and privacy
concerns. Each must be considered in turn and any
API-specific threats need to be mitigated. This
process also helps to mitigate one of the bigger
threats identified in section 4: the exploitation of
the underlying platform through misuse of Webi-
nos APIs. To approach this problem, we performed
a risk analysis process shared among several
partners of the project. Selected parties reviewed
each API, either due to their security expertise or
their involvement with the development of the
API and therefore insights into potential threats.
Most analysis data was reviewed by another part-
ner before it was considered finished. Creativity
was encouraged as part of this exercise, as well
as other suitable data sources, like The Mozilla
WebAPI security analysis (Mozilla, 2012) and,
since many APIs derive from previous efforts by
the W3C and WAC, their original considerations
on security and privacy.

The findings of this process were conveyed
as a series of recommendations and reported to
the API developers to inform and modify the API
(which within the project is an iterative process).
Since API developers were often aware of per-
formance issues, but more rarely of the security
implications, this analysis allows for a threat-aware
development.

Analysts structured their feedback in a manner
that was quick to read, following a specifically
developed template. The template suggested that
analysts consider various personas, data sources
and attack vectors. More specifically, the template
allowed obvious threats that misuse of this API
could cause to users to be highlighted, taking into
account the assets the API gives access to, as well

as what happens if the API is excessively used.
This considered several Webinos personas and
took advantage of any persona-specific security
and privacy consideration (developed in Webinos
in parallel to the specification development).

The template has a specific section for threats
based on remote invocation of the API (i.e., when
called from another device and/or by another user,
what are the additional security concerns?). It also
allowed analysts with implementation experience
to describe their concerns. Developer-specific
threats were considered through use of the two
developer personas. For instance, analysts were
asked how a developer or their application might be
caused harm if they used or relied on a certain AP.
Finally, threats to device manufacturers, operators,
and other stakeholders were also considered: e.g.
excessive bandwidth consumption for telecom-
munications operators.

As a result of the threat analysis several
mitigations were recommended. These primarily
involved setting default permissions or identify-
ing excessive use of an API, but others were also
suggested.

Example Analysis

As an example, we consider the Context API (other
API’s threat analyses are described in the Webinos
official deliverable). This API allows access to a
user’s context data through either explicit queries
or a subscription model. Context events include all
API calls. Specific threats identified include pri-
vacy, confidentiality and non-repudiation topics:

• Any application can monitor what the user
is doing and has done, and can react to par-
ticular events. This might be used for tar-
geted adverts, physical or cyber stalking,
targeted theft or burglary and identity theft.

• Any application can potentially see which
files have been opened, where the user
has been, contact information, and so on.
Depending on implementation, this could

328

Developing Secure, Unified, Multi-Device, and Multi-Domain Platforms

include the content of files and more. An
application might use this to gain access to
APIs and resources it does not have per-
mission for.

• Users may want to go unmonitored and
need to turn off context collection at times.
If this is hard to do or unclear, it might result
in embarrassment or a loss of reputation.

No specific threats have been identified for
remote invocation of this API, because this API
primarily uses a central database.

From implementation experience, two avail-
ability risks were raised: subscribing to common
context events might slow down the platform
considerably, making it unusable, and too many
queries to the context API might over-use band-
width and cause either a loss of battery power of
expensive mobile phone bills.

Developers using this API should be aware
that context data could be inconsistent or misused,
thus provide a false impression for developers. For
example, if a user turns on and off their context
data, it may make them appear to have different
behaviour to reality.

Finally, from other stakeholders’ point of view,
too many queries to the context API might over-
use bandwidth and reduce battery life.

Mitigations suggested varied from conserva-
tive prevention, turning off context collection by
default and providing controls for turning on/off
collection and clearing the database, to allowing
for fine grained controls and deletion of data
(suitable for users aware of what context aspect
make available). To enable awareness of the API
usage, the system should provide feedback for
when applications query context data. Another
suggestion was the creation of a figr-grained tax-
onomy of context data, to allow strict integration
with the access control system, and allowing for
a bare minimum collection of information about
API calls.

Finally, as default policy, access to this API
should be denied by default to trusted sources (this
allow user to be aware when the requests are done)
and always denied to untrusted (unknown) sources.

Analysis Results

The API threat analysis highlighted the fact that
APIs should be more privacy aware, e.g. the
Discovery API is privacy-invasive due to its use
of persistent identifiers for Webinos services; this
facilitates user fingerprinting, and is unnecessary
for “impersonal” services, while the Calendar API
and the Messaging API expose a great deal of
information to requesting applications, even if not
always required. e.g. for Calendar, an application
which requires only the free/busy status of a user
will still be given details of every calendar entry.
Privacy friendliness could be achieved by a finer
grained detail of the API interface (so application
can obtain only the interface which exposes the
minimum required user information) and the use
of an Intent-style approach where the application
is unaware of the service fulfilling a request.

It is also useful to make a clear distinction
between types of application: ’system level’ and
’Web level’. These have different potential secu-
rity levels, and address the two types of use case
considered within Webinos. On the one hand,
applications requiring only slightly more func-
tionality than that provided by the Web browser.
On the other, system-level applications which
are more trusted and need to have greater access
to device features. Web applications could be
executed in a normal Web browser and should be
given access to a limited set of APIs in a more
privacy-friendly way (e.g. discovery). This is be-
cause Web applications are vulnerable to a wide
range of attacks which are difficult to mediate at
the API level. By contrast, system level applica-
tions will run in a secure execution environment
(a widget runtime) which protects them from at-

329

Developing Secure, Unified, Multi-Device, and Multi-Domain Platforms

tacks by plugins, or through cross-site scripting.
They have the potential to access more APIs and
may have fewer privacy constraints. These apps
should only be installed from app stores and must
be pre-vetted, but when they are installed they are
able to do much more.

SECURE STORAGE

The Webinos platform uses and stores data which
may have security and privacy requirements. For
example, many of the personas may use applica-
tions to monitor health data, to read personal
emails, or to store valuable work fipla. As such,
it is important to address threats and mitigations
to vulnerabilities affecting data at rest.

Because most platforms already provide some
mitigation to attacks on stored data, Webinos does
not attempt to solve every problem. Table 5 shows
how the threats from section 4 may be mitigated.
In the case of Application content theft, we do not
attempt to provide a DRM solution but expect that
one could be implemented over the top of Webinos.

DISCUSSION

We sum up now a set of principles the lessons
learned from two years of work in developing the
security framework.

Tablets, smartphones, laptops, and cars are all
designed to be mobile. This significantly increases
the risk of a device being lost or stolen. Sensitive
data should either not be stored in mobile devices
or protected by secure storage available on the de-
vices. More sensibly, revocation must be primarily
concerned with removing a lost and potentially
rogue device from the personal network, recall-
ing the security inclination of the potential users
(for many Webinos personas revocation must be
a one-click process, and must also not rely on
the user having another enrolled device to hand).

The interoperability of Web applications—
which provide a common, accessible Web server
for communication—should be re-used to make
personal networks available to any device capable
of making outgoing connections to Web servers.
Mechanisms which requires an always-on con-
nection (e.g. for authentication, synchronization,
PKI management) would greatly benefit of this
availability, while the management cost would
be outsourced to the Internet infrastructure and
to the provider. We believe this is an enabler for
a efficient scaling of complex security solutions
(like PKI) on mobile networks with frequently
changing IP addresses.

It is better to delegate the tasks to the underly-
ing OS when a security mechanisms is platform
specific and low-level. It is time consuming to
design an application middleware, which is ca-
pable of interacting with all low-level security

Table 5. Examples of suggested mitigation for data-at-rest’s reference threats

Threat Mitigation

Native malware Provide anti-malware tools and allocate each native application in its own private storage area

Device theft Provide full disk encryption

Webinos malware Webinos will provide isolated storage for each application, require additional permissions to access
shared areas

Online data leak The PZH can be designed to minimize risk by storing as little data as possible. PZH providers should
provide disk encryption and should follow best practice guidelines to avoid vulnerabilities. Keys
should be stored privately using either a trusted hardware device or a separate fipr system.

App content theft No mitigation

Data blackmail Offer backup and recovery tools.

330

Developing Secure, Unified, Multi-Device, and Multi-Domain Platforms

mechanisms on all platforms. Each platform has
different application security infrastructures, so
protection from malware is hard to achieve in a
truly cross-platform manner.

Furthermore, the underlying OS can use a
device-specific solution, with the advantage that
this should be well tested by frequent use. For
example, the best way to protect private keys is
likely to be device-specific. Some devices support
secure hardware which may provide a high level
of protection. Furthermore, devices in different
contexts will have different authentication require-
ments: e.g., a shared PC might only unlock private
keys after authenticating the end user, whereas a
mobile device may be assumed to belong to one
person only.

The use of secure hardware capabilities should
be the object of further investigation inside Webi-
nos. It would be useful because hosted applications
may be running on insecure remote platforms and
this could be assessed through use of attestation
on the host and verification on the user’s device
(Lyle, 2010). If the host is found to be running
an untrustworthy configuration then the applica-
tion may not be installed, or if the host changes
configuration it could result in a new assessment.

The emerging cross-platform scenarios are
young and admit misinterpretation as the secu-
rity implications of these scenarios are unclear.
For example, device keys are not always a factor
of user authentication, this is because personal
devices are designed to be mobile, thus is more
secure to use a device key to identify the device
only, and only as a second factor when the device
is appropriate: e.g., a laptop or mobile phone with
a single user and a login prompt. This contrasts
with some literature (e.g. Balfanz et al., 2005),
which identifies that certificates could be treated
like capabilities, but is corroborated by some
threat scenarios we investigated, e.g. when a
device is stolen and then access to core security
zone management is admitted only on the basis
of the private key.

CONCLUSION AND FUTURE WORK

In this paper we presented the design of Webinos,
providing insights into the motivation behind
security choices and the overall architecture, as
well as the literature which inspired our work

We used personas in order to support usable
security design. Most of the Webinos personas
we expect to already have identities on the Web
(e.g. from social networks, email accounts, and
homepages). Some were tech-savvy, and thus not
comfortable with having multiple online accounts
in different contexts. A mapping from Web-based
identity to a public key or certificate is therefore a
good way to allow users to find each other through
acceptable Web identities (obtained by a combi-
nation of user and device as suggested by (Ford
et al., 2006)), while benefitting from the stronger
security guarantees inherent in a public key infra-
structure. This leverages existing relationships and
avoids the discovery and bootstrapping problems
often associated with PKI (Balfanz et al., 2005).
It also minimizes the need for passwords. Since
PKI terminology must not be exposed to end us-
ers, all keys and certificates should be generated
automatically, and there should never be a prompt
or question asked to users referring to these things.
However, even if we conceal details of the authen-
tication and identity management Webinos system,
we believe that further research is needed in this
field, especially to develop empirical evidence of
the usefulness of our proposed approach.

We also plan further studies on authentication
and identity classification, as well as investigations
into stronger integration with social networks. For
example, adopting a social network reputation and
review system could be a way to reduce reliance
on the public key infrastructure for application
security. Application certificates are one source
of information on trustworthiness, but social
networks may provide more useful information,
e.g. if 90% of the user’s friends rate an applica-
tion highly, this information may help the user

331

Developing Secure, Unified, Multi-Device, and Multi-Domain Platforms

decide whether to trust the application or not. On
a similar theme, recommendations from particular
users might trigger policy settings which allow the
application to be installed with minimal authorisa-
tion. In this way, Webinos could present to the end
user a comfortable security model, since similar
to today’s social network model, and thus could
enhance acceptability, avoid misinterpretation and
enable user’s security-wise behaviour.

ACKNOWLEDGMENT

The research described in this chapter was funded
by EU FP7 Webinos Project (FP7-ICT-2009-5
Objective 1.2). We thank all our project partners
as this chapter draws upon their work.

REFERENCES

Android. (2012). Developer guide: Security and
permissions, October 2012. Retrieved from http://
developer.android.com/guide/topics/security/
security.html

Ardagna, C. A., di Vimercati, S. D. C., Parabos-
chi, S., Pedrini, E., & Samarati, P. (2009). An
XACML-based privacy-centered access control
system. In Proceedings of the First ACM Workshop
on Information Security Governance, WISG ’09,
(pp. 49–58). ACM.

Atzeni, A., Cameroni, C., Faily, S., Lyle, J., &
Fléchais, I. (2011). Here’s Johnny: A methodology
for developing attacker personas. In Proceedings
of the 6th International Conference on Availability,
Reliability and Security, (pp. 722–727). IEEE.

Balfanz, D., Durfee, G., & Smetters, D. (2005).
Making the impossible easy: Usable PKI. In Se-
curity and Usability: Designing Secure Systems
that People Can Use (pp. 319–334). Sebastopol,
CA: O’Reilly.

BONDI. (n.d.). Architecture and security require-
ments appendices. Retrieved from http://bondi.
omtp.org/1.01/security/BONDI_Architecture_
and_Security_Appendices_v1_01.pdf

Cooper, A. (1999). The inmates are running the
asylum: Why high tech products drive us crazy and
how to restore the sanity (2nd ed.). Upper Saddle
River, NJ: Pearson Higher Education.

Dierks, T., & Rescorla, E. (2008). The transport
layer security (TLS) protocol version 1.2. RFC
5246 (Proposed Standard). Retrieved from http://
www.ietf.org/rfc/rfc5246.txt

Faily, S., Coles-Kemp, L., Dunphy, P., Just, M.,
Akama, Y., & De Luca, A. (2013). Designing
interactive secure systems: CHI 2013 special
interest group. In CHI ’13 Extended Abstracts
on Human Factors in Computing Systems. ACM.
doi:10.1145/2468356.2468807.

Faily, S., & Fléchais, I. (2010a). A meta-model
for usable secure requirements engineering. In
Proceedings of the 2010 ICSE Workshop on
Software Engineering for Secure Systems, (pp.
29–35). ACM.

Faily, S., & Fléchais, I. (2010b). Barry is not the
weakest link: Eliciting secure system requirements
with personas. In Proceedings of the 24th BCS
Interaction Specialist Group Conference, BCS ’10,
(pp. 124-132). London: British Computer Society.

Faily, S., & Fléchais, I. (2011). Eliciting usable
security requirements with misusability cases.
In Proceedings of the 19th IEEE International
Requirements Engineering Conference, (pp.
339–340). IEEE Computer Society.

Faily, S., Lyle, J., & Parkin, S. (2012). Secure
system? Challenge accepted: Finding and resolv-
ing security failures using security premortems.
In Proceedings of Designing Interactive Secure
Systems: Workshop at British HCI 2012. London:
HCI.

332

Developing Secure, Unified, Multi-Device, and Multi-Domain Platforms

Felt, A. P., Greenwood, K., & Wagner, D.
(2011). The effectiveness of application per-
missions. In Proceedings of the 2nd USENIX
Conference on Web Application Development,
WebApps’11. Berkeley, CA: USENIX Asso-
ciation. Retrieved from http://dl.acm.org/citation.
cfm?id=2002168.2002175

Ford, B., Strauss, J., Lesniewski-Laas, C., Rhea,
S., Kaashoek, F., & Morris, R. (2006). Persistent
personal names for globally connected mobile
devices. In Proceedings of the 7th Symposium on
Operating Systems Design and Implementation,
OSDI ’06, (pp. 233–248). Berkeley, CA: USENIX
Association. Retrieved from http://dl.acm.org/
citation.cfm

Godik, S., & Moses, T. (2005). Extensible access
control markup language (XACML) version 1.1,
May 2005. Retrieved from http://www.oasis-
open.org

iOS. (n.d.). Developer library: iOS technology
overview introduction. Retrieved from http://
developer.apple.com/library/ios/documentation/
Miscellaneous/Conceptual/iPhoneOSTechOver-
view/Introduction/Introduction.html

Joyent, Inc. (2012). Nodejs website. Retrieved
from http://nodejs.org/

Kinkelin, H., Holz, R., Niedermayer, H., Mittel-
berger, S., & Carle, G. (2011). On using TPM for
secure identities in future home networks. Future
Internet, 3(1), 1–13. Retrieved from http://www.
mdpi.com/1999-5903/3/1/1/

Lyle, J. (2010). Trustable services through at-
testation. (PhD thesis). University of Oxford,
Oxford, UK. Retrieved from http://www.cs.ox.
ac.uk/people/John.Lyle/thesis-final-25-06-11.pdf

Lyle, J., Monteleone, S., Faily, S., Patti, D., &
Ricciato, F. (2012). Cross-platform access control
for mobile web applications. In Proceedings of
the IEEE International Symposium on Policies
for Distributed Systems & Networks. IEEE.

Mac. (n.d.a). OS X developer library: Security
architecture. Retrieved from http://developer.
apple.com/library/mac/documentation/Security/
Conceptual/Security_Overview/Introduction/In-
troduction.html

Mac. (n.d.b). OS X developer library: Security
services. Retrieved from http://developer.apple.
com/library/mac/documentation/Security/Con-
ceptual/Security_Overview/Security_Services/
Security_Services.html

Mitchell, C.J., & Schaffelhofer, R. (2004). Secu-
rity for mobility: The personal PKI. Institution of
Engineering and Technology.

MITRE Corporation. (n.d.). Common attack pat-
tern enumeration and classification (CAPEC).
Retrieved from http://capec.mitre.org/

Mozilla. (n.d.). Boot to gecko project website. Re-
trieved from http://www.mozilla.org/en-US/b2g/

Niemegeers, I.G., & de Groot, S.M.H. (2002).
From personal area networks to personal networks:
A user oriented approach. Wireless Personal Com-
munications, 22, 175–186. Retrieved fromhttp://
dx.doi.org/10.1023/A:1019912421877

Open, I. D. (n.d.). What is OpenId? Retrieved from
http://openid.net/get-an-openid/what-is-openid/

OWASP Foundation. (n.d.). The open web ap-
plication security project. Retrieved from http://
www.owasp.org/index.php/

Pruitt, J., & Adlin, T. (2006). The persona life-
cycle: Keeping people in mind throughout product
design. Amsterdam: Elsevier.

Sasse, M. A., Brostoff, S., & Weirich, D. (2001).
Transforming the ‘weakest link’: A human-com-
puter interaction approach to usable and effective
security. BT Technology Journal, 19, 122–131.
doi:10.1023/A:1011902718709.

333

Developing Secure, Unified, Multi-Device, and Multi-Domain Platforms

Schneier, B. (2009). Security versus usability.
Retrieved from http://www.schneier.com/blog/
archives/2009/08/security_vs_usa.html

SHAMAN Project. (2002). Deliverable 13, work
package 3, November 2002. Retrieved from http://
www.isrc.rhul.ac.uk/shaman/docs/d13a3v1.pdf

UPnP Forum. (2011). UPnP device protec-
tion service (Technical report). Retrieved from
http://upnp.org/specs/gw/deviceprotection1.
w3c-widget

Webinos Consortium. (2011). User expecta-
tions on security and privacy phase 1, February
2011. Retrieved from http://Webinos.org/content/
Webinos-User_Expectations_on_Security_and_
Privacy_v1.pdf

Webinos Consortium. (2012a). Phase 2 platform
Specifications: Policy. Retrieved from http://
webinos.org

Webinos Consortium. (2012b). Phase 2 API
specification. Retrieved from http://Webinos.
org/blog/2012/09/24/Webinos-report-phase-ii-
api-specifications

Webinos Consortium. (2012c). The webinos proj-
ect website. Retrieved from http://Webinos.org/

Webinos Consortium. (2012d). Updates on sce-
narios and use-cases. Retrieved from http://www.
webinos.org/wp-content/uploads/2012/06/D2.4-
Updates-on-Scenarios-and-Use-Cases.public.pdf

Whitten, A., & Tygar, J. D. (1999). Why Johnny
can’t encrypt: A usability evaluation of PGP 5.0.
In Proceedings of the 8th Conference on USENIX
Security Symposium, (pp. 169–184). Berkeley,
CA: USENIX Association.

Wholesale Application Community. (2012). WAC
core specifications 2.1: Security and privacy.
Retrieved from http://specs.wacapps.net/core/

World Wide Web Consortium. (W3C). (2011,
August 11). XML digital signatures for widgets,
W3C proposed recommendation. Retrieved
from http://www.w3.org/TR/2011/PR-widgets-
digsig-20110811/

	coversheet_template
	ATZENI 2014 Developing secure unified

