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Real-Time Vehicle License Plate Detection Based on Background 

Subtraction and Cascade of Boosted Classifiers

Md. Mostafa Kamal Sarker , Moon Kyou Song°  

ABSTRACT

License plate (LP) detection is the most imperative part of an automatic LP recognition (LPR) system. Typical 

LPR contains two steps, namely LP detection (LPD) and character recognition. In this paper, we propose an 

efficient Vehicle-to-LP detection framework which combines with an adaptive GMM (Gaussian Mixture Model) 

and a cascade of boosted classifiers to make a faster vehicle LP detector. To develop a background model by 

using a GMM is possible in the circumstance of a fixed camera and extracts the motions using background 

subtraction. Firstly, an adaptive GMM is used to find the region of interest (ROI) on which motion detectors are 

running to detect the vehicle area as blobs ROIs. Secondly, a cascade of boosted classifiers is executed on the 

blobs ROIs to detect a LP. The experimental results on our test video with the resolution of 720x576 show that 

the LPD rate of the proposed system is 99.14% and the average computational time is approximately 42ms.
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Ⅰ. Introduction

Vehicle LPR is one of the most important 

subjects in a traffic surveillance system. We are able 

to obtain useful information about vehicles through 

LPR. In order to recognize a vehicle LP in 

real-time, however, the LP should be quickly and 

robustly detected in advance. An unsatisfying result 

of LPD affects the performance of LPR. Therefore, 

detecting LPs under various complex environments 

remains a challenging problem.

Recently, learning-based LPD methods using 

different classifiers become very popular. The basic 

idea is to use a classifier to group the features 

extracted from vehicle images into positive class (LP 

region) or negative class (non-LP region). A number 

of computational intelligence architectures, such as 

neural networks (NNs)
[1], genetic programming 

(GP), and genetic algorithms (GAs)
[2], were 

implemented for a LPD. Support Vector Machine 

(SVM)[3] and Fuzzy clustering algorithm[4] have been 

widely used for LPD as they do not need a large 

number of parameters to obtain a decent 

classification performance. AdaBoost was 

successfully used with Haar-like features in a 

“cascade” for face detection
[5,6]. Using the cascade 

framework, the background region can be excluded 

to a great extent from further training. It was 

capable of processing images very fast with high 

detection rates.

In the case of fixed camera environment in a 

traffic surveillance system, we are able to use 

background subtraction using a Gaussian mixture 

model (GMM)
[7]. In this paper, we focus on fast 
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Fig. 1. Examples of bad images for a LPR system 

LPD in the video for identifying a vehicle by  LPR. 

We propose an efficient Vehicle-to-LP detection 

system which is based on motion detection and a 

cascade of boosted classifiers to make a faster 

detector. In the first step of this system, motion 

detection of a frame is used in the vehicle detection. 

We can obtain blobs and limited searching regions 

as candidate areas that means we only classify small 

sub-windows in candidate regions. The second step 

is to use the cascade of boosted classifiers for LPD. 

By combining two steps, we are able to reduce 

computational time and keep the performance of 

cascade of boosted classifiers.

This paper is organized as follows: Problems and 

challenges are illustrated in Section 2, the proposed 

LPD system in a fixed camera environment is 

described in Section 3, and the experimental results 

in Section 4 show that the proposed system is able 

to ensure fast LPD as well as achieve the high 

detection accuracy than other existing systems. 

Finally, a conclusion is summarized in Section 5.

Ⅱ. Problems and Challenges

There are a number of possible difficulties 

available for a LPR system affected by images. All 

complications are summarized as follows :

(1) Bad image quality (resolution) problem caused 

by using a low-quality camera or long distance 

between a camera and a vehicle. 

(2) Blurry image problem caused by mainly motion 

blur.

(3) Illumination and low contrast due to 

overexposure, reflection or shadows, caused by 

vehicle headlight or other light sources during 

the image acquisition.

(4) Occlusion problem, an object obscured or dirt 

on the LP during the image acquisition.

(5) Partial LP image problem caused by a distorted 

LP or only some part of LP.

(6) Environmental problems caused by snowing, 

raining, etc. during the image acquisition.

Fig. 1 shows some examples of difficult images 

for LPR system.

  

To properly work with LPR systems, we must 

manage a large variety of LPs, especially in South 

Korea. Each province in Korea has its own LP 

color, pattern, and number format and other 

characters. Different colors represent different types 

of vehicles. Moreover, there are three different sizes 

of LPs available in Korea, such as large (520 mm 

x 110 mm), medium (440 mm x 200 mm), and 

small (335 mm x 170 mm or 155 mm). Fig. 2 

presents the different types and sizes of LPs 

available in Korea.

Fig. 2. Different types and sizes of Korean LPs 

Ⅲ. Vehicle-to-LP detection

Our proposed LPD system is divided into two 

phase; vehicle detection and LP detection. In a 

traffic surveillance system, background subtraction 

using background model is very useful to detect 

ROI for LPD under the fixed camera environment. 

The first step of our system is vehicle detection 

which can reduce the computational time since there 

are few searching areas. Next step is LP detection. 
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Fig. 3. Vehicle-to-LP detection framework

We are able to apply a trained cascade of boosted 

classifiers to each ROI for LPD. Fig. 3 demonstrates 

the proposed Vehicle-to-LP detection framework.

3.1 Vehicle Detection
Detecting a LP in a large area needs much more 

computational complexity. If we detect the vehicle 

region as a ROI quickly from an image then the 

area is reduced for detecting a LP and minimizes 

computational complexity. Once we know the 

vehicle region, we can detect the LP promptly. So 

the vehicle detection is the first and the most 

important part of our proposed system. We use a 

GMM and an expectation-maximization (EM) 

algorithm to identify moving objects regions in our 

test video and after that using some image 

preprocessing methods to find the vehicle region as 

a ROI. The detailed description of our proposed 

vehicle detection procedure will be given later.

In computer vision, background subtraction using 

a GMM is often used. The algorithm of background 

subtraction using a GMM is as follows;

(1) Initialize. Choose the number of Gaussian 

variables  and learning constant  : values in the 

range 0.01-0.1 are commonly used. At each pixel, 

initialize  Gaussian  variables  ∑   
with a mean vector  and a covariance matrix ∑ 
and corresponding weights . 

(2) Acquire a frame , with an intensity vector  

- probably this will be an RGB vector 

        . Determine which Gaussian variable 

matches this observation, and select the ‘best' of 

these as  . In an 1-D case, we would expect an 

observation to be within, say,  of the mean. In 

a multi-dimensional case, a simplifying assumption 

is made for computational complexity reason: the 

different components of the observation are taken to 

be independent and of equal variance 
, allowing 

a quick test for ‘acceptability'. 

(3) If a match is found as a Gaussian variable  : 

(a) Set the weights according to equation (1), and 

re-normalize. 

    ≠
    

(1)  

(b) Set 

     (2)

and

     (3)


  






(4)

(4) If no Gaussian variable matches : then 

determine     and delete  . Then

Set

   


  



  
(5) 

(The algorithm is reasonably robust to these choices). 

(5) Determine   as in equation (6), and thence 

from the current ‘best match' Gaussian whether the 

pixel is likely to be foreground or background. 

 







                     (6)

(6) Use some combination of blurring and 

morphological dilations and erosions to remove very 

small regions in the difference image, and to fill in 

‘holes' etc. in larger ones. Surviving regions 

represent the moving objects in the scene. 

(7) Return to step 2 for the next frame.

A GMM[8] is employed to make background 

model using more than two Gaussian distributions. 

In this method, the background model is statistically 

modeled on each pixel. In order to adapt to pixel 
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value changes, we use an adaptive GMM which 

updates the training set by adding new samples and 

discarding the old ones. Besides, we can estimate 

parameters such as weight, mean and covariance by 

an expectation-maximization (EM) algorithm. The 

EM algorithm identifies a local maximum, usually 

of reasonable quality. The EM proceeds iteratively: 

At each stage it estimates the influence of each 

Gaussian variable on each data sample (expectation), 

and then refines the estimates of the Gaussian 

parameters (maximization) : If we have (an estimate 

of) mean  and covariance ∑,   
we can compute the probability of the   Gaussian 

variable being responsible for  as;








 



(7)

That is, the ratio of the probability of  given  

( is normal with mean   and covariance  ∑ ; 

 ∑  ) to the overall probability of  

(regardless of the generating a Gaussian variable), 

suitably weighted by the current  . We can then 

define


 

 




 (8)

That is, the mean  over the data set. 

Correspondingly, now we can estimate the improved 

values of  and ∑;

















(9)




















 




(10)

In the next step, the difference between the 

background model and the current image is 

evaluated and we find the moving objects regions 

from our test video as extracted blobs as shown in 

Fig. 4(c). Morphological processing and connected 

component are used as preprocessing. Firstly, 

morphological opening and closing is necessary to 

use since there are many noises right after 

background subtraction. The primary morphological 

operations arc dilation and erosion. Both dilation 

and erosion are produced by the interaction of a set 

called a structuring element
[8] with a set of pixels of 

interest in the image. The structuring element has 

both a shape and an origin. Let  be a set of pixels 

and let   be a structuring element. Let   be the 

reflection of   about its origin and followed by a 

shift by  . Dilation, written ⊕ , and Erosion, 

written ⊖ , is the set of all shifts that satisfy the 

following:

⊕  ∩ ⊆ (11)

⊖ ⊆ (12)

We can combine dilation and erosion to build two 

important higher order operations:  is said to be 

opened by   if the erosion of  by   is followed 

by a dilation of the result by  .

∘  ⊖⊕ (13)

Similarly,  is said to be closed by   if  is 

first dilated by   and the result is then eroded by 

 . Thus,

∙  ⊕⊖ (14)

After using the morphological opening and 

closing, all noises are eliminated. 

Secondly, the foreground regions of each frame 

are grouped into a connected component and we use 

blob labeling or connected component analysis 

(CCA) to detect connected regions in binary digital 

images
[10]. The procedure of CCA as follows; 

Assume that the segmented image   consists of   
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Fig. 4. Background subtraction process and vehicle detection 
disjoint regions  .  The image   often consists of 

objects and a background.


 

 ≠



 (15)

where   is the set complement,  is considered 

background, and other regions are considered 

objects. The input to a labeling algorithm is usually 

either a binary or multi-level image, where 

background may be represented by zero pixels , and 

objects by non-zero values. A multi-level image is 

often used to represent the labeling result, 

background being represented by zero values, and 

regions represented by their non-zero labels.  After 

using the CCA, we can find the connected 

component as a vehicle ROI and each component is 

bounded by 2D bounding box. Hence, we are able 

to obtain vehicle region as shown in Fig. 4(d).

3.2 LP Detection
LP detection is the second phase of our proposed 

system. We use a “cascade” of boosted classifiers 

for finding a LP region in a vehicle ROI image. To 

obtain the cascade of boosted classifiers, we chose 

the most widely used form of boosting algorithm 

called AdaBoost, short for ‘adaptive boosting’. 

Having such a large feature set available together 

with a training set of   positive and  negative  

examples (assuming a two-class problem; LP and 

Non-LP in our case), it is foreseeable that only a 

small number of these features can be used in 

combination to yield an effective classifier. The 

small set of distinguishing features can be selected 

using the AdaBoost algorithm. A single rectangle 

feature is first selected using a weak learning 

approach to best separate the positive and negative 

examples, followed by additional features identified 

by the iterative boosting process
[9]. For each selected 

feature, the weak learner finds an optimal threshold 

minimizing the number of misclassified examples 

from the training set. Each weak classifier is thus 

based on a single feature  and a threshold .

      

 
(16)

where  is a polarity indicating the direction of the 

inequality sign and   is an image subwindow on 

which the individual rectangle features  are 

calculated. The AdaBoost feature selection and 

classifier learning algorithm is described as follows;

(1) Consider a two-class problem (LP and 

Non-LP), a training set of positive and negative 

examples , and their corresponding class 

identifiers ∈ .  

(2) Initialize , the number of features to be 

identified.

(3) Set   ; for each sample  , initialize 

weights

  


  




   

(17)

(4) For ≠, normalize the weights to produce 

a probability distribution

 










(18)

(5) For each feature , train a classifier  

restricted to using a single feature. Evaluate its 
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Fig. 5. Background subtraction process and vehicle 
detection 

Fig. 6. Examples of some positive and negative sample 
images for training module

Fig. 7. Normalized with boundary padding

Fig. 8. Examples of converted and filtered images (a) 
Positives samples (b) Negative samples

classification error ∈ on the training set 

considering the current weights  associated with 

each sample  ,

∈ 



  (19)

(6) Select the classifier  with the lowest error 

∈.
(7) Update the weights for all samples  

  
 (20)

where ∈∈  and

           

  
(21)

(8) Set   .

(9) If ≤, return to step 4.

(10) The final strong classifier    is defined 

as

    




  ≥ 

 






 

(22)

where     and  denotes the single 

features, which are used in the  weak classifiers 

, respectively.

For LPD, the AdaBoost algorithm have 

significant results
[21]. It consists of two parts, offline 

training and online detection module. At the core of 

the training module is the training and combination 

of strong classifiers. First, a series of weak 

classifiers (critical features) with their weights are 

extracted after being trained by a large number of 

positive and negative examples. Then, strong 

classifiers are selected from the weak classifiers 

according to their weights. Fig. 5(a) explains how 

the algorithm is structured. The strong classifiers are 

then constructed in a detector cascade structure for 

the detection module as shown in Fig. 5(b).

For the training module, positive sample images 

and negative sample images are required. The 

positive sample images are LP images only; the 

negative sample images are background images 

without an LP image. A total of 15,000 images are 

used as the positive samples (6,000 large; 3,000 

medium; and 6,000 small) and 25,000 images are 

used for the negative samples for our training 

experiment. Fig. 6 presents some positive and 

negative sample images. The AdaBoost training 

algorithm requires for the positive sample images to 

be of the same size. For this reason, we must 

normalize all three types of Korean LP images into 

one equal size. 

For image pre-processing, the image converting
[12] 

and filtering (Gaussian filter)[13] methods are applied 

to the training images. The results of image 

converting and filtering are shown in Fig. 8.
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Fig. 9. Haar-like prototypes used in our algorithm (a) 
Edge features (b) Line features (c) Center-surrounding 
features (d) Plate character features

Fig. 10. (a) Summed area of integral image (b) Summed 
area of rotated integral image

LP location procedures classify images based on 

the value of simple features. These features use the 

change in contrast values between adjacent 

rectangular groups of pixels, rather than the intensity 

values of a pixel. The contrast variances between the 

pixel groups are used to determine relative light and 

dark areas. Two or three adjacent groups with a 

relative contrast variance form a Haar-like feature. 

These features are used for the LPD shown in Fig. 

9.

By using a transitional depiction of an image, the 

simple rectangular features of an image are 

calculated. This is called the integral image
[14],[15]. 

The integral image is an array that contains the 

sums of the pixel intensity values located directly to 

the left of a pixel and directly above the pixel at 

location   , inclusive. Therefore, if    is the 

original image and    is the integral image, 

the integral image is calculated as shown in equation 

(3) and demonstrated in Fig. 10.

  

′
≤  

′
≤

′  ′ (23)

The features are rotated 45 degrees, similar to the 

line feature shown in Fig. 9.b(5), as presented by 

Lienhart and Maydt[16]. Such features require another 

transitional depiction called the rotated integral 

image or rotated sum auxiliary image. The rotated 

integral image is computed by finding the sum of 

the pixel intensity values that are located at a 

45-degree angle to the left and above of the  value, 

and below the  value. Therefore, if    is the 

original image and    is the rotated integral 

image, the integral image is calculated as shown in 

equation (24) and illustrated in Fig.10.

  

′
≤  

′
≤

′ 
′  ′ (24)

Integral image is used for fast evaluation of 

features and the AdaBoost is used for feature 

selection which chooses the best region suited for 

detection and construct the rejector-based cascade 

which is a great method to reduce computational 

time. The methods used involve training a strong 

classifier using the AdaBoost algorithm. Over 

numerous sequences, the AdaBoost chooses the best 

performing weak classifier from a group of weak 

classifiers acting on a single feature; once trained, 

the AdaBoost combines the respective votes of the 

classifiers in a weighted manner, thus forming a 

strong classifier. This strong classifier is then 

applied to the sub-regions of the image that is being 

scanned for possible LP locations. The weak 

learning algorithm is designed to select the single 

rectangle feature that best separates the positive and 

negative samples. A background threshold of 80, a 

number of training stages of 14, and a total number 

of features of 61,789 are used in our AdaBoost 

training phase. 

In the AdaBoost detection module, a window will 

be considered as a LP if and only of all layers of 

the detector cascade classifies it as LP. The strong 

classifiers combine with each other to form a 

classifier cascade. The strong classifier from the first 
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Fig. 11. Visualization of Vehicle-to-LP detection

Fig. 12. Successful images for LPD using our proposed system

Fig. 13. Verifying images with CCA and saving LP 
images

layer allows a vast majority of the image regions to 

be recognized and passed to the next layer; at the 

same time, the classifier rejects as many negative 

samples as possible. Thus, the classifier cascade has 

stronger classification abilities, and the final result is 

more likely to be an LP. During the combination 

process, the strong classifier that consists of more 

important features and an easier structure is placed 

at the top of the entire classifier cascade in order for 

the system to exclude as many negative samples as 

possible, thus accelerating the detection of LPs. The 

searching procedure of an AdaBoost cascade 

classifier is shown in Fig. 5(b). As shown in Fig. 

11(c), we apply a cascade AdaBoost as LP detection 

to each ROI after vehicle detection. Finally, a LP is 

detected as shown in Fig. 11(d).

There are many false-positives and false-negatives 

areas detected as LP regions using the cascade of 

boosted classifier shown in Fig. 12. To ignore such 

false-positives and false-negatives, we use CCA
[10]. 

Fig. 13 explains the procedure for verifying detected 

LP images with CCA. The verification procedure of 

LP and non-LP is as follows;

Algorithm:  Procedure Blob (number, area);

1:   If number of Blob >= 6 and <=10;

2:        area = LP;

3:   else

4:        area= Non-LP;

5:   End.

After justifying LP and Non-LP images; only LP 

images are accepted for future processing (character 

recognition) and all Non-LP images are rejected.
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Vehicle Detection

Success Failure Time

99.66% 0.34% 18ms

Table 1. Vehicle detection using adaptive GMM 

LPD

False-positives and 

False-negatives

Detection 

rate
Time

Before 

applying 

CCA

After 

applying 

CCA 99.14% 24ms

12.5% 0%

Table 2. LPD using cascade of boosted classifier.

References
Main Procedures for 

LPD system

Database 

Size

Image/Frame 

resolution
LPD Rate

Processing 

Time
Real Time

Plate 

Format

[17]
Statistical Measures of 

License Plate Features
460 images 648×486 pixels 96.4% 0.1s Yes

Australian 

Plates

[18]

License plate features, 

Vertical edge, morphological 

operation

345 images 720x486 pixels 98.26% 59ms Yes
Greek

Plates

[19]
Statistical analysis of 

Discrete Fourier Transform
1758 images 640×480 pixels 97.27% 150ms Yes

Saudi

Plates

[20] Gaussian Windows 595 images 512×240 pixels 98.5% - -
Korean

Plates

[21] Harr-like and EOH feature 986 images 640×320 pixels 98.41% 45ms Yes
Chinese

Plates

Our 

proposed 

System

Adaptive GMM and Cascade 

of Boosted Classifier

10 min 

video stream
768x576 pixels 99.14% 42ms Yes

Korean

Plates

Table 3. Comparison of LPD rate and Processing Time

Ⅳ. Experimental Results

To test the LPD using an adaptive GMM and a 

cascade of boosted classifiers as proposed in this 

paper, we applied the method to a database of 10 

minute video stream with the resolution of 768x576 

that were recorded at different times and weather 

conditions. The experiment is based on the 

conditions of a system with CPU 3.40-GHz Intel 

Core i7-2600 and 8.00 GB of RAM, and 

implemented using Microsoft Visual Studio 2012 

with OpenCV library. Table 1 lists the vehicle 

detection rate and the computational time with the 

adaptive GMM.

Table 1 lists the vehicle detection rate and time, 

the percentage of failure rate can be reduce by 

adjusting the camera position. If we adjust the 

height of camera from road surface, the occlusion  

problem can be reduced and the failure rate can also 

be improved.

Table 2 lists the LPD rate, the percentage of 

false-positives and false-negatives, and the 

computational time with a cascade of boosted 

classifiers. From Table 2, the percentage of detected 

false-positives and false-negatives are 12.5%.

After applying CCA, no false-positives and 

false-negatives are remained. Therefore, the overall 

detection rate (from table 1 and 2) is 99.14% and 

the computational time is approximately 42ms. Most 

of the existing LPD systems are using static images 

for their experiments (database) but we use real-time 

video stream for our experiment (database). So 

many of the existing systems are not real-time and 

have low processing time, but we have the real-time 

operation for LPD with very fast processing time. 

Comparison of some LPR systems LPD rate and 

processing time with our system for LPD shows in 

Table 3.

Ⅴ. Conclusions

We demonstrated a procedure for LPD 
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algorithms. We used two methods for our LPD 

system, adaptive GMM and cascade AdaBoost. Our 

proposed system Vehicle-to-LP detection is 

separated into two stages, vehicle detection and 

LPD, which make our proposed system extremely 

simple and effective for LPD. In this paper, we 

demonstrated that such simplicity and effectiveness 

allow our method to provide a better performance 

than other existing methods. Most of the existing 

techniques are tremendously complex and are not 

suitable for real-time applications; however, our 

proposed algorithm is not complex, thus rendering it 

suitable for real-time applications. Using our 

proposed method, the experimental results show that 

the LPD rate is 99.14% with a computational time 

of 42ms, which is significantly faster than other 

existing methods. In regard to our proposed method, 

practicing and improving its accuracy and 

practicality are considerations for future work. 

Moreover, character recognition in a LP is our 

principal future work.
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