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ABSTRACT

There is a growing literature spanning several research communi-
ties that studies multiple optimisation problems whose solutions in-
teract, thereby leading researchers to consider suitable approaches
to joint solution. Real-world problems, like supply chain, are sys-
tems characterised by such interactions. A decision made at one
point of the supply chain could have significant consequence that
ripples through linked production and transportation systems. Such
interactions would require complex algorithmic designs. This paper,
therefore, investigates the linkages between a facility location and
permutation flow shop scheduling problems of a distributed manu-
facturing system with identical factory (FLPPFSP). We formulate
a novel mathematical model from a linked optimisation perspec-
tive with objectives of minimising facility cost and makespan. We
present three algorithmic approaches in tackling FLPPFSP; Non-
dominated Sorting Genetic Algorithm for Linked Problem (NS-
GALP), Multi-Criteria Ranking Genetic Algorithm for Linked Prob-
lem (MCRGALP), and Sequential approach. To understand FLPPFSP
linkages, we conduct a pre-assessment by randomly generating
10000 solution pairs on all combined problem instances and com-
pute their respective correlation coefficients. Finally, we conduct
experiments to compare results obtained by the selected algorith-
mic methods on 620 combined problem instances. Empirical results
demonstrate that NSGALP outperforms the other two methods
based on relative hypervolume, hypervolume and epsilon metrics.
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1 INTRODUCTION

Linked optimisation problem explains the concept of joint optimi-
sation task of multiple problems. Real-world problems, like supply
chains, are characterised by interactions, where subproblems fea-
tures are linked [2]. Hence, an optimal solution for each subproblem
might not guarantee optimal overall solutions [12].

In distributed manufacturing, all production tasks are shared
among multiple factories to achieve economic benefits [8]. An ex-
ample is distributed permutation flow shop scheduling (DPFSP),
an extension of classical permutation flow shop scheduling prob-
lem [8], which is applied in fields like petrochemical processing,
automobile manufacturing, and cell manufacturing. DPFSP only
considers scheduling operation and ignores factory costs. This pa-
per introduces a new variation of DPFSP with factory costs. In this
paper, we assess the relationship between FLP and PFSP, and adopt
three algorithmic approaches to tackle them.

2 PROBLEM BACKGROUND

[9] first introduces six mixed integer linear programming (MILP)
models for DPFSP. Likewise, [4] tackles DPFSP with genetic algo-
rithm. Recently, [8] presents a knowledge-based multi-objective
memetic optimisation algorithm to address sustainable DPFSP. Sim-
ilarly, [14] addresses distributed assembly permutation flow shop
scheduling problem with genetic algorithm. Adapting FLP to DPFSP
creates a linked optimisation problem with two classical problems
(FLP and PFSP). This forms a novel model of facility location prob-
lem and permutation flow shop scheduling problem (FLPPFSP).

3 PROBLEM FORMULATION
3.1 Linked Problem Perspective

A linked optimisation problem P of n connected problems is;

P=A{pip2,- ,pn.(D)}: p€P and 1=1---,n (1)

— L ] L
b= {x{ximxr}\xi’f {xi,m,xf}\x;’“{x;,.--,xf}\xi} @

InEq. 2, x} denotes candidate solution in x*. {x,} cee L xl } \x. are fea-

sible solutions for other problems in P which affect p,. x* |
{acd, e P P\t

is a search space of problem p,. f{’x1 ' : x* — R denotes

x! P\
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3.2 Formulation of FLPPFSP

FLP considers subset of facilities to service customers demands. A
matrix of size [ XK defines cost di; to fulfil each job. The assignment
of job j € J to a facility k is depicted by y;; where yy; € {0,1}. A
fixed cost . is incurred when a facility is selected to fulfil a job.

FLP seeks x; ,= {x1,- - ,xx} € {0, 1}X that minimises;
K K 1
minfl(xFLP) :Zakxk +22dijkykj (4)
k=1 k=1j=1
Subject to;
K I
DD U =1 5)
k=1j=1
X Yps e {0,1} Vj,k 6)

Constraint 5 ensures that each job is fulfilled by one facility. Con-
straint 6 defines the decision variables. PFSP is defined by I x m
matrix of machine processing times and seeks to find permutation
Xppsp = (X, -+, X;) that minimises makespan Cpax-
minfz(xPFSP) = Crmax (7)
FLPPFSP simultaneously minimises the facility cost and makespan.
Setup times, preemption or interruption are not considered. FLPPFSP
linked model is as follows;
minfl(xFLP) = Z5:1 X + ZIk<:1 Z5’:1 dijk Yij

®

2
mmeFLP (xppgp) = max {ka (xPFSP)}k1

4 PROPOSED APPROACH

4.1 Genetic Components

We use binary based encoding for FLP and permutation based encod-
ing for PFSP. Each algorithm in Algorithm 1 generates its population
separately and applies genetic processes on them. In Algorithms 2
and 3, each random solution of FLP instantiates PFSP to generate
a corresponding random solution. Half uniform crossover HUX
operator is used for FLP solutions and partially mapped crossover
PMX for PFSP solutions. BitFlip mutation is used for updating FLP
solutions and permutation swap mutation for PFSP solutions. Both
algorithms in Algorithm 1 use tournament selection. Offspring gen-
eration is the same in Algorithms 2 and 3. First, generate n offspring
of FLP solutions using HUX and BitFlip operators. Next, instantiate
PFSP with each offspring and generate N random solutions for
PFSP. Then, perform crossover and mutation operations on N solu-
tions of PFSP and generate n offspring. Next, evaluate n offspring
and select best offspring from n offspring of PFSP and pair with
each offspring of FLP.

4.2 Sequential Approach

Sequential approach solves FLPPFSP in sequence. This approach
solves linked problems in hierarchical structure usually between
two decision makers [6] [7]. In Algorithm 1, algorithm A, , solves
problem p,, ,, selects the best solution x7, , then, instantiates p,,.qp
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once. Next, algorithm A, solves instantiated p,,;, and then
select best solution xj, ., and returns best solution pair.

Algorithm 1: SEQUENTIAL

* .
Xprp < Apip|Prips
* * .
Xprsp — APFSPl(pPFSP’xFLP) >
. % *
Result: (x}, . %},

4.3 Nondominated Sorting Genetic Algorithm
for Linked Problem (NSGALP)
Multi-objective approach adapts NSGA-II framework [3] and consid-

ers solutions of FLP and PFSP as a joint solution and their objective
functions as bi-objective functions. See Algorithm 2.

Algorithm 2: NSGALP

POP?FLP‘ f—— Randomly initialise population ;

Fitness evaluation on pop?FLPY prsp)

Assign fast non-dominated sort to pop?FLP’PF sp)
Apply crowding-distance assignment to pop?FL pPESP)’
t—0;

while Stopping criterion not met do

R(tFLP,PFSP) « Select from pop (tFLP,PFSP} ;

t
(FLP,PFSP)

Fitness evaluation on Q

; t .
<« Generate offspring from R<FLP’PFSP) ;

t .
(FLP,PFSP) °
on’  popt t .
p p(FLP,PFSP) (FLP,PFSP) (FLP,PFSP)’
. _ . t .
Assign fast non-dominated sort to pop (FLP.PFSP)

Apply crowding-distance assignment to popfFLPPFSP) ;

t+1
pop(FLP,PFSP)

te—t+1;

« Select survivor from popfFLP PSP

end
Result: 7

1
(FLP,PFSP)

4.4 Multi-Criteria Ranking Genetic Algorithm
for Linked Problem (MCRGALP)

MCRGALP uses Technique for Order of Preference by Similarity
to Ideal Solution (TOPSIS) [13] as a comparator for tournament
selection in 5 steps [11]. Step 1 normalises decision matrix in Eq. 9.
L
r, = 7& )
e (fy

Step 2 determines normalized weighted value v, with given weight
w, = (w1, -+, wp) in Eq. 10.

v, =T, kW, (10)

Step 3 identifies the ideal best solutions v} and ideal worst solutions
o, inEq. 11 and Eq. 12.

of = {(max o, |t €I), (mino, [t el'),i=1,---, |popt|} = {vl+ cee v;}
(11)
v, = {(minvil [t € I), (max o, |t € I),i=1,---, |p0pt|} = {01’, e ,v;}
(12)
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Algorithm 3: MCRGALP

pOP?FLPVPFSP) «— Randomly initialise population ;

; ; 0 .
Fitness evaluation on POP (pypprsp) >
; ; e t .
Assign score to each solution pair in pop (FLP.PESP) >
t—0;
while Stopping criterion not met do

* : t .
pop(FLRPFSP) < Get best n pairs Ofpop(FLP,PFSP)’

. " .
Q(FLP’PFSP) « Generate offspring from pop (FLP.PFSP)

Fitness evaluation on Q 4, p prsp) 3

Assign score to each solution pair in Q r;p prsp) 3

t t t .
pop (FLP,PFSP) < pop (FLP,PFSP) (FLP,PFSP)’

pop(t;leP’PFSP) «— Get top N solution pairs with best

¢ .
score from POP 1y p prsp)

t—1t+1;
end
. * *
Result: (x}, . X} ..,)

Step 4 calculates Euclidean distance from o] and v; .

n
ST=A 2 (0, — D)7 i=12--|pop’| (13)
\ 1=1
n
ST =\ 2 0 i= 12 pop] (19
1=1
Step 5 calculates performance score and ranks the solution pairs.
ST
izs;r_'fs;where 0<P; <1 (15)

5 EXPERIMENTS

We conduct experiments on the same computer environment with
Intel Core 19, 2.4GHz, 32GB RAM, and Windows 10 Enterprise OS.

5.1 Benchmark Problems

We use Beasley [1] and Holmberg [5] FLP benchmarks and Taillard’s
PFSP benchmark [10]. We combined each FLP instance and PFSP
instance and obtained 620 combined instances in total.

5.2 Exploratory Analysis of Problem Linkages

We evaluate 10000 random solutions for FLP. We then, instantiate
PFSP for each FLP solution. Next, we evaluate 1000 random solu-
tions for the instantiated PFSP and compute the mean value. Next,
for each FLPPFSP instance, we determine the relationship between
the sub-problems using Spearman’s correlation coefficient. Figure
1 shows inconsistency across all problem instances.

5.3 Performance Metric

We use hypervolume (HV) [15], relative hypervolume RHV and
multiplicative epsilon [16] metrics. We use a single reference point
to compute HV and Pareto-optimal points for RHV and Epsilon.

5.4 Parameter Settings

Table 1 shows parameters used in our approaches. We set each

weight w, for each decision criterion for the TOPSIS method to 0.5.
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Figure 1: Correlation Analysis of FLP and PFSP

Table 1: Parameter Settings

Parameters NSGALP MCRGALP SEQUENTIAL
No. of Algorithms 1 1 2

No. of Independent Run 100 100 100 100
Population Size 100 100 100 100
Max Evaluations 10000 10000 10000 10000
Mating Pool Size 100 100 - -
Offspring Population Size 100 100 -
HUXCrossover 0.9 0.9 0.9 -
PMXCrossover 0.1 0.1 - 0.1
BitFlipMutation 0.8 0.8 0.8 -
PermutationSwapMutation 0.5 0.5 - 0.5

5.5 Experimental Results and Analysis

Table 2 shows the mean scores with best values highlighted in
bold font. NSGALP significantly outperforms other approaches
in RHV and epsilon but scores are relatively close in HV. Metrics
are more biased towards NSGALP and are largely influenced by
non-dominated points. Figure 2 shows three plots of mean com-
puting time (milliseconds) against the performance metrics. The
sequential approach achieved less computing time than the two
other approaches. Furthermore, we consider performance in terms

Approaches - NSGALP - MCRGALP - SEQUENTIAL Approaches - NSGALP < MCRGALP - SEQUENTIAL

RelativeHypervolume
HVMetric

= 26705 30705 06100 18305 26105
Mean_Computing_Time Mean_Computing_Time

(@) (b)

Approaches - NSGALP - MCRGALP - SEQUENTIAL

EpsilonMetric

AR e e

06100 36105

16305 26105
Mean_Computing_Time

(©
Figure 2: Mean Computing Time vs Performance Metrics

of correlation scores in Section 5.2. Figure 3a shows algorithmic per-
formance based on instance with lowest correlation score (—0.26).
Sequential perform poorly with high level of trade-off of makespan
for factory cost. In Figure 3b, sequential approach produces the
best Pareto approximation set on problem instance with median
correlation score (0.4928). Figure 3¢ shows performance on problem
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Table 2: Mean values of relative hypervolume, hypervolume and epsilon metrics of MCRGALP, NSGALP and SEQUENTIAL

Problem F m Relative Hypervolume Hypervolume Epsilon

size MCRGALP NSGALP SEQUENTIAL MCRGALP NSGALP SEQUENTIAL MCRGALP NSGALP SEQUENTIAL
50 10 5 0.8454 0.9559 0.7381 0.2380 0.2693 0.2080 1.1344 1.0737 1.5233
50 10 10 0.8396 0.9506 0.7605 0.2190 0.2481 0.1985 1.1288 1.0660 1.3883
50 10 20 0.8457 0.9589 0.7969 0.2016 0.2288 0.1902 1.1058 1.0575 1.2646
50 16 5 0.9213 0.9622 0.8237 0.2982 0.3128 0.2620 1.0773 1.0692 1.8271
50 16 10 0.9159 0.9580 0.8282 0.2786 0.2928 0.2474 1.0726 1.0639 1.5983
50 16 20 0.9144 0.9574 0.8364 0.2612 0.2749 0.2348 1.0664 1.0485 1.4363
50 20 5 0.8317 0.9371 0.8155 0.3263 0.3678 0.3192 1.1984 1.0922 1.4377
50 20 10 0.8404 0.9361 0.8300 0.3005 0.3349 0.2961 1.1629 1.0831 1.3005
50 20 20 0.8497 0.9419 0.8489 0.2728 0.3026 0.2718 1.1310 1.0689 1.1956
50 25 5 0.8529 0.9586 0.7266 0.3551 0.4003 0.3014 1.1807 1.0701 2.5982
50 25 10 0.8870 0.9563 0.7995 0.3185 0.3453 0.2848 1.1196 1.0608 1.7053
50 25 20 0.8779 0.9575 0.7908 0.3021 0.3315 0.2698 1.1145 1.0592 1.5688
50 50 5 0.8613 0.9553 0.8006 0.3452 0.3839 0.3212 1.1506 1.0704 1.7663
50 50 10 0.8691 0.9569 0.8208 0.3084 0.3406 0.2911 1.1225 1.0578 1.4398
50 50 20 0.8703 0.9571 0.8299 0.2956 0.3259 0.2816 1.1191 1.0546 1.3180
100 10 5 0.8470 0.9186 0.7896 0.2655 0.2879 0.2472 1.1544 1.1116 1.3033
100 10 10 0.8461 0.9164 0.8115 0.2547 0.2732 0.2414 1.1425 1.1077 1.2456
100 10 20 0.8528 0.9225 0.8294 0.2332 0.2522 0.2265 1.1181 1.0876 1.1873
100 20 5 0.7869 0.9169 0.6988 0.3255 0.3789 0.2893 1.2822 1.1293 1.6547
100 20 10 0.7815 0.9145 0.7218 0.3067 0.3588 0.2833 1.2724 1.1210 1.5217
100 20 20 0.7875 0.9157 0.7390 0.2834 0.3294 0.2659 1.2426 1.1200 1.3849
200 30 10 0.8539 0.8857 0.8405 0.2229 0.2312 0.2194 1.1171 1.1111 1.2264
200 30 20 0.8557 0.8864 0.8513 0.2062 0.2136 0.2052 1.0989 1.0822 1.1695

instance with the highest correlation score (0.86). The sequential
approach is biased towards optimising the first problem and then
produces sub-optimised solutions for the second problem. Con-
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Figure 3: Example-Pareto Fronts of Algorithmic Approaches

sidering the problem from the perspective of two companies in a
supply chain. Results can offer guidance on the benefits/costs they
are likely to experience in solving the overall problem. In Figures 3a
and 3c, for sequential and NSGALP, both companies must consider
the impact of optimising one problem over another, and decide if
the costs/benefits are acceptable whereas, the MCRGALP tends to
maintain a balanced compromise on both problems.

6 CONCLUSION AND FUTURE WORK

Paper presents linked optimisation problem. We use NSGALP, MCR-
GALP, and SEQUENTIAL approaches and adapt them to linked
optimisation framework. We then, conduct experiments to com-
pare our methods on 620 problem instances. NSGALP outperforms

MCRGALP and SEQUENTIAL in terms of metric scores. Other per-
spectives provide different rationale on algorithmic selection. For
future work, appropriate performance metric should be explored
to measure algorithmic performance without biasness towards a
method. Also, the good performance of the NSGALP and MCR-
GALP results in sacrificing much computational time in searching
for promising solution pair. It would be interesting to further ex-
plore some properties of the algorithms to improve efficiency.
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