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Abstract: To ensure the secure and stable operation of lithium-ion batteries, the state of health (SOH) and the remaining 

useful life (RUL) are the critical state parameters of lithium-ion batteries, which need to be estimated precisely. A joint 

SOH and RUL estimation approach based on an improved Particle Swarm Optimization Extreme Learning Machine 

(PSO-ELM) is proposed in this paper. The approach adopts Pearson coefficients to screen multivariate information of the 

discharge process as health indicators and uses them as inputs to enable accurate estimation of SOH and RUL prediction of 

lithium-ion batteries on the basis of the PSO-ELM model. The validity of the model is demonstrated by the NASA lithium-

ion battery data set: the maximum root mean square error (RMSE) of the SOH estimation of the tested battery is 0.0033, 

the maximum RMSE of its RUL prediction is 0.0082, and the maximum absolute error of RUL prediction is one cycle 

number. In comparison with the prediction results of the traditional extreme learning machine, the optimized model 

proposed in this paper estimates the SOH of lithium-ion batteries and RUL with relatively high accuracy. 

1. Introduction 

The role of security of energy and protection of the environment is decisive in China's expansion program [1]. 

In all countries, new sources of energy to switch from classical fossil fuels have emerged as the focus of 

attention [2]. With the benefits of high energy density, high output capacity, and high performance-to-price ratio, 
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lithium-ion batteries have been broadly applied and promoted in the area of renewable energy [3]. Application 

of which allowed the construction of utility electric vehicles as well as satisfying a number of stringent 

milestones for electric vehicle economy in regards to energy density, lifetime, security, performance and 

expense [4]. However, the potential for battery pack fires [5] and combustion cannot be completely eliminated 

[6]. Hence, a coherent and well-supported lithium-ion battery management system [7] assumes a central 

function for the security and proper use of lithium-ion batteries.  

State of health (SOH) is a quantitative indicator used to assess the extent of battery degradation [8]. As a 

general rule, SOH is defined as the ratio of the actual remaining capacity of the battery to the rated capacity of 

the battery [9]. An exact estimate of the state of charge (SOC) of a lithium-ion battery hinges on an accurate 

estimate of the SOH of the lithium-ion batteries [10]. Furthermore, aging batteries are more prone to thermal 

runaway [11]. Therefore, it is vital to evaluate reliable methods and strategies to accurately estimate the current 

remaining capacity and SOH of a battery. What follows are the approaches for estimating the SOH of lithium-

ion batteries at this moment [12]. 

The characteristic approach is based on the evolution of the characteristic parameters shown during the 

degradation of the battery [13], a mapping relationship between the characteristic quantity and the SOH of the 

battery is constructed, as a result, the SOH is then estimated. The internal resistance approach utilizes the 

internal resistance of the battery as the chief indicator of battery life [14]. The internal resistance of the battery 

grows gradually as the battery ages and its capacity reduces [15]. The hardship of SOH estimation by the 

internal resistance approach is to extract the mapping relationship between SOH and internal resistance, in 

particular by considering SOC, temperature and multiplicity [16]. Furthermore, the extracted characteristic 

relationship is only available for a certain brand and model of battery and is by no means very widespread [17]. 

Electrochemical impedance spectrum (EIS) analysis is to evaluate the impedance spectrum at different phases 

of battery aging first, then connect the EIS curve with the equivalent circuit model parameters of the battery, and 

Page 2 of 23

https://mc04.manuscriptcentral.com/jes-ecs

Journal of The Electrochemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

then locate the SOH on the basis of the relationship between the model parameters and SOH [18]. However, the 

EIS measurement approach is complicated [19], which requires special instruments and can only be applied off-

line; in addition, similar to the internal resistance approach, the EIS approach shows poor generality which is 

only applicable to the battery production, design and technological improvement process [20], which is not 

applicable to the operational power system. It consists of variance analysis approach and incremental capacity 

(IC) [21]or incremental voltage (IV) approach [22]. 

The modeling approaches [23] consist mainly of the aging mechanism model: analyzing the physical and 

electrochemical processes inside the battery at the microscopic level, which focuses on the degradation process 

of the battery. The approach classified as destructive is to disassemble the lithium-ion batteries [24] with diverse 

aging degrees, obtain samples of the internal materials of the batteries, analyze the correlation between the aging 

parameters and the remaining capacity of the batteries, and extract the aging mechanism from the massive data 

obtained, and establish an objective and genuine aging model of lithium-ion batteries by integrating the data. 

In addition, the non-destructive approach firstly discovers proper characterization parameters of aging degree 

and builds the correspondence between these parameters and the aging degree of the battery, thereby deriving 

the deterioration mechanism model [25]. This approach is similar to the characterization approach, but the 

accuracy of its SOH estimation is lower than that of the destructive approach, however, the workload is minor, 

and it is one of the mainstream development directions for the moment, and the technical problem lies in the 

positioning and acquisition of the characterization parameters [26]. 

Adopting the probabilistic modeling approach is to combine the battery equivalent circuit model with 

probabilistic analysis methods to describe the aging and capacity fading process of the battery, as well as to 

validate the model experimentally [27]. Alternatively, a probabilistic monotonic echo state network algorithm is 

used to follow the nonlinear battery aging process on the basis of the time interval associated with the sequence 

of voltage declines during battery capacity and discharge [28]. Benefits of this approach are that only a portion 
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of the battery charge/discharge test is required for SOH estimation [29]; as well as being comparatively simple 

and accessible to implement [30], although the extraction of feature maps requires consideration of various 

elements and extensive workload [31]. 

Data-driven based approaches take battery test data as the initial sample, withdraw the evolution law of battery 

performance during battery degradation by some mechanisms, and then utilize this regularity for SOH 

estimation [32]. These approaches cover: autoregressive (AR) models, neural networks, support vector 

machines (SVM), as well as Gaussian process regression [33-36]. The virtues of AR are low computational 

effort and low complexity, but the demerits are that the accuracy of the outcomes decreases over time [37]. The 

drawbacks of NN are that vast amounts of comprehensive sample data are requested [38]. The battery side 

reactions will contribute to the performance degradation of the battery [39], which is macroscopically 

manifested as capacity decline and internal resistance enhancement, thus degrading the lifetime of the battery 

[40]. Precise prediction of the remaining useful life of lithium-ion batteries under various usage situations can 

not only guarantee the secure and reliable operation of the system [41], but also maximize the utilization of the 

remaining value of the batteries [42]. In accordance with the newly researched progress of battery RUL 

prediction, a unified category of RUL approaches is defined [43]. (1) Model-based prediction approaches, which 

are characterized by the fact that the RUL forecast model building is only for a certain specific system [44]. (2) 

Data-driven forecasting approaches: Based on the theory of statistics and machine learning, the forecasting 

models are constructed directly using historical data. Data-driven models are more vulnerable to be applied to a 

wide range of situations [45]. (3) Fusion-based approaches: Combine models with data-driven methods and 

exploit their respective virtues [46]. 

Extreme Learning Machine is a novel algorithm to be used in one-layer hidden feedforward neural networks 

[47]. Drawbacks in comparison to conventional feedforward neural networks [48]. The ELM algorithm 

produces the connected weights of the input and hidden layers in a random manner, with problems involving 
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slow training velocity, the tendency to fall back into local minima, and learning rate selection sensitivity [49] 

and the thresholds of the hidden layer neurons, without adjusting them while in training, simply adjust the 

quantity of hidden layer neurons to derive the unique optimal result [50]. The ELM approach offers rapid 

learning velocity and excellent generalization properties when compared to traditional training methods [51]. 

To more precisely represent the dynamic characteristics of the battery and an attempt to evaluate the battery 

state, an improved PSO-ELM model is proposed to estimate the SOH and RUL predictions of lithium-ion 

batteries, and Pearson coefficients are used to filter the health indicators as inputs to the model and the capacity 

as the output of the model. To affirm the feasibility of the algorithm, a dataset of NASA lithium-ion batteries is 

used for validation. 

2. Theoretical analysis  

2.1. Extreme Learning Machine 

Extreme learning machines are applied to the output prediction of complex nonlinear systems. Its advantages 

in terms of fewer training factors, quicker learning and better generalization capabilities. A three-layer structure 

made up of an import layer, a hidden layer, and an export layer that operates on a stochastic basis is used for the 

Extreme Learning Machine. Thresholds for the connection weights drawn from the import layer to the hidden 

layer and for those neurons in the hidden layer are generated at random over the course of the operation. The 

structure is shown in Fig. 1, instead, the procedure is as follows. 

Page 5 of 23

https://mc04.manuscriptcentral.com/jes-ecs

Journal of The Electrochemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

x1

x2

xn

y1

y2

ym

.

.

.

.

.

.

ω11 β11

ωnk βkm

.

.

.

g(x)b1

g(x)b2

g(x)b3

Input Layer Implicit Layer Output Layer

 

Fig. 1 Structure of ELM network 

Assuming that there are N different sample training sets: 

 𝐸 = {(𝑥𝑝, 𝑦𝑝)|𝑝 = 1,2, ⋯ , 𝑁, 𝑥𝑝 ∈ 𝑅𝑛, 𝑦𝑝 ∈ 𝑅𝑚} (1) 

In Eq.(1): 𝑥𝑝 ∈ 𝑅𝑛, is an input variable of n-dimensional size; 𝑦𝑝 ∈ 𝑅𝑚, as the proper export destination vector. 

If the ELM hidden layer has 𝑘 amounts of neurons, Then when the input specimen is 𝑥𝑝, the corresponding 

practical output of the ELM can be expressed as: 

 

𝑌 = ∑ 𝛽𝑖𝑔(𝜔𝑖 ⋅ 𝑥𝑖 + 𝑏𝑖)

𝑘

𝑖=1

𝑖 = 1,2, ⋯ , 𝑁 (2) 

In Eq.(2):  𝜔𝑖 = (𝜔1𝑖, 𝜔2𝑖, ⋯ , 𝜔𝑛𝑖) refers to the linkage weights between the first hidden layer neuron and 

respective cells in the import layer; 𝑏𝑖 refers to the ith hidden layer neuron's value of the threshold; 𝑔(𝜔𝑖 ⋅ 𝑥𝑖 + 𝑏𝑖) 

is that the function of activation; 𝛽𝑖 = (𝛽𝑖1, 𝛽𝑖2, ⋯ , 𝛽𝑖𝑚)𝛵 refers to the conjunction weight of the first hidden layer 

neuron of a unit corresponding to the output layer. 

The objective of training the ELM network is to resolve the conjunction weights of the hidden layer's mental 

elements relative to the units in the output layer. While the function of activation 𝑔(𝑥) is endlessly separable, the 

output of the ELM can be represented as: 

 𝐻𝛽 = 𝑌′ (3) 

In Eq.(3), 𝑌′ = (𝑦1, 𝑦2, ⋯ , 𝑦𝑁) is a linear system of equations consisting of N equations; 𝛽 = (𝛽1, 𝛽2, ⋯ , 𝛽𝐾)𝛵, 
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is the matrix of output weights; H  is the hidden layer's output matrix, represented by Eq.(4). 

 

𝐻 = (
𝑔(𝜔𝑖 ⋅ 𝑥1 + 𝑏1) ⋯ 𝑔(𝜔𝑘 ⋅ 𝑥𝑘 + 𝑏𝑘)

⋮ ⋱ ⋮
𝑔(𝜔𝑖 ⋅ 𝑥𝑁 + 𝑏1) ⋯ 𝑔(𝜔𝑘 ⋅ 𝑥𝑁 + 𝑏𝑘)

) (4) 

In contrast, in the context of the ELM algorithm, which is used in the hidden layer, the output matrix 𝐻 is 

uniquely determined for the hidden layer as long as the input weights 𝜔𝑖  and the bias 𝑏𝑖  are stochastically 

determined. A one-hidden layer neural network which allows the solution to be trained as a linear system 𝐻𝛽 = 𝑌′, 

where the output weight 𝛽 that can be determined: 

 𝛽 = 𝐻+𝑌′ (5) 

In Eq.(5), the generalized inverse matrix 𝐻 of 𝐻+. 

As the conjunction weights for the ELM input and hidden layers and the hidden layer thresholds can be set at 

random, there is no need to adjust them after they have been set. The connection weights 𝛽 between the hidden 

and output layers do not require iterative adjustment, but are determined by addressing the system of equations 

once. Simply setting the quantity of neurons in the hidden layers allow you to use the ELM algorithm in order to 

obtain better output. 

2.2. Particle swarm optimization algorithm 

Particle Swarm Optimization (PSO) is a computational technique for evolution. It is rooted in the study of 

birds' behaviour in eating, and the fundamental concept of PSO consists in finding the best solution through 

cooperation and information sharing within a group of individuals. The bird is abstracted as a particle (point) 

with no mass or size, and extended up to space in N dimensions. 

The particle i's location in space of N dimensions is represented by the vector 𝑥𝑖 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑁)and the 

velocity of flight is represented by the vector 𝑣𝑖 = (𝑣1, 𝑣2, ⋯ , 𝑣𝑁). For every particle there is a feasibility value 

which is derived from the objective function and aware of the best position it so far found (𝑝𝑏𝑒𝑠𝑡) and the 

position it is now at 𝑥𝑖. In addition this can be considered as the experience of the flight that the particle itself 
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has. Furthermore, every particle is also aware of the best position (𝑔𝑏𝑒𝑠𝑡) that all particles in the whole group 

have found up to now (𝑔𝑏𝑒𝑠𝑡 is the best value in 𝑝𝑏𝑒𝑠𝑡), that can be considered as the companion particle's 

experience. It is by means of its own experience and the companion's best experience that the particle 

determines its next movement. 

The PSO is initialized as a set of stochastic particles. The best available solution is then discovered by iteration. 

In every iteration, the particles renew themselves through keeping track of two "extremes" (𝑝𝑏𝑒𝑠𝑡, 𝑔𝑏𝑒𝑠𝑡). 

After these two optimal values have been found, the particle renews its speed and location with the use of Eq.(6) 

and Eq.(7). 

 𝑣𝑖 = 𝑣𝑖 + 𝑐1 × 𝑟𝑎𝑛𝑑( ) × (𝑝𝑑𝑒𝑠𝑡 − 𝑥𝑖) + 𝑐2 × 𝑟𝑎𝑛𝑑( )

× (𝑔𝑑𝑒𝑠𝑡 − 𝑥𝑖) 

(6) 

 𝑥𝑖 = 𝑥𝑖 + 𝑣𝑖 (7) 

Eq.(6) and Eq.(7) show that 𝑖 = 1,2, … , 𝑛, 𝑛 which as a total of the particles in this ensemble; 𝑣𝑖 which is the 

particles' velocity; 𝑟𝑎𝑛𝑑( ) which is a stochastic number in the range of (0, 1); 𝑥𝑖 which is the particles' current 

position; 𝑐1 and 𝑐2 which are learning factors; and 𝑣𝑖 whose maximum value is 𝑣𝑚𝑎𝑥, if 𝑣𝑖 > 𝑣𝑚𝑎𝑥,then 𝑣𝑖 =

𝑣𝑚𝑎𝑥. 

 𝑣𝑖 = 𝜔 × 𝑣𝑖 + 𝑐1 × 𝑟𝑎𝑛𝑑( ) × (𝑝𝑑𝑒𝑠𝑡𝑖 − 𝑥𝑖) + 𝑐2 × 𝑟𝑎𝑛𝑑( )

× (𝑔𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖) 

(8) 

In Eq.(8), 𝜔 is the coefficient of inertia with a non-negative value. In case the value is large, the ability to 

search globally is high while the ability to search locally is weak; in case the value is small, the ability to search 

globally is weak while the ability to search locally is high. A dynamic ω allows for better search outcomes than 

a fixed value. The strategy most frequently used is linearly decreasing weights (LDW). 

 
𝜔(𝑡) =

(𝜔𝑖𝑛𝑖 − 𝜔𝑒𝑛𝑑)(𝐺𝑘 − 𝑔)

𝐺𝑘

+ 𝜔𝑒𝑛𝑑 

(9) 
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In Eq.(9), 𝐺𝑘 shows the maximum number of generations, 𝜔𝑖𝑛𝑖 shows the primal weights of inertia and 𝜔𝑒𝑛𝑑 

that is the inertia weight at the time of iteration to the maximum number of evolved generations. It has improved 

dramatically with the introduction of 𝜔, and the ability to tune global and local searches for uninterrupted search 

problems has led to successful applications of the PSO algorithm to a variety of practical problems. Eq.(7) as 

well as Eq.(8) are considered standard PSO algorithms. 

Start

Seek the Best 

Individual 

Adaptation Value

No

Calculate the 

Adaptation Value

Seek the Population 

Best Adaptation 

Value

Update Particle 

Positions and 

Velocities

Initialization

Determine Whether 

the Algorithm Ends
YesEnd

 

Fig. 2 Flow chart of the standard PSO algorithm 

The standard PSO algorithm flow is shown in Fig. 2. 

1) To initialize a set of particles (population size N), consisting of stochastic positions and velocities. 

2) To evaluate every particle's fitness. 

3) As for every particle, a comparison is made between its adaptability value and the optimal location 𝑝𝑏𝑒𝑠𝑡 

through which it passes, and in case it is the superior one, then it is taken as the current optimal location 

𝑝𝑏𝑒𝑠𝑡. 

4) As for every particle, a comparison is made between its adaptability value and the optimal position 𝑔𝑏𝑒𝑠𝑡 

through which it passes, and in case it is the superior one, then it is taken as the current optimal location 

𝑔𝑏𝑒𝑠𝑡. 

5) The speed and location of the particles are adjusted based on Eq.(7) and Eq.(8). 

6) If the end condition is not accomplished then go to step 2). 
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2.3. PSO-ELM algorithm 

The random nature of the ELM initialization parameter generation method leads to the model inevitably 

generating problems such as redundancy of implied layer neurons and poor identification of unknown input 

parameters, which reduces the prediction accuracy. Hence, the PSO algorithm in this section is used to find the 

optimal input weights and hidden layer neurons for ELM and to construct a PSO-ELM model to boost the 

estimation precision of SOH and RUL. Fig. 3 illustrates the flow chart of the PSO-ELM algorithm which is on 

the basis ofhed assessing the lithium-ion battery. 

Start

Update Particle 

Position and Velocity

Search for the local 

and global optimal 

solutions

Initialization PSO 

Parameters

Calculate the fitness 

value of each particle

Get the Output Layer 

Weight β 

Initialize ELM 

Implicit Layer 

Weights ω and Bias b

Get Test Accuracy

Data Pre-processing

End

Input Data

No
Whether the Closing 

Conditions are Satisfied

Obtain the optimal 

weights and 

thresholds 

Calculate the hidden 

layer neural output 

matrix H

Yes

 

Fig. 3 Flowchart of soc estimation based on PSO-ELM 

Following are the detailed steps: 

1) The input powers of the ELM and the neuronal thresholds in the hidden layer are encoded as particles, 

generate the initial populations and initialize them. 
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2) With the aim of calculating the fitness values for all particles, the mean square error of the ELM network 

was chosen as the target factor to calculate the PSO fitness values, and its expression is: 

 

𝑆𝑀𝑆𝐸 =
1

𝑁
∑(𝑇(𝑖) − 𝑌(𝑖))

2
𝑁

𝑖=1

 (10) 

In Eq.(10): 𝑁 is the sample counts, 𝑇 is the forecast output for each particle, and 𝑌 is the real output of the 

sample. 

3) Search for individual extremes and population extremes of the initial particles based on the fitness values 

of the initial particles. 

4) Optimization is iterative, updating the position and velocity of the particles to get new particles. 

5) Determine if the termination condition (𝑆𝑀𝑆𝐸 ≤ 0.0001 or the maximum number of iterations is attained) 

is satisfied. In case it is satisfied, exit to restore the optimal individual, or else skip to step 2) and go on. 

6) The end of iterative optimization, decoding the output with the optimal solution. 

2.4. Lithium-ion battery Health indicators and Correlation analysis 

2.4.1. Construction of indirect health index of lithium-ion battery 

It is obvious from the performance of lithium-ion batteries that the physical discharge capacity reflects the 

battery life state immediately, that is, the direct health factor; while the indirect health factor points to other 

characteristic parameters that have a relatively strong dependence on the actual discharge capacity of lithium-

ion battery and can reflect the degradation state of the battery, which are typically available in charge/discharge 

voltage, current, temperature and other parameters that can be easily measured and monitored online. In the 

existing investigations, there exist indirect health factors for lithium-ion batteries in terms of equal voltage drop 

discharge time, equal time average voltage drop, etc. The approach to forecast the RUL of lithium-ion batteries 

by utilizing the correlation model between the historical capacity data and the cycle counts of lithium-ion 

batteries refers to direct prediction; while the indirect prediction means that the RUL of lithium-ion batteries is 
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forecasted by setting up the correlation model between the indirect health factor and the actual degradation 

capacity. Compared with the direct prediction, the indirect prediction method is diverse, generalized and more 

flexible. 

2.4.2. Health indicators extraction 

Fig. 4 reveals the process and framework optimization of the novel health indicators extraction in the 

following steps: 

1) Feature extraction (HI extraction): The raw lithium-ion battery discharge data are analyzed to extract the 

discharge voltage, temperature and other data and screen out the available data as a backup. 

2) Correlation analysis: The derived HI and battery capacity are correlated to validate the magnitude of 

correlation. 

3) Lithium-ion battery capacity estimation: The capacity is estimated with the customized new HI and 

compared with the practical capacity for analysis. 

Lithium-ion 

Battery 

Discharge 

Data

Health Indicators 

Extraction
Correlation Analysis

Lithium-ion Battery 

Capacity Estimation

 

Fig. 4 HI extraction framework 

2.4.3. Correlation analysis 

The Pearson coefficient shows the quotient of the covariance of the two variables with their standard deviation, 

which is represented by p. 

 
𝑝𝑋𝑌 =

𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
=

𝐸(𝑋𝑌) − 𝐸(𝑋)𝐸(𝑌)

√𝐸(𝑋2) − 𝐸2(𝑋)√𝐸(𝑌2) − 𝐸2(𝑌)

 
(11) 

In Eq.(11): 𝑐𝑜𝑣(𝑋, 𝑌) means the covariance of variables X and Y, 𝜎𝑋 , 𝜎𝑌  denote the standard deviation of 

variables X, Y and E(X) is the mathematical expectation of X, E(Y) is the mathematical expectation of Y. The 

absolute value of the global Pearson coefficient is less than or equal to 1. If the absolute value of the correlation 
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coefficient equals to 1, which means that the two variables completely lie on the one line. 

3. Experimental analysis 

3.1. Lithium-ion Battery experimental data presentation 

The battery degradation characteristics and approach to validate in this paper adopts the experimental data 

published by NASA PCoe for lithium-ion battery, whose model is 18650 lithium-ion battery with a nameplate 

capacity of 2Ah. The data set consists of several sets of experiments, in which each set of experiments performs 

successive charging and discharging of lithium-ion battery in various conditions, which includes three processes: 

charging, discharging, and alternating current impedance (EIS) measure the battery impedance. The B5 aging 

battery pack is selected as the investigation target in this paper. The battery pack experiments are conducted 

under room temperature conditions, in which charging is performed at a steady current (CC) mode of 1.5A up to 

the battery voltage of 4.2V, and then charging is kept at a steady voltage (CV) mode until the charging current 

falls to 20mA. The discharge is performed at a constant current (CC) level of 2A as long as the battery meets the 

cut-off voltage and ceases to discharge, and an EIS impedance measurement is performed after each charge and 

discharge. The battery is subjected to sequential cycles of accelerated degradation until the end of life, which is 

defined as a 30% decay in the maximum capacity of the battery. The experimental conditions and data recorded 

for each cycle are shown in Tab 1 and Tab 2. 

Tab 1  NASA dataset battery pack experimental conditions 

Battery Temperature Charging Current Discharging Current Cut-off Voltage 

B5 24°C 1.5A 2A 2.7V 

Tab 2  NASA dataset experimental data 

Charging Process Discharge Process Impedance Measurement 

Battery Voltage Battery Voltage Induction Current 

Battery Current Battery Current Battery Current 

Load Voltage Load Voltage Battery Impedance 

Load Current Load Current Calibration Impedance 
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Time Time Ohmic Resistance 

– Discharge Power Charge Transfer Impedance 

3.2. Co-estimation of SOH and RUL for lithium-ion battery 

In this paper, with the NASA battery data as a case study, the co-estimation of the SOH and RUL approach 

based on PSO-ELM is implemented to filter out the health indicators and constrain the estimated lithium-ion 

battery SOH and RUL model by correlation analysis of the variables of the experimental data, and the model is 

constructed and trained by Matlab 2018a based. 

3.2.1. Health indicators Extraction 

With the purpose of attaining the precise estimation of lithium-ion battery SOH and RUL, firstly, to extract the 

health indicators of the lithium-ion battery, the specific data are illustrated in Tab 3. 

Tab 3  Lithium-ion battery health indicators description 

Indicator Indicator Description Numerical Range 

I1 The time it takes for the discharge voltage to go from 3.8V to 3.5V (min) (13,30) 

I2 The average value of battery voltage during discharging (3.46,3.56) 

I3 The average value of battery temperature during discharging (31.33,34.31) 

I4 The cycle times from the start of battery use to the current cycle (1,168) 

Since the tendency of each health indicator is diverse, the correlation between it and capacity cannot be judged 

straightforwardly. For the purpose of further quantifying the extent of correlation between health indicators and 

capacity, the Pearson correlation coefficient to measure the correlation between HI and capacity is adopted in 

this paper. 

Tab 4  The Pearson correlation coefficient of HI 

 I1 I2 I3 I4 

B0005 0.996 0.954 -0.810 -0.991 

The two HIs with Pearson coefficients above 0.95 were selected as the inputs to the model in order to ensure 

that the extracted HIs could be adapted to different conditions. As can be observed in Tab 4, the correlation 
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between I1 and I4 and the actual capacity is relatively strong, so the approach of selecting the equal voltage drop 

discharge time and the number of cycles from the initial to the current lithium-ion battery as indirect health 

indicators for battery SOH and RUL forecasting possesses correctness and feasibility. 

3.2.2. The analysis of SOH and RUL prediction results 

While both SOH and RUL can estimate the battery degradation extent, they both differ in their principles and 

scope of application. In consideration of the links and distinctions between them, a joint estimation of SOH and 

RUL based on the PSO-ELM model is proposed in this paper. The HI is extracted from the current, voltage and 

temperature curves, and the derived HI is used as input and capacity as output to build a PSO-ELM based 

battery degradation model. Afterwards, the overall variation trend through HI is modeled by PSO-ELM and 

combined with the established battery aging model for SOH estimation to achieve the battery RUL estimation. 

The lithium-ion battery data (B0005) is used in this paper to authenticate the precision and reliability of the 

PSO-ELM algorithm with a total of 168 cycles of B0005. In addition, the mean absolute error (MAE) and root 

mean squared error (RMSE) were used as the evaluation metrics for the algorithm performance. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
(∑(𝑥𝑖 − 𝑥𝑖)2

𝑁

𝑖=1

) (12) 

 𝑀𝐴𝐸 =
1

𝑁
∑|𝑥𝑖 − 𝑥𝑖|

𝑁

𝑖=1

 (13) 

3.2.2.1. Results of SOH estimation 

With the purpose of investigating the accuracy and stability of the formulated battery aging model, the anterior 

60% of the lithium-ion battery data is taken as the training set and the posterior 40% as the test set, which means 

that the anterior 100 cycles of B0005 are the training set and the posterior 68 cycles are the test set. In each 

cycle, the two selected HIs are extracted from the equal voltage reduction discharge time and the number of 

cycles curves, and the results are provided as input to the PSO-ELM model to derive the corresponding SOH 
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estimation values. It is observed in Fig. 5 and Fig. 6 that the estimated and true values, where SOH1 is the true 

value, the true value of capacity is measured by discharging a fully charged battery at constant current up to the 

cutoff voltage, SOH2 is the estimated value of the test set, and SOH3 is the estimated value of the training set, 

from which it can be seen that the estimated values can not only capture the SOH decline trend of lithium-ion 

battery properly, but also can be well adapted to the regeneration phenomenon of the aging process, and can get 

more accurate SOH estimation. 
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Fig. 5 Results of SOH estimation based on PSO-ELM model 
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Fig. 6 Results of SOH estimation based on ELM model 

In Fig. 5 and Fig. 6, the forecast results of the ELM algorithm for B0005 differ significantly from the actual 

value; as the algorithm keeps optimizing, the forecast value of the PSO-ELM algorithm is getting closer to the 

actual value, which means that the forecast accuracy of the lithium-ion battery of the state of health is getting 

higher and higher. 

According to the relative error of the forecast results of the two algorithms shown in Fig. 5 and Fig. 6, it is 

clear that the relative error of the original ELM algorithm without optimization can exceed 20% in absolute 
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value at each sample point of the test data, and the prediction accuracy cannot reach the requirement; the 

prediction results after PSO optimization further improve the prediction accuracy of the model, and the relative 

error with evil can be controlled within 1.5% to achieve the expected effect. Tab 5 lists the MAE and RMSE 

calculation results, where the B0005 battery based on PSO-ELM algorithm error calculated less than 0.5%. It is 

further verified that the SOH estimation method proposed in this paper has relatively high precision. While the 

literature [52] treats the B0007 dataset for training and the B0005 dataset for testing, the RMSE estimated by the 

parallel layer extreme learning machine (PL-ELM) algorithm is 0.362 after experimental validation. Thus, it can 

be seen that the SOH estimation method proposed in this paper has higher accuracy, and the former one hundred 

cycles of data are selected for training in this paper, which shows that the prediction performance of the method 

is excellent. 

Tab 5  SOH estimation error results 

Battery Algorithm MAE RMSE 

B0005 ELM 0.0269 0.0478 

PSO-ELM 0.0026 0.0033 

3.2.2.2. Results of RUL estimation 

Regarding for B0005, there are 168 cycles of battery capacity data, respectively, the capacity data and cycle 

data of the former 60 and 70 cycles as offline training data, which means the prediction starting point is as 

follows: co=60, co=70 cycles, and the end-of-life (EOL) cycle as the 101st, and the data from the prediction 

starting point to the 168th charge/discharge as the test data. With the RUL prediction outcomes of ELM and 

PSO-ELM algorithms for the B0005 battery presented in Fig. 7 and Fig. 8, where C1 is the true value, C2 is the 

estimated value of the training set, and C3 is the estimated value of the test set, C4 is the failure capacitance 

value, respectively, and more intuitively in Tab 6, where Fig. 9 shows the RUL prediction errors of both 

approaches for the battery B0005 at the initial point C0=60. 
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(a) Prediction starting point C0=60 
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(b) Prediction starting point C0=70 

Fig. 7 Results of RUL estimation based on PSO-ELM model 
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(c)Prediction starting point C0=60 
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(d) Prediction starting point C0=70 

Fig. 8 Results of RUL estimation based on ELM model 
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Fig. 9 Relative error of RUL prediction results 

Tab 6  Comparison of the RUL prediction performance of two algorithms for B0005 battery 

 Algorithm RULp RULt RULe RULr 

C0=60 ELM 42 41 1 2.44% 

PSO-ELM 50 9 21.95% 

C0=70 ELM 32 31 1 3.23% 

Page 18 of 23

https://mc04.manuscriptcentral.com/jes-ecs

Journal of The Electrochemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

PSO-ELM 37 6 19.35% 

In Tab 6, C0 denotes the prediction starting point; RULp denotes the battery RUL prediction value; RULt 

denotes the battery true RUL value; the units of the above indicators are: times; RULe denotes the absolute error 

of the RUL prediction value, which is defined as in Eq.(14); RULr denotes the relative error of RUL prediction 

value, which is defined as in Eq.(15): 

 𝑅𝑈𝐿𝑒 = |𝑅𝑈𝐿𝑝 − 𝑅𝑈𝐿𝑡| (14) 

 
𝑅𝑈𝐿𝑟 =

|𝑅𝑈𝐿𝑝 − 𝑅𝑈𝐿𝑡|

𝑅𝑈𝐿𝑡

× 100% (15) 

As can be intuitively observed from Fig. 7, Fig. 8, Fig. 9 and Tab 6, in comparison with the ELM algorithm, 

the PSO-ELM algorithm has superior life prediction performance for the battery B0005, where the prediction 

curve is relatively close to the actual capacity degradation curve; the PSO-ELM model prediction errors are all 

within 1 cycles; in addition, by increasing the training data, the prediction errors progressively decline and the 

prediction performance becomes better and better, and the absolute error can down to 1 cycles, and more 

accurate battery RUL estimation is accomplished. 

In the case of the prediction point C0=60, the MAE and RMSE of the outcomes estimated by PSO-ELM and 

ELM algorithms are to be as presented in Tab 7. 

Tab 7  RUL estimation error results 

Battery Algorithm MAE RMSE MSE 

B0005 ELM 0.0236 0.0282 0.00080 

PSO-ELM 0.0049 0.0082 0.00007 

It can further be observed from Tab 7 that compared with the ELM algorithm with unoptimized model 

parameters, the forecasting errors of the PSO-ELM approach in this paper are narrower, the MAE of the PSO-

ELM algorithm is 0.0049, and the MSE of the PSO-ELM algorithm is 0.00007 which can cater to the 

requirements of lithium-ion battery applications for remaining useful life prediction. Whereas, the literature [53] 

trains the B0005 dataset for the former 83 cycles and tests the latter 82 cycles, and the MSE estimated by the 
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heuristic Kalman algorithm-multi-layer ELM (HKA-ML-ELM) algorithm is 0.0002 after experimental 

validation. Thus, it can be seen that the accuracy of the RUL estimation method proposed in this paper is higher, 

and the accuracy of estimation is greatly improved by extracting health indicators in this paper, which is more 

conducive to practical application. 

4. Conclusion 

An improved SOH estimation and RUL prediction model for lithium-ion batteries with PSO-ELM is proposed 

in this paper. The multivariate information of voltage, temperature and time of the discharge process is extracted 

as the characteristic parameters, the Pearson coefficients are used to filter the health indicators, which are used 

as the inputs of the PSO-ELM model, while capacity is used as the output. The validity of the model was 

verified based on the NASA lithium-ion battery dataset, and the results demonstrate that the proposed SOH and 

RUL estimation algorithm has superior accuracy: the maximum RMSE of SOH estimation for the B0005 battery 

is 0.0033, the maximum RMSE of RUL prediction is 0.0082, and the maximum absolute error of RUL 

prediction for different prediction starting points are selected for one cycle number. Nevertheless, the method 

has not been validated under other batteries or more complex operating conditions, and thus needs further 

optimization. In order to improve the reliability and accuracy of the health assessment of lithium-ion batteries, 

future work will be improved from the following three points: 1) Selecting more health indicators that reflect the 

characteristics of lithium-ion batteries for analysis; 2) Establishing the battery electrochemical model; 3) 

Implementing a more optimal algorithm to solve the model parameters. 
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