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Abstract—Deep Neural Networks (DNNs) have created a
breakthrough in medical image analysis in recent years. Be-
cause clinical applications of automated medical analysis are
required to be reliable, robust and accurate, it is necessary to
devise effective DNNs based models for medical applications. In
this paper, we propose an ensemble framework of DNNs for
the problem of medical image segmentation with a note that
combining multiple models can obtain better results compared
to each constituent one. We introduce an effective combining
strategy for individual segmentation models based on swarm
intelligence, which is a family of optimization algorithms inspired
by biological processes. The problem of expensive computational
time of the optimizer during the objective function evaluation is
relieved by using a surrogate-based method. We train a surrogate
on the objective function information of some populations and
then use it to predict the objective values of each candidate in the
subsequent populations. Experiments run on a number of public
datasets indicate that our framework achieves competitive results
within reasonable computation time.

Index Terms—image segmentation, deep learning, ensem-
ble learning, particle swarm optimization, surrogate models,
surrogate-assisted evolutionary algorithms

I. INTRODUCTION

Over the last decades, medical imaging technologies such
as computed tomography (CT), X-ray and magnetic resonance
(MR) have become important in the prevention and treatment
of diseases [29]. These techniques provide non-invasive yet
much more powerful means to investigate the human body
compared to traditional medical imaging. This has led to a
massive amount of medical data being collected and stored
in databases. Manual processing of such a large amount of
medical data is burdensome. Artificial intelligence has great
potential in automatic processing of medical data.

It is known that image segmentation could provide quanti-
tative and qualitative evidence for early diagnosis [30] and
is therefore considered very important. However, manual
segmentation by experts is time-consuming, error prone and
subject to variability between different clinicians. In recent
years, deep learning methods have achieved state-of-the-art
results on many medical image segmentation benchmarks.
Most of the state-of-the-art segmentation architectures are
inspired by Fully Convolutional Network (FCN) [13], which
consists of a conventional Convolutional Neural Network
(CNN) architecture followed by a number of upsampling
layers, which increase the feature map resolution to that of

the original image. Even though deep learning models have
achieved remarkable results on medical image analysis [7],
the performance of these models varies due to a number
of reasons, such as weight initialization and hyperparameters
[14]. In order to improve the results of deep learning models on
medical datasets, a simple and effective approach is to combine
the results from multiple models, known in the literature
as ensemble learning. By combining different models, each
having different predictions, the ensemble will be able to
outperform each constituent model.

Creating an effective combining method for an ensemble is
an important stage when designing an ensemble system. The
combining method can be obtained by using an optimization
method [1]. Evolutionary Computation (EC) which is a family
of optimization algorithms based on natural evolution, for
example, has been widely used for ensemble optimization [16].
EC starts with a population, and at each generation/iteration,
a fitness value for each individual is calculated from which to
create the next generation/iteration. The fitness value helps
the population to converge towards the optimal solution.
Despite many advantages of EC over traditional optimization
algorithms such as its capability to solve non-differentiable,
discontinuous or multi-modal problems which are common in
real-life applications [1], applying EC to deep learning is a
challenge caused by the expensive computational complexity.
If the fitness evaluation time t is high then the optimization
process will take a lot of time. For example, [17] took 17 days
to evolve a three-layer CNN on the CIFAR-10 dataset, due
to the time-consuming evaluation process for each candidate
CNN architecture. An approach we can use to reduce the
computational time is Surrogate-Assisted Evolutionary Algo-
rithm (SAEA). This approach uses a surrogate model G(.) as
an approximation for the fitness function F (.) to reduce the
computation time.

In this paper, we propose a novel ensemble and SAEA
method for the problem of medical image segmentation. A
number of deep learning-based segmentation models output
the predictions of the image, and the outputs are sent to a
combiner. The combiner used in this paper is based on Deci-
sion Template [18], however instead of using the pre-specified
method used in the original paper, here we seek to optimize the
Decision Template using Particle Swarm Optimization (PSO),
a swarm intelligence-based optimization method. Since the



objective function evaluation for each candidate takes a long
time to run, we propose to use a surrogate model to reduce the
computation time. The surrogate model trained from previous
objective function evaluation results is used to predict the
objective value of each candidate in subsequent iterations. Our
contributions are as follows:

• We propose an ensemble of deep learning architectures
for the medical image segmentation problem

• We propose to use SAEA to search for the optimal De-
cision Template as a combining model within reasonable
computation time. Particle Swarm Optimization (PSO) is
used as the optimization method.

• Experiments conducted on several medical image seg-
mentation datasets demonstrate the effectiveness of our
proposed method.

The paper is organized as follows. In Section 2, a brief review
of the related works is provided. Our proposed ensemble is
introduced in Section 3. The details of experimental studies on
several medical segmentation datasets are described in Section
4. Finally, the conclusion is given in Section 5.

II. BACKGROUND AND RELATED WORK

A. Deep learning for medical image segmentation

Since 2012 when deep learning first achieved state-of-the-
arts results on ImageNet [6], there have been many works
applying deep learning for medical image segmentation. UNet
[7] is one of the most popular medical segmentation architec-
tures. It has an U-shaped structure, consisting of a symmetric
contracting path and an expanding path. Skip connections
are used to connect upsampling results with corresponding
features in the contracting path, allowing UNet to combine
high-level and low-level information to improve accuracy.
In recent years, there have been many works that seek to
improve further the results of medical image segmentation
using deep learning. An example is LinkNet [8] which uses
residual modules (res-block) in place of UNet and performs
summation between the upsampling results and the contracting
path. Feature Pyramid Network (FPN) [9] provides a top-
down pathway to construct higher resolution layers from a
semantic rich layer, and lateral connections are added to
improve results. [12] proposed V-Net, an extension of UNet
to 3D medical datasets. [10] introduced SegNet, in which the
upsampling path uses pooling indices from the contracting
path in order to improve segmentation results. Another notable
work is [21] in which the authors proposed attention UNet
for pancreas segmentation, achieving 2-3% higher Dice scores
compared to other methods. [19] applied FCN for optic disc
and cupped area segmentation in fundus images for glaucoma
diagnosis. [20] noted that for MRI spleen segmentation, many
false positive and false negative labeling are caused by the
shape and size of the spleen. The authors proposed a network
called SSNet, integrating a variant of Generative Adversarial
Network (GAN) to create synthetic spleen labels to improve
predictions.

B. Ensemble Learning

Ensemble learning is a popular approach in machine learn-
ing in which a collection of base models is combined for the
collaborative decision. In recent years, there has been great
interest in ensemble of deep learning models. [31] used an
ensemble of 2D and 3D segmentation models with a meta-
learner for 3D cardiac MRI segmentation. In [32], the authors
used a number of CNN models to extract the histology image
features at different scales, then the optimal subset of CNN
models was selected to create the ensemble. Anonymous et al.
proposed a weighted ensemble of deep learning-based segmen-
tation algorithms for cardiographic segmentation and achieved
good results on the CAMUS competition [3]. Besides, there
are some novel ensemble generation approaches inspired by
the success of deep neural networks. Instead of using only
one layer like in traditional ensemble models, the ensemble
systems were made to train deeply through multiple layers.
The first deep ensemble system was proposed by Zhou et
al. [4] (called gcForest), containing multiple layers of two
Completely-Random Tree Forests and two Random Forests in
each layer. Each forest in a layer outputs a class vector, which
is then concatenated to the original data as the input data to
the next layer. Anonymous et al. [2] proposed MULES, a deep
ensemble system with classifier and feature selection in each
layer. The optimal configuration of each layer is found by
using a bi-objective optimization problem in which the two
objectives to be maximized are classification accuracy and
diversity of the ensemble in each layer.

C. Surrogate-assisted Evolutionary Algorithm (SAEA)

In most real-world problems, evaluating a candidate so-
lution with high accuracy usually involves a lot of compu-
tational time. For example, in evolutionary optimization of
aerodynamic structures, computational fluid dynamic (CFD)
simulations is usually used, however such simulations usually
take hours or days to complete [22]. This seriously limits the
application of EC to solving these problems, since EC requires
fitness evaluation to guide the population toward the optimal
solution. In order to circumvent this, researchers try to incor-
porate low-cost surrogate models with EC to solve the expen-
sive problems. This approach is known as Surrogate-assisted
evolutionary algorithm (SAEA). There exists a number of
popular surrogate models, such as Radial Basis Functions
(RBF) models, polynomial approximation (PR), Gaussian pro-
cesses (GP) or Kriging, extreme learning machines, artificial
neural networks (ANN), and support vector regression [23].
An important problem in SAEA is the choice of update for
the surrogate model, or model management. There are three
types of model management: individual-based, generation-
based and their hybrids [22]. In generation-based management,
all candidates are used for real fitness evaluation (FE) and
the surrogate is updated after a number of generations, which
can be fixed or adaptive [24]. In contrast, individual-based
methods only choose a small number of individuals for real
FE at each generation. There are a number of approaches
to choose individuals. The random approach chooses some
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Fig. 1. Overview of the proposed framework.

random individuals for real FE [25], while [26] updated the
surrogate using the best candidate at each generation to evolve
deep learning architectures. Another approach is to cluster the
population into a number of clusters, and the representative
member of each cluster is used to update the surrogate model
[28].

III. PROPOSED METHOD

Figure 1 gives an overview of the proposed framework
which consists of three main steps:

• Train ensemble of segmentation models and generate
prediction for the training set: We develop an ensemble
of K segmentation models to solve the medical image
segmentation problem. The Stacking algorithm [1] is
applied to the training set with segmentation algorithms
to create the predictions for each image in the training
set.

• Combining algorithm: A combining algorithm is applied
to the predictions of the training set to obtain the combin-
ing model. We use Decision Template as the combining
algorithm and PSO to search the optimal model for
combining.

• Surrogate-assisted optimization of Decision Template: A
surrogate model is developed to predict the objective
value when using PSO in order to reduce computation
time.

Suppose the training set D = {(In,Yn)}Nn=1 consists of N
images and ground truths where In is the nth image and Yn

is the corresponding ground truth. Each image has height H
and width W , and the ground truth has the same size as the
image. The pixel at position (i, j) with 1 ≤ i ≤W, 1 ≤ j ≤ H
is denoted as In(i, j), while its ground truth Yn(i, j) belongs
to the set Y , where Y = {ym}Mm=1 is a set of M classes.
For the semantic segmentation problem, we aim to segment
each pixel of an image I into classes by using a segmentation
model Q trained by a segmentation algorithm h on the training

Algorithm 1 Training ensemble of segmentation models
and generating predictions for training set
Input: Training images D, K segmentation algorithms {hk}Kk=1

Output: The predictions P and the trained segmentation models
{Qk}Kk=1

1: Learn K segmentation models {Qk}Kk=1 on D using {hk}Kk=1

2: P = ∅
3: D = D1 ∪ ... ∪ DT ,Di ∩ Dj = ∅(i ̸= j)
4: for each Dt do
5: D̃t = D− Dt

6: Learn ensemble of segmentation models {Qt
k}Kk=1 on D̃t using

{hk}Kk=1

7: Segment images in Dt by {Qt
k}Kk=1

8: Add outputs on images in Dt to P (Equation 1)
9: return P and {Qk}Kk=1

set D. In this study, we train an ensemble of K segmentation
models denoted by {Qk} and then use a combining algorithm
C to combine {Qk} i.e. C{Qk} to obtain prediction of the
ensemble.

A. Prediction of training data - Ensemble of segmentation
models

In the first step, we aim to train K segmentation models and
the predictions for training data so as to train the combining
model. The K segmentation models {Qk} are obtained by
training K segmentation algorithms {hk} on the training set
D. Meanwhile, the predictions for instances in the training set
are generated by using the Stacking algorithm [1]. In this algo-
rithm, D is divided into T dis-joined parts D1,D2, ...,DT . The
segmentation algorithms {hk}Kk=1 train segmentation models
{Qt

k}, k = 1, ...,K on the part of D−Dt. The trained model
{Qt

k} will predict for images in the part Dt to output the
probabilities that each pixel of an image belongs to the classes.
This procedure runs through all T parts of D so that we can
obtain the probability predictions for pixels of all training
images. The predictions will be concatenated in the form of
matrix:

P =


P1(1, 1) · · ·P1(1,M) P1(2, 1) · · ·P1(2,M) · · ·P1(K, 1) · · ·P1(K,M)
P2(1, 1) · · ·P2(1,M) P2(2, 1) · · ·P2(2,M) · · ·P2(K, 1) · · ·P2(K,M)

· · ·
PL(1, 1) · · ·PL(1,M) PL(2, 1) · · ·PL(2,M) · · ·PL(K, 1) · · ·PL(K,M)


(1)

where L = N ×W ×H is the total number of pixels in the
training set, Pl(k,m) is the probability prediction that the lth

pixel belongs to class ym given by kth segmentation model
(1 ≤ l ≤ L, 1 ≤ k ≤ K, 1 ≤ m ≤ M ). Predictions P
and ground truth {Yn} will be use as training data to train
the combining model. The procedure of training ensemble of
segmentation models and generating prediction for training set
is described in the Algorithm 1.

It is noted that P is usually very big. Suppose we have a
dataset of 100 images (N = 100), with H = 480,W = 480,
for a three-class segmentation problem using three segmenta-
tion algorithms (M = 3,K = 3), the matrix P would have
L = N×W×H = 23, 040, 000 rows and M×K = 3×3 = 9
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Fig. 2. Example of decision template

columns. It can be seen that the matrix size is very big
even for a moderate-size image segmentation dataset, and any
combining algorithm applied on this matrix would present
great computational and memory requirements.

B. Combining algorithm

The next step is to use a combining algorithm C to train
a combining model on the training data (P, {Yn}Nn=1). There
are many combining algorithms introduced and one of the
most popular ones is Decision Template [18]. In this algorithm,
a representation for each class called decision template is
calculated by taking the average of the predictions P of
all training instances associated with that class. The aim of
decision templates is to create discriminative representations
for all classes on the predictions of K models from which
we can get the collaborated prediction. The decision template
DT = {DTj}Mj=1 where DTj is a (M ×K, 1) vector called
decision template for class yj which is given by the following
formula:

DTj =
[
dtj(1, 1) · · · dtj(1,M) · · · dtj(K, 1) · · · dtj(K,M)

]
(2)

where the calculation of each entry is given as follows (1 ≤
l ≤ L, 1 ≤ j ≤M, 1 ≤ k ≤ K, 1 ≤ m ≤M):

dtj(k,m) =
∑L

l=1 I[yj==yl]Pl(k,m)∑L
l=1 I[yj==yl]

(3)

in which yl is the true class label of the lth pixel in the training
data, I[.] is the indicator function. Equation 3 is the average
value of the predictions of the pixels belonging to class yj
associated with segmentation algorithm hk.

In the testing phase, given an image I, the segmentation
models Qk will first segment the image, giving the probability
prediction Px(k,m) for each pixel x ∈ I:

Px =
[
Px(1, 1) · · ·Px(1,M) · · ·Px(K, 1) · · ·Px(K,M)

]
(4)

Class yx which is assigned to pixel x will be the class
associated with the shortest Euclidean distance ||.||2 amongst
M decision templates and Px.

yx = argmaxm||DTm − Px||2 (5)

We observed that there are cases when the decision templates
do not provide enough discrimination for classes. Figure 2

shows the decision templates of the Fertility dataset from the
UCI machine learning repository. There are two classes in
this dataset, and five classifiers were used to generate the
predictions before computing the decision templates. It can
be observed that the 2 templates for the 2 classes look similar
as the predictions for class 1 always predominate over those
of class 2, causing the poor discrimination of representation.
A better discriminative representation is expected to obtain a
better combining model.

Instead of applying Equation 3, we find the optimal decision
template DT = {DTj}Mj=1 which provides better discrimina-
tive representation for each class. We consider this problem in
terms of searching for the optimal decision template which
maximizes the Dice coefficient, which is one of the most
popular segmentation metrics [33]. Let pred and ground be
the predictions and ground truths of all training pixels:

pred = {pred1, pred2..., predM} (6)
ground = {ground1, ground2..., groundM} (7)

in which predm is the vector of size (N×W×H, 1) in which
its element is the prediction for each pixel belonging to the
class label ym in the form of crisp label i.e. in {0, 1}. Likewise
groundm is the vector of size (N×W×H, 1) associated with
the class label ym which is the ground truth of each pixel in
the form of crisp label i.e. in {0, 1}. predm is obtained based
on the segmentation rule in Equation 5 while groundm is
obtained from the ground truths {Yn}. The Dice coefficient
is given by the following equation:

DC =
1

M

M∑
m=1

2× predTmgroundm
||predm||2 + ||groundm||2

(8)

Thus the optimization problem is formulated as follows:

max
DT

DC

s.t. 0 ≤ dtj(k,m) ≤ 1
(9)

C. Surrogate-assisted optimization of Decision Template

In this study, the non-differentiable optimization problem
in Equation 9 is solved by using Particle Swarm Optimization
(PSO) [5], a swarm intelligence-based method which is known
to be simple, easy to implement and computationally efficient
[27]. PSO maintains a swarm of popSize particles in which
each particle with size M × K represents a candidate for
optimal decision templates. The positions of a particle are
defined by xi = (x1

i , x
2
i , ..., x

M×K
i ), i = 1, ..., popSize. A

velocity vi = (v1i , v
2
i , ..., v

M×K
i ) is associated with each

particle xi. At each iteration, the quality of each candidate
is assessed based on its objective value F (xi), computed by
Equation 8 with the predictions based on Equation 5, and the
local best and global best position is stored. Then the velocity
is updated as follows:

vui ← a×vui +c1×r1×(pbestui −xu
i )+c2×r2×(gbestu−xu

i )
(10)

where a is the inertia weight which controls the velocity
speeding rate, c1 and c2 are acceleration constants used to



control the learning rate of the particle’s local best and the
swarm global best, respectively. pbestui is the uth dimension
of ith particle’s best position (1 ≤ u ≤ M ×K) and gbestu

is the uth dimension of the swarm’s best position. r1 and r2
are two random number drawn from a uniform distribution
over [0, 1]. The inertial weight is calculated via the following
equation [1]:

a = wmax −
(wmax − wmin)× t

nIter
(11)

where t is the current iteration, nIter is the total number
of iterations. The position of each particle is updated in each
iteration to search for the optimal solution:

xu
i ← xu

i + vui (12)

The search algorithm terminates after nIter iterations and we
can obtain the solution for the optimization problem.

As discussed in the previous section, the matrix P has a very
large size. Considering that PSO requires the calculation of
objective values for each particle over a number of iterations,
it would be prohibitively expensive to apply PSO to search for
the optimal decision template.

In this paper, we propose using a surrogate-assisted method
to predict the objective value of a candidate decision template
instead of always calculating its objective function F (.) at each
iteration. Let x be the candidate decision template, then F (x)
will output the objective value. A surrogate model G(.) is a
function which, given the input x, will output the predicted
objective value G(x) in less computation time compared to
F (x). The procedure for training and applying the surrogate
model is designed as follows:

• We first run PSO normally for n1 iterations (n1 <
nIter). That means the objective value F (xi) of each
candidate xi is computed on entire P . The data with size
n1×popSize including candidate decision templates like
xi and their associated objective values F (xi) is used to
train the surrogate model.

• The surrogate model G is trained on the data (xi, F (xi))
to approximate the relationship between a candidate and
its objective value. G then will be used to predict the
objective value of candidate decision templates in the
subsequent iterations.

• The surrogate model G is updated to adapt with the
changes of candidate’s objective value relationship in
the search process. In this study, after n2 iterations, the
objective value of each candidate is calculated normally
using F (.) and the surrogate model G is updated based
on the new data (xi, F (xi)).

Let tF be the time needed to calculate the objective function
on the entire P and tG is the time by using the surrogate model
G to predict the objective function, and tG < tF . For the first
n1 iterations, the time taken would be:

TInitial = n1 × popSize× tF (13)

If surrogate model G(.) is not used, the time taken for the
remaining (nIter − n1) iterations would be:

TF = (nIter − n1)× popSize× tF (14)

Algorithm 2 PSO optimization with surrogate model
Input: Predictions P , maximum number of iterations nIter, popu-

lation size popSize, c1, c2, number of initial generations before
the surrogate is used n1, number of generations before update is
performed n2, surrogate model G(.), original objective function
F (.)

Output: The optimal candidate x

1: Initialize population x1, ..., xpopSize and velocity v1, ..., vpopSize

2: for n from 1 to n1 do
3: for i from 1 to popSize do
4: obj = F (xi)
5: Use the objective values to evaluate gbest (global best) and

pbest (local best)
6: Update velocity for each candidate using Equation 10
7: Update the candidates using Equation 12
8: Use the objective values calculated to initialize the surrogate

model G(.)
9: for n from n1 + 1 to nIter do

10: if (n− n1)%n2 == 0 then
11: for i from 1 to popSize do
12: obj = F (xi)
13: Use the objective values calculated to update the surrogate

model G(.)
14: else
15: for i from 1 to popSize do
16: obj = G(xi) // Use the surrogate function
17: Use the objective values to evaluate gbest (global best) and

pbest (local best)
18: Update velocity for each candidate using Equation 10
19: Update the candidates using Equation 12
20: return x = gbest

Otherwise for the case when surrogate model G(.) is used, the
number of iterations where F (.) is used would be (nIter−n1)

n2

(since the update is performed every n2 iterations) and the
number of iterations where the surrogate model G(.) is used
is:

(nIter − n1)−
(nIter − n1)

n2
=

(nIter − n1)(n2 − 1)

n2
(15)

The time for this case would then be:

TG =
(nIter − n1)popSize× tF

n2
+

(nIter − n1)(n2 − 1)popSize× tG
n2

=
(nIter − n1)× popSize[tF + tG × (n2 − 1)]

n2

(16)

The time saved by using the surrogate model would be:

∆T = TF − TG = (n2 − n1)× popSize× (tF−tG)×(n2−1)
n2

(17)
Our algorithm is described in detail in Algorithm 2. In line
1, the population is initialized. From line 2 to line 7, the
first n1 iterations are run, in which at each iteration the
objective values are calculated (line 3-4), gbest and pbest
are chosen (line 5), the velocity and candidates are updated
using Equation 10 and Equation 12 (line 6-7). At line 8, the
objective values are used to initialize the surrogate model
G(.). After that, from iteration n1 + 1 to iteration nIter,
after each n2 iteration, the original objective function is used,
then the surrogate model is updated (line 10-13) otherwise the
surrogate function is used (line 14-16). The updates of gbest,



TABLE I
DICE COEFFICIENT RESULTS

CPM-17 EAD-19 Promise12 Red Lesion

UNet-VGG16 0.89349 0.60122 0.75572 0.95826
LinkNet-VGG16 0.86906 0.53730 0.75911 0.93427
FPN-VGG16 0.91857 0.52466 0.89467 0.95215
UNet-ResNet34 0.91401 0.65588 0.90906 0.96074
LinkNet-ResNet34 0.90116 0.63333 0.88222 0.96048
FPN-ResNet34 0.90833 0.65705 0.90696 0.96324
UNet-ResNet101 0.89729 0.54014 0.88954 0.94494
LinkNet-ResNet101 0.89335 0.51021 0.87153 0.94739
FPN-ResNet101 0.89344 0.51892 0.88962 0.95250
Weighted ensemble 0.91986 0.66353 0.91887 0.96411
DT 0.91426 0.63033 0.91494 0.96136
ODTwS 0.91467 0.65685 0.92096 0.96485
Proposed method 0.92008 0.67548 0.91864 0.96486

TABLE II
MAD RESULTS

CPM-17 EAD-19 Promise12 Red Lesion

UNet-VGG16 3.43312 31.59863 5.73269 2.31072
LinkNet-VGG16 4.21508 36.17425 9.71780 5.21094
FPN-VGG16 2.09656 20.80811 2.87209 2.57937
UNet-ResNet34 2.21969 18.49515 2.27919 1.97219
LinkNet-ResNet34 2.68086 21.01394 3.22702 1.97697
FPN-ResNet34 2.34745 17.09293 2.43242 1.76366
UNet-ResNet101 2.69950 24.42896 2.65853 2.87523
LinkNet-ResNet101 2.98517 32.34771 3.15007 2.91733
FPN-ResNet101 2.91055 24.60246 2.84251 2.48759
Weighted ensemble 2.03470 16.46748 2.43193 1.71864
DT 2.20465 23.74325 2.34031 1.89920
ODTwS 2.26373 19.84421 2.15538 1.69317
Proposed method 2.00719 19.78338 2.18445 1.68530

pbest, velocity and the candidates are still the same (line 17-
19). Finally, gbest is returned which is associated with the
optimal decision template for the combining model.

IV. EXPERIMENTAL STUDIES

A. Experimental Settings

In this experiment, three popular segmentation architectures
were used: UNet [7], LinkNet [8] and Feature Pyramid Net-
work (FPN) [13]. The backbones used were VGG16, ResNet34
and ResNet101 [11], pretrained on the ImageNet dataset [6].
Thus in total, 9 segmentation algorithms were used in the
experiments. Each algorithm was trained for 300 epochs to
obtain the segmentation model. We set T = 5 for the T -fold
cross-validation procedure in the Stacking algorithm. For the
PSO algorithm, popSize was set to 10, nIter = 500, while
c1 = c2 = 1.494 and wmax = 0.9, wmin = 0.5 and were
set according to [1]. The surrogate model used in this paper is
Radial Basis Function (RBF) which is one of the most popular
surrogate models in the literature [23]. The parameters n1 and
n2 were set to 100 and 3 respectively. The proposed method
were compared with the 9 base segmentation models and
three additional benchmarks, weighted ensemble [3], Decision
Template [18] (denoted by DT) and the optimal Decision
Template found via PSO method without using surrogate
model (denoted by ODTwS).

Three performance metrics were used for the evaluation of
the base segmentation algorithms and the proposed ensemble:
Dice coefficient, Intersection-over-Union (IoU ), and MAD.

Dice coefficient, defined in Equation 8, is one of the most
popular metrics for medical image segmentation. However,
its shortcoming is that it is a measure for total volume
difference, without taking into account local discrepancies
between contours, which is important in the context of medical
image analysis [15]. Therefore, we also used another distance
measure between geometrical contours for the evaluation. Let
GTm and PRm be the set of coordinate vectors of the ground
truth contour and prediction contour with respect to class
ym respectively. The Mean Absolute Distance (MAD) [37]
is defined as follows:

MAD = 1
M

∑M
m=1

∑
gt∈GTm

minpr∈PRm ||gt−pr||+
∑

pr∈PRm
mingt∈GTm ||pr−gt||

|GTm|+|PRm|
(18)

Intersection-over-Union (IoU ) (also known as Jaccard index)
[37] is defined as follows:

IoU =
1

M

M∑
m=1

predTmgroundm
||predm||2 + ||groundm||2 − predTmgroundm

(19)
It is noted that low MAD or high Dice coefficient/IoU
corresponds to good segmentation results.

A number of public medical image segmentation datasets
were used in the experiments. The first dataset is CPM-17
[36], a nucleus segmentation dataset consisting of whole slide
tissue images among which there are 32 images for training
and 32 images for testing. The second dataset is Endoscopy
Artefact Detection (EAD-19) [34], a dataset created to address
the problem of detection of artefacts in video endoscopy.
There are 475 images and six classes: specularity, saturation,
artifact, bubbles, instrument and background. The third dataset
used in this paper is Prostate MR Image Segmentation 2012
(Promise12) dataset [12], which contains MRI data acquired
in various conditions typically encountered in clinical settings.
The final dataset is the Red Lesion dataset [35], a dataset
containing images and ground truths of red lesion in the small
bowel. The dataset contains 1,570 frames with red lesion and
2,325 frames without lesion.

B. Results and discussion

Table I shows the results concerning the Dice coefficient.
The first 9 rows denote the results of the 9 base segmentation
models, while the next four rows the results of 3 selected
benchmark algorithms and the proposed method. It can be seen
that the proposed method achieved overall better results on
most datasets except Promise12. For the CPM-17 dataset, the
9 base segmentation models achieved from 0.86906 to 0.91857
while the proposed method obtained the highest score at
0.92008. This can also be observed for the three other datasets
(higher than 0.16% and 1.84% on Red Lesion, and EAD-
19). Compared with DT, the proposed method achieved better
results on all datasets, especially on EAD-19 (a difference of
4.52%). On this dataset, the Dice coefficient of the proposed
method was also higher than that of ODTwS by 1.86%. For
the other datasets, the proposed method also obtained better
results compared with ODTwS except for Promise12 in which
ODTwS obtained a higher score by a small margin. The



From left to right, top to bottom (for each dataset): UNet-VGG16, UNet-ResNet34, UNet-ResNet101, LinkNet-VGG16,
LinkNet-ResNet34, LinkNet-ResNet101, FPN-VGG16, FPN-ResNet34, FPN-ResNet101, Weighted ensemble, DT, ODTwS,
Proposed method, Original image, Ground truth.

Fig. 3. Several examples from three datasets (from top to bottom): EAD-19,
Promise12 and Red Lesion dataset.

proposed method also achieved better MAD (Table II) and
IoU (Table III) scores as well. For the EAD-19 dataset, the
proposed method obtained a MAD score of 19.78338 while
the best score is obtained by the weighted ensemble at 16.748.
It should be noted that even in this case, the proposed method
still obtained better result than ODTwS which is at 19.84421.
For the Promise12 dataset, ODTwS achieved the best result
at 2.15538 compared to the proposed method at 2.18445.
For the IoU score (Table III), the proposed method also
achieved the best results on CPM-17 and EAD-19, while on
Promise12, ODTwS obtained better score than the proposed
method and on Red Lesion both the proposed method and
ODTwS achieved the best result at 0.93307.

Figure 3 shows three prediction examples by the pro-
posed method and the benchmark algorithms for the EAD-19,
Promise12, and Red Lesion datasets (from top to bottom).
For each image, from left to right, top to bottom, are the
predictions of the 9 base segmentation models, weighted
ensemble, DT, ODTwS, the proposed method, image, and
ground truth respectively. The top image shows the example
for EAD-19 dataset, in which violet color denotes specularity,
red denotes bubble, olive denotes artifact, indigo denotes

TABLE III
IoU RESULTS

CPM-17 EAD-19 Promise12 Red Lesion

UNet-VGG16 0.81250 0.46412 0.66822 0.92121
LinkNet-VGG16 0.77524 0.40507 0.66978 0.87967
FPN-VGG16 0.85266 0.39417 0.82491 0.91035
UNet-ResNet34 0.84514 0.51406 0.84522 0.92563
LinkNet-ResNet34 0.82443 0.49280 0.80780 0.92519
FPN-ResNet34 0.83608 0.51469 0.84221 0.93015
UNet-ResNet101 0.81857 0.39915 0.81783 0.89788
LinkNet-ResNet101 0.81233 0.37872 0.79402 0.90217
FPN-ResNet101 0.81234 0.38055 0.81798 0.91098
Weighted ensemble 0.85471 0.52246 0.85964 0.93172
DT 0.84546 0.49262 0.85381 0.92675
ODTwS 0.84609 0.51626 0.86280 0.93307
Proposed method 0.85515 0.53540 0.85933 0.93307

TABLE IV
COMPARE TIME BETWEEN ODTWS, THE PROPOSED METHOD AND

WEIGHTED ENSEMBLE (IN HOURS)

ODTwS Proposed method Weighted ensemble

Red Lesion 39.4 19.02 65.98
CPM-17 3.6 1.83 5.83
EAD-19 41.67 20.04 67.43
Promise12 21.07 10.19 16.16

instrument and medium green represents saturation class. The
base segmentation models predicted larger areas of specularity
than the ground truth, and some models, such as FPN-VGG16,
predicted two large areas of the bubble while there was
in fact only a small part on the top right. The predictions
by weighted ensemble (2nd row, 5th column) and DT (3rd

row, 1st column) still contained bubble in three small ar-
eas. Compared to them, the predicted bubbles by ODTwS
and the proposed method were more in agreement with the
ground truth. For the Promise12 dataset, the predictions by the
benchmark algorithms (such as UNet-VGG16, FPN-ResNet34
and ODTwS) had deformations compared to the ground truth,
while weighted ensemble, DT and the proposed method pro-
vided generally correct shape. For the Red Lesion dataset, the
ground truth consisted of a large crescent area on the bottom
left and a small adjacent circle area. The base segmentation
models either predicted a larger circle area (UNet-VGG16 and
LinkNet-VGG16) or wrongly predicted a small separate area
on the right (FPN-VGG16). DT’s prediction for the circle area
was too big, while weighted ensemble and ODTwS (3rd row,
2nd column) failed to predict an adjacent area at the right.
The proposed method achieved the best result among all the
presented methods.

Table IV shows the comparison between the run time of
the proposed method which uses the surrogate model, ODTwS
which does not use any surrogate in its calculation, and finally
the weighted ensemble method. The reason for choosing these
methods is because they are optimization-based methods. It
can be seen that the results on all four datasets show that the
proposed method achieved significant savings compared with
the case when the surrogate model was not used. For the Red
Lesion dataset, the original run time was around 39.4 hours,
while the surrogate run time was just 19.02 hours, which is a



savings of 2.07 times. The same results can be observed on
the other datasets. This can be explained from the results of
Equation 17. The proposed method achieved a saving of 1.5-3
times compared to the weighted ensemble.

The results discussed above demonstrate that (i) The pro-
posed method achieved better results compared to the base
segmentation models on all datasets. This shows the effective-
ness of the proposed ensemble of segmentation models (ii)
The proposed method obtained a higher score than DT for
all datasets, especially for EAD-19 (higher than 4.52%). It
can be seen that finding the optimal DT provides significantly
better results compared to using the original method. (iii)
The proposed method outperforms ODTwS on most datasets
except on Promise12 in which ODTwS obtained a slightly
higher score. This demonstrates that using surrogate model to
predict the objective value provides competitive results while
achieving significant computational savings. (iv) The proposed
method is better than the weighted ensemble on most cases
except on Promise12 for Dice and IoU score and EAD-19
for MAD score by a small margin. However, the computation
time is reduced from 1.5-3 times compared to the weighted
ensemble, and this demonstrates further the effectiveness of
the proposed method.

V. CONCLUSION

In this paper, we proposed a novel ensemble of different
deep learning-based segmentation models for medical image
segmentation. The combining model working on the outputs
of these segmentation models based on the basic idea of
the Decision Template method is optimized using PSO. Dice
coefficient, a common performance metric for medical im-
age segmentation is used as the objective function criteria.
Since the evaluation of each candidate in the optimization
algorithm is computationally expensive, we propose to use a
surrogate model in order to predict the objective values of
each candidate. The surrogate model is trained on initialized
data and then is updated after several iterations. The proposed
method was evaluated on 4 popular medical image segmen-
tation datasets with Dice coefficient, Mean Absolute Distance
and Intersection-over-Union. The experiments show that our
proposed method achieves competitive results compared to the
individual segmentation models and the selected benchmark
algorithms while drastically reducing computational time.
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