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Abstract. Fitness landscape rotation has been widely used in the field
of dynamic combinatorial optimisation to generate test problems with
academic purposes. This method changes the mapping between solutions
and objective values, but preserves the structure of the fitness landscape.
In this work, the rotation of the landscape in the combinatorial domain is
theoretically analysed using concepts of discrete mathematics. Certainly,
the preservation of the neighbourhood relationship between the solutions
and the structure of the landscape are studied in detail. Based on the
theoretical insights obtained, landscape rotation has been employed as
a strategy to escape from local optima when local search algorithms
get stuck. Conducted experiments confirm the good performance of the
rotation-based local search algorithms to perturb the search towards un-
explored local optima on a set of instances of the linear ordering problem.

Keywords: Landscape Rotation · Combinatorial Optimisation · Group
Theory

1 Introduction
In the field of dynamic optimisation, there still remains the issue of translat-

ing real-world applications to academia [20]. Researchers often design simplified
and generalised benchmark problems for algorithm development in controlled-
changing environments, although they often omit important properties of real-
world problems [12, 16]. In academia, dynamic problems are generally created
using generators that introduce regulated changes to an existing static optimisa-
tion problem by means of adjustable parameters. The Moving Peaks Benchmark
(MPB) [3] is probably the most popular generator, where a set of n parabolic
peaks change in height, width and position in a continuous space Rn.

In the combinatorial domain, the landscape rotation is presumably the most
popular method to construct dynamic problems for academic purposes [2, 11, 18,
19, 21]. Introduced by Yang and Yao, the XOR dynamic problem generator [18,
19] periodically modifies the mapping between solutions and objective values
by means of defined operators (the exclusive-or and the composition operators).
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According to [16], the landscape rotation in the binary space progressively per-
mutes the initial problem, preserving important properties of the problem, such
as the landscape structure, stable. In fact, the wide use of this strategy comes
from its preservation nature, as well as its simplicity for comparing algorithms
in controlled-changing environments. However, despite its popularity, a theoret-
ical analysis of the preservation of the landscape structure, and study further
applications of this operation in combinatorial optimisation problems, beyond
the binary space, are still lacking [16].

This work introduces an analysis of the fitness landscape rotation in com-
binatorial problems using notions of group and graph theory. The theoretical
notations provided investigate the preservation of the neighbourhood relation-
ship between solutions even when the landscape is rotated, and capture the
repercussion of rotations in the permutation space. The study is supported by
proofs and examples to demonstrate its validity.

Utilising the theoretical insights gained, we experimentally investigate differ-
ent ways to employ the landscape rotation for the development of advanced local
search algorithms. Particularly, the goal is to illustrate the applicability of the
landscape rotation to perturb the search of the algorithm when it gets trapped.
To that end, two rotation-based algorithms, obtained from [2], are employed
and compared to study the exploratory profit of this strategy. Conducted exper-
iments on a set of instances of the Linear Ordering Problem [5, 10] reveal the
good performance of rotation-based local search algorithms, and also show the
ability of the landscape rotation strategy to reach unexplored local optima. The
results obtained are supported by visualisations that illustrate the behaviour of
these algorithms by means of Search Trajectory Networks [13].

The remainder of the paper is structured as follows. Section 2 introduces
background on the fitness landscape in the combinatorial domain, and provides
important properties of the group theory. Section 3 explores the landscape rota-
tion under group actions, and studies the repercussion of rotations in combinato-
rial fitness landscapes. Section 4 presents two rotation-based algorithms that are
studied in the experimentation. Section 5 describes the experimental study, and
discusses the applicability of the landscape rotation from the observed results.
Finally, section 6 concludes the paper.

2 Background
This section introduces concepts to comprehend the rotation of the fitness

landscape in the combinatorial domain, and presents some basics of group theory
to analyse the rotation consequences in the next section.

2.1 Combinatorial Fitness Landscape

Formally, a combinatorial optimisation problem is a tuple P = (Ω, f), where
Ω is a countable finite set of structures, called search space, and f : Ω −→ R is an
objective function that needs to be maximised or minimised. Most combinatorial
problems are categorised as NP-Hard [6], which means that there is no algorithm
able to solve them in polynomial time. As a result, heuristic algorithms, and
especially local search algorithms, have been widely used to solve combinatorial
problems [8].
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A key assumption about local search algorithms is the neighbourhood oper-
ator, which links solutions to each other through their similarity. Formally, a
neighbourhood N is a mapping between a solution x ∈ Ω and a set of solutions
N (x) after a certain operation in the encoding of x, such that

N : Ω −→ P(Ω),

where P(Ω) is the power set of Ω. In other words, two solutions x and y
are neighbours when a modification in the encoding of x transforms it into y,
so x ∈ N (y). The neighbourhood operator in combinatorial optimisation usu-
ally implies symmetric relations, meaning that any operation is reversible, i.e.
x ∈ N (y) ⇔ y ∈ N (x). This property naturally leads to define regular neigh-
bourhoods, which implies the same cardinality of the neighbourhood of every
solution in Ω, i.e. each solution has the same number of neighbours.

The fitness landscape in the combinatorial domain can be defined as the
combination of combinatorial optimisation problems together with the neigh-
bourhood operator [14]. Formally, the fitness landscape is a triple (Ω, f,N ),
where Ω is the search space, f is the objective function and N stands for the
neighbourhood operator. The metaphor of the fitness landscape allows compre-
hending the behaviour of local search algorithms when solving a combinatorial
problem, given a specific neighbourhood operator. In other words, the behaviour
of local search algorithms, along with the suitability of different neighbourhood
operators, can be studied based on properties of the fitness landscape, such as the
number of local optima, global optima, basins of attraction or plateaus. These
components are thoroughly described in the following paragraphs.

A local optimum is a solution x∗ ∈ Ω whose objective value is better or equal
than its neighbours’ N (x∗) ∈ Ω, i.e. for any maximisation problem, ∀y ∈ N (x∗),
f(x∗) ≥ f(y). The number of local optima of a combinatorial problem can be
certainly associated to the difficulty of a local search algorithm to reach the global
optimum (the local optimum with the best objective value) [7]. Nevertheless,
there are other problem features, such as those explained in [15], that are also
valid for understanding the dynamics of local search algorithms.

Some works in the combinatorial domain study the basins of attraction of
local optima to shape the fitness landscape, and calculate the probability to reach
the global optimum [7, 8, 17]. Formally, an attraction basin of a local optimum,
B(x∗), is a set of solutions that lead to the local optimum x∗ when a steepest-
ascent hill-climbing algorithm is applied, so B(x∗) = {x ∈ Ω|ax = x∗}, where ax
is the final solution obtained by the algorithm starting from x. Figuratively, an
attraction basin B(x∗) can be seen as a tree-like directed acyclic graph, where
the nodes are solutions, and the edges represent the steepest-ascent movement
from a solution to a neighbour. This assumption leads to the following definition.

Definition 1 (Attraction graph). Let us define an attraction graph to be
a directed graph Gf (x

∗) = (V,E), where f is the objective function, V ⊆ Ω
is a set of solutions, and E is a set of directed edges representing the move-
ment from a solution to a neighbour with a better, or equal, objective value.
For every solution in the graph, there is an increasing path (sequence of so-
lutions connected by directed edges) until reaching the local optima, such that
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∀x ∈ V, (x = a1, a2, . . . , ah = x∗), where ai+1 ∈ N (ai), (ai, ai+1) ∈ E, and
f(ai) ≤ f(ai+1) for any maximisation problem.

The fitness landscape can be represented as the collection of all the attraction
graphs, such that Of = ∪x∗∈Ω∗Gf (x

∗), where x∗ is a local optimum of the set
composed by local optima Ω∗ ⊂ Ω, given a triple (Ω, f,N ). Note that a solution
(node) may belong to multiple attraction graphs if some neighbours, that belong
to different attraction graphs, share the same objective value.

In the case that neighbouring solutions have equal objective values, we say
that the landscape contains flat structures, called plateaus. Formally, a plateau
Γ ⊆ Ω is a set of solutions with the same objective value, such that for ev-
ery pair of solutions x, y ∈ Γ , there is a path (x = a1, a2, . . . , ak = y), where
ai ∈ Γ, ai+1 ∈ N (ai) and f(ai) = f(ai+1). The authors in [8] demonstrated that
combinatorial problems often contain plateaus, and remark the importance of
considering plateaus when working with problems in the combinatorial domain.
The authors also differentiate three classes of plateaus, and point out that a
plateau composed by multiple local optima can be considered as a single local
optimum when applying local search-based algorithms, as their basins of attrac-
tion lead to the same plateau.

2.2 Permutation Space

One of the most studied fields in combinatorial optimisation is the permu-
tation space, where solutions of the problem are represented by permutations.
Formally, a permutation is a bijection from a finite set, usually composed by
natural numbers {1, 2, . . . , n}, onto the same set. The search space Ω represents
the set of all permutations of size n, called symmetric group and denoted as Sn,
whose size is n!. Permutations are usually denoted using σ, π ∈ Sn, except for
the identity permutation e = 12...n. We direct the interested reader to [4] for a
deeper analysis of permutation-based problems.

The similarity between permutations can be specified by permutation dis-
tances. The distance between two permutations is the minimum number of op-
erations to convert one permutation into another. Irurozki in [9] studies the
Kendall’s-τ , Cayley, Ulam and Hamming distance metrics, and suggests some
methods to generate new permutations uniformly at random for each distance
metric. It is worth mentioning that each distance metric has its own maximum
and minimum distances, dmin and dmax. We direct the interested reader to [9]
for more details on permutation distances.

2.3 Landscape Rotation

The fitness landscape rotation has been probably the most popular bench-
mark generator, for academic purposes, in the combinatorial domain. Introduced
as the XOR dynamic problem generator [18, 19], this method periodically ap-
plies the rotation operation to alter the mapping between solutions and objective
values by means of the exclusive-or (rotation) operator. Formally, given a static
binary problem, a rotation degree ρ and the frequency of change τ , the objective
value of a solution x ∈ Ω is altered by

ft(x) = f(x⊕Mt),
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where ft is the objection function at instance t = ⌈ i
τ ⌉, i is the iteration of the

algorithm, f is the original (static) objective function, ’⊕’ is the exclusive-or
operator and Mt ∈ Ω is a binary mask. The mask Mt is incrementally generated
byMt = Mt−1 ⊕ T , where T is a binary template randomly generated containing
⌊ρ× n⌋ number of ones. The initial mask is a zero vector, M1 = {0}n.

Some works in the literature extended the XOR dynamic problem generator
to the permutation space [2, 21, 11]. The landscape rotation in the permutation
space can be represented as

ft(σ) = f(Πt ◦ σ),
where σ ∈ Sn is a solution, ’◦’ is the composition operation and Πt is a permuta-
tion mask. The permutation mask is incrementally generated by Πt = Πt−1 ◦ π,
where π is a permutation template generated using the methods in [9], containing
⌊dmax × ρ⌋ operations from the identity permutation given a permutation dis-
tance. The permutation mask is initialised by the identity permutation, Π1 = e.

According to T́ınos and Yang [16], the XOR dynamic problem generator
changes the fitness landscape according to a permutation matrix, where the
neighbourhood relations between solutions are maintained over time. However,
as far as we are concerned, these assumptions have never been studied in the
permutation space. Hence, this is the motivation of this work.

2.4 Group Theory

The landscape rotation can be represented by group actions, where the search
space along with the rotation operation satisfy certain properties. Formally, given
a finite set of solutions Ω and a group operation ’·’, G = (Ω, ·) is a group
if the closure, associativity, identity, and invertibility properties are satisfied.
Mathematically, these fundamental group properties (axioms) are defined as:

– Closure: x, y ∈ G, x · y ∈ G.
– Associativity: x, y, z ∈ G, (x · y) · z = x · (y · z).
– Identity: i ∈ G,∀x ∈ G, x · i = i · x = x.
– Invertibility: x, x−1 ∈ G, x · x−1 = x−1 · x = i.

There is another property, the commutativity, that is not fundamental for
the definition of a group. A group is said to be commutative when x, y ∈ G,
x · y = y · x. It is worth mentioning that the commutation property holds in the
binary space, but it does not in the permutation space.

3 Analysis of the Fitness Landscape Rotation
In this section, we aim to theoretically analyse some important consequences

of rotating the landscape in the combinatorial domain using group properties.
To that end, we will study the (i) the neighbourhood relation preservation af-
ter rotating the landscape, and (ii) the repercussion of rotations in landscapes
encoded by permutations.

3.1 Neighbourhood Analysis

The properties of the fitness landscape rotation can be studied using notions
of group theory, i.e. the rotation (exclusive-or ’⊕’ and composition ’◦’) operators
can be generalised to the group operation ’·’. Following previous notations, we
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can demonstrate the preservation of neighbourhood relations between solution
before and after a rotation without loss of generality.

Theorem 1. Given a group G, let N (x) ∈ G be the neighbourhood of x and
t ∈ G the mask used to rotate the space. We say that the neighbourhood relations
are preserved iff N (t · x) ⇔ t · N (x).

Proof. Let x, y ∈ G be two neighbouring solution in the group, such that
x ∈ N (y) is a neighbour of y (and vice versa). We can define the neighbourhood
operation as c(i, j) · x ∈ N (x), where c(i, j) is an operation in the encoding of a
solution. For example, c(i, j) can represent the swap of the elements i and j, or
the insertion of the element at position i into the position j.

Based on this notation, we can define the fundamental group properties (iden-
tity, invertibility and associativity) as

c(i, j) · e = e · c(i, j) = c(i, j) (1)

c(i, j) · c(i, j)−1 = c(i, j)−1 · c(i, j) = e (2)

x = c(i, j) · x · c(i, j)−1 (3)

Note that c(i, j)−1 = c(j, i) represents the inverse operation of c(i, j). As-
suming that the landscape is rotated using the template t ∈ G, we can say that
Ω and t · Ω are defined independently. In the following, we aim to prove that
t · N (x) ⇔ N (t · x).

First, we must ensure that the rotation of the landscape preserves the neigh-
bourhood relation between solutions, so N (t · x) ⊂ t · N (x). It can be demon-
strated in the following way.

x ∈ N (y)

x = c(i, j) · y
t · x = t · c(i, j) · y

c(i, j)−1 · t · x = c(i, j)−1 · t · c(i, j) · y
c(i, j)−1 · t · x = t · y

(4)

Note that the last step in the equation is given by the Equation 3. Considering
that c(i, j)−1 = c(j, i) and c(i, j) · x ∈ N (x), we can say that c(i, j)−1 · t · x ∈
N (t · x). Therefore, given the symmetry of the neighbourhood operator, we can
prove that the rotation of the neighbourhood is a subset of the neighbourhood
of the rotated t · x, so t · y ∈ N (t · x).

Then, we must prove the inverse statement, i.e. the rotated neighbourhood
derives in the rotation of the neighbourhood, t · N (x) ⊂ N (t · x). It can be
demonstrated in the following way.

x ∈ N (t · y)
x = c(i, j) · t · y
x = c(i, j) · [c(i, j)−1 · t · c(i, j)] · y
x = e · t · c(i, j) · y

(5)
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Fig. 1: Illustrative visualisation of the landscape structure before and after a
rotation.

In this case, after considering c(i, j) · x ≡ N (x), we use the inverse property
of the neighbourhood operation (Equation 3) and the identity property (Equa-
tion 2) to demonstrate that x = t · c(i, j) · y, so x ∈ t · N (y). Therefore, we can
prove that x ∈ t ·G derives in x ∈ G.

In summary, by showing the symmetry of the rotation operation, we can
confirm that the neighbourhood relations between solutions are preserved.

3.2 Repercussion of the Landscape Rotation

The authors in [16] mention that the topological structure of the fitness
landscape must be analysed to comprehend the behaviour of the algorithms. In
order to study the repercussion of changes in the space, we will use the definition
of the attraction graphs (Definition 1) to represent the topological features of the
fitness landscape. In the following, we will consider the permutation space (Sn),
the swap operation (2-exchange operator) and the steepest-ascent hill-climbing
algorithm (saHC) to represent the fitness landscape, and more precisely, the
collection of attraction graphs.

Note that the preservation of the neighbourhood relations (previous section)
is independent of the algorithm and objective function. Thus, we can demon-
strate that the landscape structure is preserved even if solutions are rearranged.
Using graph theory notations, we could point out that attraction graphs are
isomorphic (structurally equivalent) to themselves in the rotated environment,
such that Of

∼= Oft , where Oft is the set of attraction graphs that composes the
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Table 1: Example of the number of exchanges between attraction graphs of all
possible rotation masks generated by the Cayley distance metric.

t (dC) Exchanges t (dC) Exc. t (dC) Exc.

1234 (0) 0 (original) 1423 (2) 10 4213 (2) 13
1243 (1) 4 2143 (2) 16 4321 (2) 14
1324 (1) 8 2341 (2) 14 2314 (3) 12
1432 (1) 8 2431 (2) 14 2413 (3) 12
2134 (1) 16 3124 (2) 12 3142 (3) 12
3214 (1) 12 3241 (2) 13 3421 (3) 13
4231 (1) 14 3412 (2) 12 4123 (3) 14
1342 (2) 10 4132 (2) 14 4312 (3) 13

rotated fitness landscape ft. Despite the conservation of the landscape structure,
all solutions are mapped to different positions when the landscape is rotated. Let
us illustrate these concepts with the following example.

Figure 1 displays the landscape of a permutation problem of size n = 4
as a collection of attraction graphs produced by a given objective function f .
These images illustrate the preservation of the landscape structure. For example,
the attraction graph on the right side of both images will always contain two
solutions, such that Gf (3241) and Gft(1324 ◦ 3241 = 2431) are isomorphic.

It is worth noting that the landscape rotation alters the mapping between
solutions and objective values. Hence, we can conclude that, since solutions are
rearranged at different positions in the fitness landscape, the objective values
are preserved. In other words, the fitness landscapes before and after a rotation,
Of and Oft , are equal in terms of objective values, e.g. f(3241) = ft(2431).

In order to measure the impact of the rearrangement after a rotation, we
can use the total number of solution exchanges between attraction graphs. This
assumption is motivated by the fact that, for a local search-based algorithm, it
is more likely to “escape” from an attraction graph when a rotation implies a
big number of solution exchanges between graphs. Continuing with the previous
example, Table 1 summarises the total number of solution exchanges between
attraction graphs for all the possible rotations generated at a given Cayley dis-
tance (dC). This distance metric uses the smallest number of swaps assumption
to generate permutations uniformly at random [1]. The table entries demonstrate
that the rotation degree, measured as the Cayley distance, is not necessarily pro-
portional to the number of solution exchanges between attraction graphs in the
permutation space. For example, the average number of solution exchanges for
each Cayley distance in Table 1 reflects that rotating to dC = 1 produces 10.3
exchanges, dC = 2 produces 12.9 exchanges and dC = 3 produces 12.6 exchanges,
on average, respectively. Hence, the use of permutation distances as a rotation
degree should be used with caution, since medium rotations can be severe, in
terms of the total number of solution exchanges between attraction graphs.
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4 Rotation as a Perturbation Strategy

From the theoretical insights gained from the previous section analysis, we
suggest the landscape rotation as a perturbation strategy for local search-based
algorithms to react when algorithms get trapped in poor quality local optima.
The rotation action can be used to relocate a stuck algorithm’s search, ideally
into a different attraction graph, by means of the permutation distance that con-
trols the magnitude of the perturbation. Note that, generally, a local optimum
in the original landscape is not mapped to a local optimum in the rotated land-
scape. This assumption motivates its usage to reach unexplored local optima. In
short, rotation-based local search algorithms can be summarised as follows:

1: Run the local search algorithm until reaching a local optimum, x∗.
2: The rotation operation is applied to relocate the algorithm at the solution

t · x∗. Ideally, the algorithm will reach a new local optimum, such that
t · x∗ ⊆ Gft(y

∗).
3: This process is repeated until meeting the stopping criterion.

In [2], we presented two rotation-based perturbation strategies: a depth-first
and a width-first strategy. These methods differ in the way they use the rota-
tion operation. If we apply these strategies into the steepest-ascent hill climbing
algorithm (saHC), the depth-first algorithm (saHC-R1) will use the rotation op-
eration to move the search away, and continue the search from a new position
until getting trapped again. Then, both local optima are compared, and the
search is relocated to the best found solution. On the other hand, the width-first
algorithm (saHC-R2) applies the rotation operation for some iterations, and then
continues to search from a new position (undo the rotation) until it gets stuck
again. Unlike saHC-R1, this strategy does not relocate the search to the best
solution found, which encourages continuous exploration of different graphs. For
more details, see [2].

5 Results and Discussion

This section evaluates the performance of the proposed strategies to solve
the Linear Ordering Problem (LOP) [5, 10]. This problem aims to maximise the
entries above the main diagonal of a given matrix B = [bi,j ]n×n. The objective
is to find a permutation σ that orders the rows and columns of B, such that

arg max
σ∈Sn

f(σ) =

n−1∑
i=1

n∑
j=i+1

bσi,σj
.

The specific instances used in the experimentation of this work are obtained
from the supplementary material web3 presented in [8]. The web contains 12
LOP instances: eight instances of size 10, and four instances of size 50. The
parameters employed in the rotation-based algorithms [1] are summarised in
Table 2. Note that the rotation degree is designed to start with big rotations,
and exponentially decreasing it to intensify the search. The motivation of this

3 http://www.sc.ehu.es/ccwbayes/members/leticia/AnatomyOfAB/instances/

InstancesLOP.html
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Table 2: Parameter settings for the experimental study.
Parameter Value

Rotation degree d =

∣∣∣∣dmaxe

 ln

(
dmin
dmax

)
S

i∣∣∣∣
Distance metric Cayley distance
Number of repetitions 30
Stopping criterion 103n iterations

strategy is to balance the intensification-diversification trade off based on the
search process of the algorithm.

Obtained results and instance properties are summarised in Table 3, where
the best found objective values, the number of rotations and the number (and
percentage) of visited local optima are shown for each algorithm. The total
number of local optima for each instance has been obtained from [8]. However,
due to the incompleteness of the number of local optima for instances of size
n = 50, we only show the number of local optima explored for these instances,
without showing the percentages of local optima explored.

The results show the good performance of rotation-based algorithms, as well
as their explorability ability. Both algorithms are able to find the same optimal
solutions (except for N-be75oi), in terms of objective values, but they differ in
the number of rotations and local optima explored. The percentages represent
the ability of the algorithms to explore the attraction graphs that compose the
landscape. saHC-R2 always performs more rotations than saHC-R1, and thus, it
can find a larger (or the same) number of local optima than saHC-R1. Therefore,
we can say that saHC-R2 tends to be more exploratory than saHC-R1.

In order to illustrate the influence of the rotation degree on the search of
the algorithms, Table 4 shows the number of rotations and local optima reached
by each algorithm, over the 30 runs, for each Cayley distance, on Instance 8.

Table 3: Information of the instances, and results of the rotation-based al-
gorithms on LOP instances. Percentages for instances of size n = 50 are not
available, since their total number of local optima is unknown.

saHC-R1 saHC-R2
Instance LO Obj. Rotations LO (%) Obj. Rotations LO (%)

Value Value

Instance 1 13 1605 2015 13 (100%) 1605 2636 13 (100%)
Instance 2 24 1670 2011 24 (100%) 1670 2629 24 (100%)
Instance 3 112 4032 1956 104 (92.8%) 4032 2545 106 (94.6%)
Instance 4 129 3477 1988 121 (93.8%) 3477 2565 125 (96.9%)
Instance 5 171 32952 2093 169 (98.8%) 32952 2712 171 (100%)
Instance 6 226 40235 1954 215 (95.1%) 40235 2571 220 (97.3%)
Instance 7 735 22637 2138 683 (92.9%) 22637 2742 716 (97.4%)
Instance 8 8652 513 2528 6063 (70%) 513 3351 6887 (79.6%)

N-be75eec > 500 236464 8527 62143 (−%) 236464 10737 75404 (−%)
N-be75np > 500 716994 8306 36046 (−%) 716994 10364 58423 (−%)
N-be75oi > 500 111171 8507 80001 (−%) 111170 10698 96371 (−%)
N-be75tot > 500 980516 8437 31550 (−%) 980516 10606 53450 (−%)
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Table 4: Number of rotations and reached local optima by each algorithm on
Instance 8.

Cayley distance
1 2 3 4 5 6 7 8 9

saHC-R1
Rotations 19594 19304 10851 7416 5623 4525 3778 3279 1452

LO 678 1968 2500 2679 2725 2633 2438 2234 1227

saHC-R2
Rotations 27680 26090 14191 9432 7039 5633 4676 4027 1746

LO 736 3809 4014 3719 3337 3037 2761 2528 1346

Remember that the rotation degree describes an exponential decrease as the
search progresses4.

The table shows that, although the number of rotations exponentially decays,
the highest exploratory behaviour of the algorithms holds on medium-small dis-
tances, i.e. both algorithms find more local optima when the rotation operates
at dC = {3, 4, 5}. This performance matches with the example in Table 1, where
rotating to medium distances is sufficient to perturb the search of algorithms to
different attraction graphs.

In order to visually represent and analyse the evolution of the algorithms,
we use the Search Trajectory Networks (STNs) tool [13], a directed-graph-based
model that displays search spaces in two or three dimensions. Figure 2 displays
a single run of each algorithm on Instance 8 using STNs. The colours in the
figures highlight the starting and ending points of the search (blue and green
nodes), the best found solutions (yellow nodes) and the rotation operations (red
edges), respectively. The entire experimentation is available online5.

The plots show the behaviour of each algorithm in a two-dimensional space.
The left plot shows the behaviour of saHC-R1, where the algorithm always ap-
plies the rotation operation from the best solution found. This visualisation
gives an insight of the structure of the landscape, since the algorithm is able
to explore the paths that compose the attraction graphs. On the other hand,
Figure 2b shows a continuous search of saHC-R2, where the algorithm moves
through attraction graphs, meaning that it rarely gets stuck on the same lo-
cal optimum after a rotation. This behaviour can be comprehended by the fact
that saHC-R2 does not rotate from the best solution found, but from the last
local optimum found. That said, we can conclude that saHC-R1 outperforms in
instances with few but deep attraction graphs, while saHC-R2 outperforms in
instances composed of many attraction graphs.

Finally, it is worth noting the presence of a plateau composed of local optima
in Instance 8, i.e. multiple local optima have the same objective value, which
turns out to be the optimal value. The figures confirm that both algorithms
can detect and deal with plateaus. Interestingly, Figure 2a shows that some
local optima that form the plateau are visibly larger, which means that saHC-
R1 visits them several times. From previous statements, we can deduce that
Instance 8 is composed of neighbouring local optima with the same objective
value, and also that saHC-R2 reaches more local optima than saHC-R1.

4 The repercussion of the rotation degree in other instances is available online.
5 https://zenodo.org/record/6406825\#.YkcxaW7MI-Q
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Start End Solution Best Improve Equal Rotate

(a) saHC-R1

Start End Solution Best Improve Equal Rotate

(b) saHC-R2

Fig. 2: Search Trajectory Networks of rotation-based algorithms on Instance 8.

6 Conclusions and Future Work

Landscape rotation has been widely used to generate dynamic problems for
academic purposes due to its preserving nature, where important properties of
the problem are maintained. In this article, we study the preservation of the
landscape structure using group actions, and based on the insights gained, we
suggest using the rotation operation to relocate the search of local search-based
algorithms when they get stuck. The experiments carried out show the good
application of the landscape rotation to perturb the search of the local search
algorithm through unexplored local optima. Obtained results also illustrate that
’medium’ rotations can cause a big repercussion, when it comes to the number
of rearranged solutions.

This work can be extended in several ways. First and most obvious, there
are some landscape properties that have been ignored in this manuscript, such
as the number and size of attraction graphs, or the frontier and the centrality
of local optima [8]. These assumptions, along with the consideration of problem
properties, such as the symmetries of the problem instance, could lead to very
different outcomes, where the landscape rotation may be less applicable. Finally,
this work has considered the swap operator and the steepest-ascent hill-climbing
algorithm to construct the attraction graphs in the Linear Ordering Problem.
This study can be naturally extended to other combinatorial optimisation prob-
lems, as well as other ways to represent the landscape, such as the insertion
operation or the first-improvement hill-climbing heuristic.

Acknowledgments

This work has been partially supported by the Spanish Ministry of Science
and Innovation (PID2019-106453GA-I00/AEI/10.13039/501100011033), and the
Elkartek Program (SIGZE, KK-2021/00065) from the Basque Government.



Analysing the Fitness Landscape Rotation for Combinatorial Optimisation 13

References
1. Alza, J., Bartlett, M., Ceberio, J., McCall, J.: On the definition of dynamic permu-

tation problems under landscape rotation. In: Proc. GECCO. p. 1518–1526 (2019)
2. Alza, J., Bartlett, M., Ceberio, J., McCall, J.: Towards the landscape rotation as

a perturbation strategy on the quadratic assignment problem. In: Proc. GECCO.
p. 1405–1413 (2021)

3. Branke, J.: Evolutionary optimization in dynamic environments. Springer Science
& Business Media (2002)

4. Ceberio, J.: Solving Permutation Problems with Estimation of Distribution Algo-
rithms and Extensions Thereof. Ph.D. thesis, UPV/EHU (2014)

5. Ceberio, J., Mendiburu, A., Lozano, J.A.: The linear ordering problem revisited.
EJOR 241(3), 686–696 (2015)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co. (1979)

7. Hernando, L., Mendiburu, A., Lozano, J.A.: An evaluation of methods for esti-
mating the number of local optima in combinatorial optimization problems. Evo-
lutionary Computation 21(4), 625–658 (2013)

8. Hernando, L., Mendiburu, A., Lozano, J.A.: Anatomy of the attraction basins:
Breaking with the intuition. Evolutionary Computation 27(3), 435–466 (2019)

9. Irurozki, E.: Sampling and learning distance-based probability models for permu-
tation spaces. Ph.D. thesis, UPV/EHU (October 2014)

10. Mart́ı, R., Reinelt, G.: The linear ordering problem: exact and heuristic methods
in combinatorial optimization, vol. 175. Springer Science & Business Media (2011)

11. Mavrovouniotis, M., Yang, S., Yao, X.: A benchmark generator for dynamic
permutation-encoded problems. In: PPSN. pp. 508–517 (2012)

12. Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: A survey
of the state of the art. Swarm and Evolutionary Computation pp. 1 – 24 (2012)

13. Ochoa, G., Malan, K.M., Blum, C.: Search trajectory networks: A tool for analysing
and visualising the behaviour of metaheuristics. Applied Soft Computing (2021)

14. Reidys, C.M., Stadler, P.F.: Combinatorial Landscapes. Working Papers 01-03-014,
Santa Fe Institute (Mar 2001)
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