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SPORTS PERFORMANCE

Interpreting magnitude of change in strength and conditioning: Effect size selection, 
threshold values and Bayesian updating
Paul Alan Swinton, Katherine Burgess, Andy Hall, Leon Greig, John Psyllas, Rodrigo Aspe, Patrick Maughan 
and Andrew Murphy

School of Health Sciences, Robert Gordon University, Aberdeen, UK

ABSTRACT
The magnitude of change following strength and conditioning (S&C) training can be evaluated compar-
ing effect sizes to thresholds. This study conducted a series of meta-analyses and compiled results to 
identify thresholds specific to S&C, and create prior distributions for Bayesian updating. Pre- and post- 
training data from S&C interventions were translated into standardised mean difference (SMDpre) and 
percentage improvement (%Improve) effect sizes. Bayesian hierarchical meta-analysis models were 
conducted to compare effect sizes, develop prior distributions, and estimate 0.25-, 0.5-, and 0.75- 
quantiles to determine small, medium, and large thresholds, respectively. Data from 643 studies compris-
ing 6574 effect sizes were included in the analyses. Large differences in distributions for both SMDpre and 
%Improve were identified across outcome domains (strength, power, jump and sprint performance), with 
analyses of the tails of the distributions indicating potential large overestimations of SMDpre values. 
Future evaluations of S&C training will be improved using Bayesian approaches featuring the information 
and priors developed in this study. To facilitate an uptake of Bayesian methods within S&C, an easily 
accessible tool employing intuitive Bayesian updating was created. It is recommended that the tool and 
specific thresholds be used instead of isolated effect size calculations and Cohen’s generic values when 
evaluating S&C training.
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Introduction

Strength and conditioning (S&C) which involves the application 
of a range of training modalities to enhance athletic perfor-
mance has become a well-established discipline within sport 
and exercise science (Weldon et al., 2021, 2020). Much of the 
popularity of S&C originates from the perspective that muscular 
strength is of primary importance in athletic and sports perfor-
mance (Suchomel et al., 2016; Swinton et al., 2014); however, it 
has been argued that evidence is lacking to demonstrate causal 
effects (Steele et al., 2020). Additionally, muscular strength can 
be developed extensively with relatively limited time and cost. 
Research investigating training methods such as resistance, 
sprint and plyometrics has experienced rapid growth since 
the late 1990s (Kraemer et al., 2017; Ramirez-Campillo et al., 
2018), with large numbers of training studies focusing on iden-
tifying the best regimes to improve different aspects of fitness. 
A challenge in integrating the findings of longitudinal research 
within a general framework includes the potential for idiosyn-
cratic findings based on experimental choices of individual 
studies. Findings may be influenced by a range of moderating 
factors including the study population, the length of training, 
the outcomes assessed, and the training regimes adopted. 
Given the range of factors that could influence results, evidence 
synthesis approaches including meta-analyses may provide the 
most effective means of summarising results and identifying 
general patterns that can inform researchers and practitioners.

Evidence synthesis and the use of meta-analyses to objec-
tively quantify various phenomena across training studies has 
become common in S&C (Peterson et al., 2005, 2004; Rhea, 
2004; Rhea & Alderman, 2004; Rhea et al., 2002, 2003). The 
most frequently reported effect size statistic is the pre- 
standardised mean difference (SMDpre), where the mean 
change is divided by the pre-training standard deviation. This 
statistic comprises several conceptual advantages (Caldwell & 
Vigotsky, 2020) including the fact that it is dimensionless and 
enables the synthesis of outcomes reported across different 
units and scales (e.g., vertical jump power in thousands of 
Watts, and vertical jump height in tens of centimetres). With 
this process there is also an implicit assumption of underlying 
latent constructs (i.e., strength, power, jump and sprint perfor-
mance) with appropriate construct validity represented 
through measurement from different tests (e.g., operationalisa-
tions). One of the primary reasons for the widespread use of the 
SMDpre includes the existence of commonly used threshold 
values to apply qualitative labels describing the magnitude of 
change following training as “small”, “medium”, or “large”. 
However, threshold values have generally used Cohen’s initial 
suggestions (Cohen, 1988) which were determined arbitrarily 
with the behavioural and social sciences in mind. To obtain 
suitable estimates of the population effect size, the sample 
standard deviation must reflect the spread of values in the 
population. However, if random sampling is not conducted 

CONTACT Paul Alan Swinton p.swinton@rgu.ac.uk School of Health Sciencs, Robert Gordon University, Garthdee Road, Aberdeen AB10 7QG, UK
Supplemental data for this article can be accessed online https://doi.org/10.1080/02640414.2022.2128548.

JOURNAL OF SPORTS SCIENCES                        
2022, VOL. 40, NO. 18, 2047–2054 
https://doi.org/10.1080/02640414.2022.2128548

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1080/02640414.2022.2128548
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/02640414.2022.2128548&domain=pdf&date_stamp=2022-12-19


and restricted homogenous samples are obtained, the sample 
standard deviation is likely to underestimate the population 
standard deviation and thereby overestimate SMDpre (Baguley, 
2009). An alternative effect size statistic focused on sample 
means that can provide simple and intuitive interpretations of 
the magnitude of change following training is the relative ratio 
(RR), calculated by taking the ratio of two means (Hedges et al., 
1999). Like the SMDpre, the RR (post-training mean divided by 
pre-training mean) is dimensionless enabling synthesis of out-
comes across different units and scales. It has been argued that 
the RR, which can also be interpreted in terms of percentage 
improvement (e.g., 1.50 is equivalent to a 50% increase from 
baseline, and 0.8 is equivalent to a 20% decrease) is easier to 
interpret than the SMDpre making it a more applicable sum-
mary statistic (Friedrich et al., 2011). It is important to note that 
the RR can be calculated from means pre- and post-training, or 
from the means of two different groups. The RR has received 
limited use in previous meta-analyses conducted in sport 
science (Deb et al., 2018) which may be partly due to standard 
thresholds not being available.

Almost all statistical analyses conducted in S&C research 
employ a frequentist frameworks where effect sizes are calcu-
lated anew without including prior information of likely values 
based on previous research. In the minority of cases where 
uncertainty in effect sizes is quantified, frequentist frameworks 
apply confidence intervals that can be challenging to interpret 
(Hespanhol et al., 2019). Additionally, due to the small sample- 
sizes frequently used in S&C training studies (Rhea et al., 2003), 
uncertainty in effect sizes calculated under frequentist frame-
works is likely to lack precision. In contrast, Bayesian frame-
works enable individuals to include prior information and 
express uncertainty in effect sizes estimates in a probabilistic 
manner (e.g., using a posterior distribution), borrowing 
strength from previous research to increase precision. 
Common critiques of Bayesian approaches include the com-
plexity that may exist with the analysis process and challenges 
in creating suitable informative priors (Goodman, 1999). 
However, meta-analysis models estimate a set of training 
effects rather than a single estimate and can thus be used to 
develop priors that combine with new data using simple calcu-
lations to obtain normally distributed posteriors quantifying 
the most likely population effect sizes (Jones et al., 2018). 
Given the large amount of training studies that have been 
conducted in S&C and limitations in current frameworks to 
interpret the magnitude of change following training, the pur-
pose of this study was to conduct a series of large-scale meta- 
analyses to generate context-specific thresholds for multiple 
effect sizes and develop Bayesian priors. Meta-analysis models 
were conducted and compared across multiple outcome 
domains with results incorporated into an accessible tool to 
better interpret future S&C training.

2. Methods

2.1. Search strategy

A search was performed for published and unpublished 
studies in the English language that included S&C training 
conducted prior to January 2018. The search was performed 

using Embase, Medline, Web of Science, Sport Discus and 
Google Scholar. Hand searching of relevant journals includ-
ing Medicine and Science in Sports and Exercise, the Journal 
of Strength and Conditioning Research, and Research 
Quarterly was also conducted. Database search terms were 
included to identify various training modes and a range of 
outcome measures. The following keywords and phrases 
were combined with Boolean operators; “strength” OR “resis-
tance” OR “sprint” OR “plyometric” OR “exercise” AND “inter-
vention” OR “training” OR “program” OR “programme” AND 
“1RM” OR “repetition maximum” OR “speed” OR “velocity” 
OR “power” OR “jump” OR “change of direction” OR “agility” 
OR “acceleration” OR “rate of force development”. No restric-
tion was placed on the date of the study.

2.2. Inclusion criteria

Inclusion and exclusion criteria for the current meta-analysis 
were set to include as many relevant S&C training modes and 
dependent variables as possible. Inclusion criteria comprised: 1) 
any training-based study ≥4 weeks; 2) healthy trained or 
untrained participants with a mean age between 14 and 60; 3) 
training group with a minimum of 4 participants; 4) pre- and 
post-training means and standard deviations; and 5) sufficient 
information provided to appropriately describe the training 
method. Studies comprising training that were predominantly 
aerobic-based or rehabilitation focused were excluded.

2.3. Study selection and data extraction

Following deduplication, a three-level selection process compris-
ing title, then abstract then full-text screening was completed. 
Studies were screened and selected for inclusion independently 
by AM with discussions with PS and KB where required. 
A standardised extraction codebook was developed using 
Microsoft Excel, with data extracted and coded independently 
by four researchers (AM, JP, AH, LG) in duplicate with AM com-
pleting extraction for all studies to provide consistency. The fol-
lowing data were extracted: 1) study details (authors, year, total 
number of groups); 2) participant characteristics (final study n, 
gender, training status, and age); 3) outcome domain (maximum 
strength, power, jump performance, and sprinting performance); 
and 4) pre- and post-training means and standard deviations.

The following definitions were used to categorise out-
come domains: 1) maximum strength: a measure of max-
imum force production where time was not limited (e.g., 1– 
6 repetition maximum, isometric mid-thigh pull, peak tor-
que); 2) power: a direct measurement of power output 
measured in Watts (absolute and normalised relative to 
body mass); 3) jump performance: a measure of jump 
height or distance; and 4) sprint performance: 
a measurement of the time to complete a specified linear 
distance or the velocity achieved. Where pre- and post- 
training data were not presented in text but in figures, 
data were extracted using PlotDigitizer 2.6.8 Windows. 
Study authors were not contacted for data where this 
could not be retrieved in text or through digitization on 
a pragmatic decision based on resource availability.
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2.4. Statistical analysis

A Bayesian framework was chosen over frequentist to provide 
a more flexible modelling approach and enable results to be 
interpreted intuitively through the reporting of the probability 
of parameter values, given the observed data (Kruschke & 
Liddell, 2018). Effect sizes and their sampling variance were 
calculated using group mean and standard deviation values 
calculated pre-training and at any subsequent time-point. The 
SMDpre and RR effect sizes and their sampling variances σ2 were 
calculated using the following formulae (Lajeunesse, 2011, 
2015; Morris & DeShon, 2002): 

SMDpre ¼ 1 �
3

4n � 5

� �
�xPost � �xPre

SdPre

� �

where n is the number of participants in the training and the 
first term comprises a small-study bias term c n � 1ð Þ, 
where c n � 1ð Þ ¼ 1 � 3

4 n� 1ð Þ� 1 :

σ2 SMDpre
� �
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Percentage improvement (e.g., positive value represents 
improvement and negative value represents a decline in per-
formance) was then calculated using the following formulae 
depending on whether an increase (+) or decrease (-) in the 
outcome represented an improvement in performance. 

%Improve¼þ
�

100 exp RRð Þ � 1ð Þ; � 100 1 � exp RRð Þð Þf g:

.
Prior to conducting full meta-analysis models, the tails of the 
empirical distributions were investigated by focusing on the 
most extreme 1%, 2% and 5% of values for both the SMDpre and 
%Improve effect sizes. All meta-analyses were conducted using 
a nested four-level Bayesian mixed effects meta-analytic model 
(Jones et al., 2018). The series of nestings included the indivi-
dual study (level 4), the outcome (level 3), the measurement 
occasion (level 2) and the sampling variance (level 1). Where 
studies included multiple time points following baseline (e.g., 
level 2) effect sizes were calculated for each time point relative 
to baseline and included in the model. To account for uncer-
tainty in σ2 due to non-reporting of r, the values were allowed 
to vary and were estimated by including an informative 
Gaussian prior approximating correlation values centred on 
0.7 and ranging from 0.5 to 0.9. Variance partition coefficients 
(VPCs) were used to quantify the relative variance explained 
across the different levels of the hierarchy, with addition of 
VPCs used to estimate the expected (population) correlation 
between two randomly chosen elements within the same 

nesting structure (Hox et al., 2018). The parameters obtained 
from the meta-analysis models were then used to calculate 
small, medium and large threshold values for each of the out-
come domains. This was achieved by generating posterior pre-
dictions from each meta-analysis model and calculating the 
0.25-, 0.5-, and 0.75-quantiles. Posterior predictions used the 
posterior sample for the model parameters to simulate new 
data. Weakly informative Student-t prior and half Student-t 
priors with 3 degrees of freedom were used for intercept and 
variance parameters (Gelman, 2006). Outlier values were iden-
tified by adjusting the empirical distribution by a Tukey g-and-h 
distribution and obtaining the 0.0035- and 0.9965-quantiles, 
with values beyond these points removed prior to further 
analysis (Verardi & Vermandele, 2018). Meta-analyses were per-
formed using the R wrapper package brms interfaced with Stan 
to perform sampling (Bürkner, 2017). Convergence of para-
meter estimates was obtained for all models with Gelman- 
Rubin R-hat values below 1.1 (Gelman et al., 2014).

To build prior distributions for each outcome domain, the 
posterior mean and standard deviation (calculated as the 
square root of the sum of variance components across levels 
2 to 4) obtained from the meta-analysis models along with their 
credible intervals (mean: 0.025 to 0.975-quantile; standard 
deviation: 0.125 to 0.875-quantile) were collected. An 
expanded grid optimisation search was used to select a mean 
and standard deviation value to represent the normally distrib-
uted prior θ,Normal θ0; σ2

0

� �� �
across the credible intervals 

identified. For each point on the grid, the mean and standard 
deviation value was used to calculate the quantile value of the 
small, medium and large thresholds previously identified. 
A least squares approach was then used with the cost function 
equal to the squared sum of the differences between the 
quantile values collected and the corresponding 0.25, 0.5 and 
0.75 reference values. Finally, a supplementary file was created 
so that the prior distributions calculated could be combined 
with data from future S&C training to produce posterior dis-
tributions (Jones et al., 2018) and probabilistic information on 
whether the training exceeds the context-specific small, med-
ium and large thresholds. With new data, the Bayesian updat-
ing is achieved by calculating the effect size ESnew and standard 
error. The standard error is then transformed into a standard 
deviation of the participant-level outcome σ using 

σ2
enew
¼

σ2

nnew 

where nnew is the number of participants in the training of 
interest. The prior variance σ2

0 is then re-expressed so that the 
amount of information contained in the prior distribution is 
equivalent to training with n0 participants where 

σ2
0 ¼

σ2

n0
:

The Bayesian updating for the posterior distribution of the 
effect size θ is then achieved by using the following formula 
(Jones et al., 2018) 

θjESnew ,Normal
n0θ0 þ nnewESnew

n0 þ nnew
;

σ2

n0 þ nnew

� �

:
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3. Results

The search strategy returned 110,662 records which reduced 
to 2108 studies following deduplication and title screening. 
Following abstract screening this reduced to 973, and 706 
following full-text screening. A total of 643 studies featured 
the required data to be included in the meta-analyses, 
generating a total of 6574 effect sizes. A list of the 643 
studies is included in the supplementary file. Most studies 
comprised untrained participants (59.6%), followed by 
recreationally trained (33.6%) then highly trained (6.8%). 
The most popular training modes were standard resistance 
training (33.8%), followed by combined (e.g., resistance and 
power, 28.5%) and plyometric (12.4%). Most training com-
prised three sessions per week (42.2%), followed by two 
sessions (37.8%) then four sessions (10.5%). The majority 
of training included up to six exercises per session (73.5%), 
for three (36.6%) or four sets (25.2%). Comparison of gender 
identified that most studies were comprised solely of males 
(66.8%), followed by a similar number of studies comprising 
both males and females (17.1%), and then females only 
(16.1%). Information describing the distribution of study 
characteristics are presented in Table 1. Most training lasted 
between 6 and 12 weeks, with 25 studies (3.9%) including 
training longer than 25 weeks, and 14 studies including 
training longer than 52 weeks (2.2%). The median number 
of outcomes extracted from studies was 4 with interquartile 
range (IQR): 2–7. The median number of groups included in 
studies was 2 with IQR: 2–3. The most common outcome 
domain was maximum strength (2588 effect sizes from 419 
studies), and the least common was power (1183 effect sizes 
from 203 studies).

Prior to applying the meta-analytic model, the tails of the 
empirical values were investigated, with each demonstrating 
long right tails (Table 2). Pooled across all outcome domains, 
the 0.975-, 0.9875- and 0.995-quantiles for SMDpre were equal 
to 3.2, 4.8 and 8.6, respectively; and for %Improve were equal to 
45.9%, 59.6% and 88.2%, respectively. Similar long right tails 
representing implausible values were identified across all out-
come domains for SMDpre but were restricted primarily to 
maximum strength for %improve (Table 2). Data were then 
prepared for meta-analysis and a total of 123 outliers were 
removed with lower bound SMDpre and %improve thresholds 
of −0.91 and −13.4%, and upper bound SMDpre and %improve 
thresholds of 6.7 and 87.6%. Effect size estimates including 
small, medium and large thresholds are presented in 
Figures 1 and 2. Numerical values and summaries of variance 
parameters are presented in the supplementary table. Pooled 
across all outcome domains the threshold value estimates for 
SMDpre equalled small: 0.16 [95%CrI: 0.15 to 0.18], medium: 0.46 
[95%CrI: 0.45 to 0.48], and large: 0.81 [95%CrI: 0.79 to 0.83]; and 
for %Improve equalled small: 2.4 [95%CrI: 2.1 to 2.6%], medium: 
7.8 [95%CrI: 7.5 to 8.0%], and large: 15.1 [95%CrI: 14.7 to 15.4%]. 
Comparisons across outcome domains identified large differ-
ences in threshold values for both effect size statistics with the 
greatest values obtained for maximum strength, followed by 
similar values for power and jump performance, and finally, 
substantively smaller values for sprint performance (Figure 2).

Mean and standard deviation values for future normal dis-
tribution SMDpre and %improve priors are presented in Table 3. 
The large difference in means across outcome domains 
reflected the same ordering observed across small, medium 
and large thresholds. However, consistently the standard devia-
tion was similar in size to the mean, demonstrating the large 

Table 1. Distribution (percentiles) of study characteristics and overview of outcome domains.

Study characteristic 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Participants per 
study

4 14 17 19 21 24 28 32 37 51 177

Participants per 
group

4 7 8 9 10 11 12 14 16 21 72

Mean Age 14.0 16.7 18.9 20.0 20.4 21.0 22.0 23.0 23.8 25.0 60.0
Publication Year 1962 1996 2005 2008 2010 2012 2014 2015 2016 2017 2018
Intervention 

duration (weeks)
4 5 6 6 8 8 8 10 12 14 520

Outcome domain Number of studies (%) Number of effects (%)
Maximum strength 419 (65.2) 2588 (39.4)
Jump 379 (58.2) 1552 (23.6)
Sprint 254 (39.5) 1251 (19.0)
Power 203(31.6) 1183 (18.0)

Table 2. Direct calculation of largest and smallest 1%, 2% and 5% of effect sizes across outcome types.

Outcome Statistic 0.005-Quantile 0.0125-Quantile 0.025-Quantile 0.5-Quantile 0.975-Quantile 0.9875-Quantile 0.995-Quantile

All SMDpre −0.86 −0.55 −0.32 0.49 3.2 4.8 8.6
%Improve −15.0% −7.3% −4.1% 6.9% 45.9% 59.6% 88.2%

Maximum 
Strength

SMDpre −0.84 −0.43 −0.23 0.62 4.0 6.0 8.6
%Improve −17.0% −9.2% −5.0% 12.4% 59.9% 84.2% 113.9%

Jump 
performance

SMDpre −0.75 −0.38 −0.25 0.47 2.5 3.3 8.0
%Improve −11.2% −5.9% −3.5% 6.3% 27.6% 34.8% 42.2%

Sprint 
Performance

SMDpre −0.90 −0.71 −0.51 0.38 3.1 5.3 11.2
%Improve −5.3% −3.4% −2.6% 2.1% 19.4% 40.5% 60.8%

Power SMDpre −0.78 −0.58 −0.32 0.36 2.2 4.0 8.9
%Improve −17.1% −11.3% −5.0% 6.6% 38.8% 45.9% 53.9%
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variability in results that should be expected based on the 
training and potentially population characteristics.

4. Discussion

The present study comprises one of the largest meta-analyses 
in sport and exercise science and the largest synthesis of con-
temporary S&C training to date. In general, the analyses 
showed similar findings for SMDpre and %Improve, with the 
greatest effect sizes obtained for maximum strength outcomes, 
and substantively smaller values for sprint performance. For 
both effect sizes, the positive tails of the empirical distribution 
had the potential to exhibit extremely large values. These large 

values were generally restricted to maximum strength out-
comes for %Improve (e.g., ~60 to 110% improvement) but 
were consistently large and physiologically implausible for 
SMDpre across all outcome domains (~4 to 11). Development 
of Bayesian prior distributions resulted in relatively large 
spreads with standard deviation values close to the mean, 
and for sprint performance standard deviations were greater 
in value, which was consistent with the finding that 
a substantive proportion of the distribution included effect 
sizes close to zero.

Cohen’s (Cohen, 1988) generic threshold values (small: 0.20, 
medium: 0.50, and large: 0.80) were broadly in line with SMDpre 

values obtained from the current meta-analysis when data 

All

Sprint

Power

Jump

Strength

Small Mid Large

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5
Effect Size

Figure 1. Empirical distribution and modelled outcome-specific standardised mean difference effect size thresholds. (Below): Black curve is a density plot of the directly 
calculated empirical effect size values across all outcomes. Small, mid, and large thresholds represent the 0.25, 0.5 and 0.75-quantiles of predicted draws. Black 
diamonds are based on direct calculation and red intervals illustrate uncertainty in estimates through the median value (circle) and 95% credible interval.

All

Sprint

Power

Jump

Strength

Small Mid Large

−10 0 10 20 30 40
%Improve

Figure 2. Empirical distribution and modelled outcome-specific percentage improvement effect size thresholds. (Below): Black curve is a density plot of the directly 
calculated empirical effect size values across all outcomes. Small, mid, and large thresholds represent the 0.25, 0.5 and 0.75-quantiles of predicted draws. Black 
diamonds are based on direct calculation and red intervals illustrate uncertainty in estimates through the median value (circle) and 95% credible interval.
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were pooled across all outcome domains (e.g., small ~ 0.15, 
medium ~ 0.45, large ~ 0.80). In contrast, the small, medium 
and large thresholds for %Improve pooled across all outcome 
domains were approximately 2.5%, 8.0% and 15.0%. However, 
the present study identified large differences in effect size 
distributions for both statistics when outcome domains were 
analysed separately, indicating that context relevant threshold 
values are important to appropriately interpret the magnitude 
of change following S&C training. The greatest values were 
obtained for maximum strength outcomes, followed by similar 
values for power and jump performance, and finally, substan-
tively smaller values for sprint performance. For maximum 
strength, the SMDpre small, medium and large thresholds 
were equal to 0.25 [95%CrI: 0.22 to 0.27], 0.59 [95%CrI: 0.56 to 
0.61] and 0.98 [95%CrI: 0.94 to 1.0], respectively. In contrast, 
expressed as a percentage improvement the thresholds were 
equal to 6.0% [95%CrI: 5.5 to 6.5], 13.4% [95%CrI: 12.8 to 14.1] 
and 22.2% [21.6 to 22.9] which are arguably easier to interpret. 
However, the greatest conceptual difference between the two 
effect sizes was evident when comparing thresholds between 
maximum strength and sprint performance. For sprint perfor-
mance the small, medium and large SMDpre thresholds 
decreased to 0.07 [95%CrI: 0.04 to 0.10], 0.37 [0.33 to 0.40] 
and 0.70 [0.66 to 0.74]. These results show that a substantive 
proportion (~15 to 20%) of the effect size distribution are close 
to or below zero, whereas the large sprint performance thresh-
old is between the medium and large maximum strength 
thresholds. In contrast, the percentage improvement thresh-
olds for sprint performance were equal to 0.4% [95%CrI: 0.2 to 
0.6], 2.2% [95%CrI: 2.1 to 2.4] and 4.5% [4.2 to 4.8], such that all 
thresholds were below even the small maximum strength 
threshold. These observations reflect differences in relation-
ships between means and standard deviations for outcome 
domains and demonstrate the conceptual difference between 
effect sizes describing expectations of how participants will 
change their relative position within a population compared 
to the magnitude of change relative to starting values.

The potential for restricted sampling of a population to bias 
standardised effect sizes such as the SMDpre has previously been 
highlighted (Baguley, 2009). If the sample is a truncated sample 
(missing one or both tails), then the standard deviation is likely to 
be underestimated such that the SMDpre will be positively 
biased. This scenario is likely to occur in S&C research where 

random sampling is uncommon and often convenience samples 
are used, including recruitment from a single team where parti-
cipants may be relatively homogenous given similar training 
experiences. In contrast, sampling only from the tails is likely to 
overestimate the standard deviation (Baguley, 2009) and thereby 
negatively bias the SMDpre. In S&C, this situation may occur in 
studies recruiting both males and females where the outcome 
variable has a large sex stratification. Analysis of the tails of the 
empirical distribution in the current study highlight the likely role 
that restricted recruitment practices have played in overestima-
tion of some SMDpre values generating physiologically implausi-
ble results (~4 to 11) across all outcome domains. The effect sizes 
we calculated were from a single training group and were not 
compared to a non-exercise control, it is therefore possible that 
the values overestimate the magnitude of change following 
training due to issues such as placebo and learning effects. 
Additionally, there are important limitations of pre-post designs 
compared to those that include a concurrent control (e.g., 
a standard training regime), and the subsequent comparative 
effect sizes they generate enabling inference regarding the cau-
sal effect of training regimes of interest.

The approach we used enabled more precise estimates of 
effect sizes and is more robust to overestimation due to sam-
pling practices. One of the primary challenges and biggest 
criticisms of Bayesian methods has been the selection of appro-
priate priors (Goodman, 1999; Mengersen et al., 2016). Where 
substantive and relevant external information is present, 
attempts should be made to incorporate this within an infor-
mative prior (Mengersen et al., 2016). One of the most effective 
sources of information to build priors to better assess the 
magnitude of change following future training includes meta- 
analyses such as that presented here (Jones et al., 2018). An 
additional challenge in the effective use and uptake of Bayesian 
methods is a lack of formal training and familiarity with 
approaches (Bernards et al., 2017). We have made attempts to 
address both challenges by firstly, creating priors that are based 
on a large volume of research focusing on the outcome 
domains frequently used in S&C research; and secondly, 
employing a relatively simple Bayesian updating method that 
can be understood intuitively and facilitated in software that is 
familiar with both researchers and practitioners. The method 
adopted expresses both the prior and posterior distribution of 
the effect size as normal distributions that are familiar and 
simple to assess suitability by examining stated probabilities. 
For example, based on the meta-analysis results obtained here, 
an SMDpre prior with mean 0.62 and standard deviation of 0.53 
was developed for maximum strength outcomes. This asserts 
that the prior probability of obtaining an SMDpre value greater 
than 0 is p = 0.879 (e.g., 1 � Φ ( � 0.62/0.53)), the probability of 
obtaining an SMDpre value between 0 and 0.5 is p = 0.289 (Φ 
((0.5 � 0.62)/0.53) � Φ ( � 0.62/0.53))), and the probability of 
obtaining an SMDpre value greater than 1 is = 0.237 (1 � Φ ((1 
� 0.62)/0.53)). A researcher and practitioner can decide to 

alter the mean and standard deviation if they believe the 
probabilities returned do not match their prior beliefs, which 
may be the case when considering elite athletes where positive 
changes are less certain. The values presented here, however, 

Table 3. Mean and standard deviations of prior distributions for standardised 
mean difference (SMDpre) and log transformed relative ratio (RR) effect sizes 
statistics across outcome domains.

Prior mean Prior standard distribution
Outcome Statistic

All SMDpre 0.50 0.44
Log(RR) 0.081 0.083

Maximum 
Strength

SMDpre 0.62 0.53
Log(RR) 0.128 0.105

Power SMDpre 0.39 0.41
Log(RR) 0.074 0.079

Jump 
performance

SMDpre 0.45 0.40
Log(RR) 0.066 0.060

Sprint 
Performance

SMDpre 0.38 0.47
Log(RR) 0.026 0.034
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provide useful anchors as they were designed to fit an exten-
sive amount of data collected from S&C training. Similarly, the 
updating process used to combine prior information with data 
collected and generate posterior distributions is also easily 
interpreted. First, the method (Jones et al., 2018) updates the 
posterior mean as a weighted combination of the prior mean 
and the effect size calculated directly from the training. The 
weights are determined by the uncertainty in the estimate from 
the data, and where for example, a small number of partici-
pants are investigated, the standard error will be large and 
therefore greater weight placed on the prior mean. The exact 
weights used are determined by matching the uncertainty in 
the new data and the prior, and translating the information 
contained in the prior to a single trial that can then be updated 
with the new data (Jones et al., 2018).

To demonstrate how potential issues with regard to poor 
estimates of the standard deviation can be addressed, the exam-
ple outlined above is continued. If we assume a correlation 
between the pre- and post-training scores of 0.7 (a requirement 
to calculate uncertainty in the estimate), then combining the 
extremely large SMDpre value of 4.2 with the small sample size 
of n = 8 generates a standard error of 1.41. Based on a frequentist 
approach, a 95% confidence interval for the effect size would 
equal 4.2 ± 1.96 � 1.41 giving a range of 1.4 to 7.0. However, 
given the small sample size and the large standard error, when 
updated in a Bayesian framework using the methods presented 
here and the equations in the statistical analysis section, the 
posterior mean and standard deviation are shrunk to 1.1 and 
0.50, respectively. The effect size is still considered large but is 
now more plausible and can be interpreted probabilistically 
given the normal distribution and posterior parameters esti-
mated (e.g., probability of at least a small change: p = 0.955; 
probability of at least a medium change: p = 0.846; and prob-
ability of at least a large change: p = 0.595). Note, if the sample 
size was much larger, say n = 100, then the directly calculated 
effect size increases to 4.7 (due to a reduction in the bias offset) 
with 95% confidence interval giving a range of 4.0 to 5.4, and the 
posterior mean is only shrunk to 3.5, as there is less uncertainty in 
the original estimate.

5. Conclusion

To assist practitioners in selecting and developing training 
using evidence-based practices, it is important that processes 
and tools are available to compare and appropriately interpret 
results disseminated in research. Currently, the use of effect 
size statistics provides the most practical method of ranking 
and determining which training regimes are most likely to 
provide a basis for the greatest improvements within a given 
population. There are multiple effect size statistics that can be 
used, each with their own strengths and weaknesses. 
However, regardless of the effect size statistic used, clear 
patterns emerge when evaluating previous research in S&C 
including substantive differences in distributions across out-
come domains, particularly between maximum strength and 
sprint performance. Whilst it should be acknowledged that 
there are limitations in categorising continuous variables, 

including the generation of different qualitative interpreta-
tions of very similar values at the boundaries, the approach 
is widely used and can provide important insights. Knowledge 
that different outcome domains can generate large differ-
ences in effect size distributions has several important con-
sequences. Firstly, interpretations on the magnitude of 
change following training can be greatly influenced. For 
example, using previous non-S&C specific thresholds, 
researchers and practitioners may interpret training regimes 
focused on developing sprint performance as being unsuita-
ble when a more complete understanding highlights that 
these improvements may be comparable with magnitudes of 
change commonly observed, and therefore the training 
appropriate to use with a given population. Second, knowl-
edge of effect size distributions has important implications for 
setting sample size requirements for future research studies. 
Effect size thresholds are commonly used for power calcula-
tions using frequentist methods and suggest that smaller 
sample sizes may be required for training aimed at developing 
maximum strength compared with training aimed at devel-
oping sprint performance. For example, using the medium 
effect sizes presented here and a simple one sample t-test 
with α set at 0.05, approximate sample sizes of 21 or 49 would 
be required for training aimed at developing maximum 
strength or sprint performance, respectively (Faul et al., 
2009). It is important to note, effect sizes for comparative 
studies investigating potential differences between training 
regimes are likely to be considerably smaller than those pre-
sented here and therefore require greater sample sizes. In 
contrast, sample size approaches using Bayesian methods 
can be conducted using the prior distributions presented 
here (Jones et al., 2018).

Given the large volume of S&C research and the pace at 
which it is accelerating, there are potential advantages to 
incorporating this information within future research to make 
better estimates, particularly where small sample sizes are 
common and effect sizes may be low (Mengersen et al., 2016). 
Bayesian methods are well suited to this process, and it is likely 
that as more disciplines and research in general take advantage 
of the potential benefits associated with Bayesian frameworks 
and criticisms of null hypothesis significance testing continues 
to grow (Wasserstein et al., 2019), increased uptake will occur. 
Valid criticisms of Bayesian frameworks remain and the use of 
relatively strong priors for contexts where they are not suited 
are likely to lead to poor inferences and the description of 
certain training as more effective than they are. To facilitate 
an increased use of Bayesian methods processes are required to 
address two of the main challenges which include develop-
ment of appropriate priors and accessible tools and procedures 
that are intuitive and can be carried out ideally without need of 
complex software. The present study has attempted to address 
these challenges.
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