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Abstract—In this research, we conduct deep learning based
Total Cloud Cover (TCC) forecasting using satellite images. The
proposed system employs the Otsu’s method for cloud segmen-
tation and Long Short-Term Memory (LSTM) variant models
for TCC prediction. Specifically, a region-based Otsu’s method
is used to segment clouds from satellite images. A time-series
dataset is generated using the TCC information extracted from
each image in image sequences using a new feature extraction
method. The generated time series data are subsequently used
to train several LSTM variant models, i.e. LSTM, bi-directional
LSTM and Convolutional Neural Network (CNN)-LSTM, for fu-
ture TCC forecasting. Our approach achieves impressive average
RMSE scores with multi-step forecasting, i.e. 0.0543 and 0.0823,
with respect to both the first half of daytime and full daytime
TCC forecasting on a given day, using the generated dataset.

Index Terms—Long Short-Term Memory, Deep Learning,
Total Cloud Cover, Time-series Forecasting, and Satellite Imaging

I. INTRODUCTION

As the world focuses more on minimizing the use of fossil
fuels, many have moved into renewable energy sources like
photovoltaic (PV) energy. PV energy is directly converting
sunlight into electricity using the photoelectric effect. Since
this has come into the limelight, the importance of having
a reliable and accurate Total Cloud Cover (TCC) forecasting
approach has attracted significant attention. Cloud cover plays
a major role in variating solar irradiance. TCC is the fraction
of the sky covered by all visible clouds. Variability in TCC
contributes significantly to the final power output from PV
energy sources. Therefore a reliable future TCC forecasting is
required.

On another aspect, TCC is an important factor in predicting
the weather. Clouds contribute to variability in the earth’s
surface temperature. If there is a high TCC, it can cause a
drop in surface temperature. Apart from these, TCC directly
or indirectly influences various fields such as agriculture,
astronomy, tourism, and so on.

Therefore, this research focuses on the development of an
efficient and reliable low-cost approach for short-term TCC
forecasting. Hence our identified research questions are:

1) Can we estimate TCC using image processing tech-

niques?

2) Can we generate a spatio-temporal time series dataset

from cloud image sequences?
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3) Can we use the generated time-series data for short-term
TCC forecasting?

4) Can we develop a proof of concept for short-term TCC
forecasting using satellite image sequences?

Motivated by its popularity and impact on the environment
and society, we aim to develop an efficient and accurate future
TCC forecasting system based on deep learning methods using
satellite images. Specifically, a novel region based cloud seg-
mentation approach is proposed for estimating TCC. A time-
series dataset is also created by extracting image sequences
from satellite images. The proposed system is composed of
several key stages for TCC prediction. An edge detection
function, the Otsu’s method, is firstly used to calculate region
based threshold values for cloud segmentation. The TCC
information extracted from image sequences obtained from the
segmented regional cloud cover is used to generate time-series
data. The obtained time series data are subsequently used
to train Long Short-Term Memory (LSTM) variant models
for future TCC forecasting. We employ three LSTM variants,
i.e. LSTM, bidirectional LSTM (BiLSTM) and Convolutional
Neural Network-LSTM (CNN-LSTM), for performance com-
parison. The empirical results indicate that the proposed ap-
proach shows great efficiency in estimating future TCC from
satellite images.

II. RELATED WORK

Cloud information is usually associated with weather anal-
ysis and meteorological data. But as the main source of
variability in solar irradiance [1], TCC is essential in solar
irradiance estimation and PV energy generation prediction.

In the literature, TCC has been estimated with both ground
sky camera images [2]-[5] and satellite images [6], [7].
Ground sky camera images are those that are captured by a
special camera from ground level. Azhar et al. [4] have de-
veloped a cloud detection approach by calculating a threshold
value for B-G color difference value in random pixels from a
collected sky images data set. The effectiveness of B-G color
difference approach has been proved in their study by a com-
parison carried out with R-G color difference approach which
had been used in previous literature [8]. Besides the above,
other edge detection methods such as the Otsu’s thresholding
method developed by Nobuyaski Otsu [9] has also been used



in previous studies for cloud identification in images [10],
[11]. In addition, Zhen et al. [10] proposed a cloud detection
approach using Total Sky Imager (TSI) images. TSI is a sky
camera where the color images of the sky can be captured
from the ground. Specifically, they first extracted the gray level
matrices of the images. Then the Otsu’s threshold method was
used to identify the clouds from background. In addition to
these traditional edge detection approaches, both algorithmic-
based and machine learning-based approaches have been used
for cloud identification in images. Kim et al. [2] and Lothon et
al. [3] have developed algorithms to estimate TCC using sky
camera images. Specifically, Kim et al. [2] have used a variable
threshold value for red blue ratio, which has been determined
from the frequency distribution of the green blue ratio. Their
algorithm has resulted in low average RMSE values for cloud
identification in ground sky images.

In recent studies, deep learning methods have been em-
ployed for TCC estimation. Xie et al. [5] have developed a
deep CNN model, namely SegCloud, for the identification of
clouds in ground sky camera images. SegCloud has resulted in
an average segmentation accuracy rate of 96.24%, whereas the
traditional R-B color difference threshold method has obtained
a much lower accuracy rate of 81.17% for cloud segmentation
in ground sky images. Similarly, deep CNN models have been
used in a variety of other related studies for cloud detection
in sky/satellite images [6], [7].

In most of the existing studies, extracted information from
ground sky camera images and satellite images has been used
for short-term forecasting of TCC. For long-term forecasting,
development of numerical weather prediction (NWP) models
has been exploited [12]. With the development of recurrent
neural networks (RNNs) such as LSTM [13] and Gated Re-
current Unit (GRU) [14], the use of these deep neural network
variants for TCC, PV energy, and solar irradiance forecasting
has been extensively studied in recent years [15]-[19]. Specif-
ically, the RNN and LSTM networks have feedback loops
which allow them to maintain information in memory over the
time. An LSTM unit as shown in Figure 1 in particular consists
of three gates, i.e. input gate, output gate, forget gate, and a
cell state memory. This has provided a solution to the RNN’s
vanishing gradient problem and enabled it to work well with
time series data with long-term dependencies. As an example,
Rajguruk et al. [20] identified that LSTM performs better
than other RNNs for forecasting solar irradiance with time-
series data. Another related study [19] from their team has
also employed data extracted from ground sky camera images
for solar irradiance forecasting using an LSTM network to
indicate its efficiency. Their method was able to forecast
solar irradiance with only 25.1% relative root mean square
differences for 10-minute ahead forecasting. Prior work on
video and image sequence analysis includes spatio-temporal
feature extraction for generating numerical time-series data-
sets and dimension reduction in videos [21]-[36]. In particular,
visual features like linear pixel distances [21]-[23] and color
intensity values [24], [25], [37] have been adopted in existing
video analysis studies.

By referring to the above existing literature, this research
focuses on improving the existing state-of-the-art methods.
For cloud segmentation, existing methods do not consider the
illumination differences in an image due to sun’s positions.
This will inevitably affect edge detection threshold values
for cloud segmentation. To address this challenging issue, we
propose a novel region based threshold calculation and cloud
segmentation approach. Specifically, a region based time series
feature extraction strategy is employed for cloud segmentation
and TCC estimation. The LSTM, BiLSTM and CNN-LSTM
models are used for TCC forecasting. Subsequently, we com-
pare the performance of the three deep networks, where the
most performant models are used and tested for multi-step

TCC forecasting.
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Fig. 2. The data flow of the proposed TCC forecasting system

III. THE PROPOSED METHODOLOGY

In this research, first of all, an image sequence dataset was
created from time-lapse videos captured from satellites. Pre-
cisely, time-lapse satellite videos were collected from publicly



available videos of Sat24.com website [38]. Each collected
time lapse video is of 25 fps frame-rate. Each video consists
of approximately 10-second video segment containing the day
time video from sunrise to sunset. Each of these 10-second
videos creates a sequence of images (approximately 250
images in total). For each image in a sequence of images, TCC
was estimated with the proposed cloud segmentation approach
based on the the Otsu’s method. A time-series dataset has been
subsequently generated using a new feature extraction method.
The yielded time series dataset was then used for training
and testing LSTM, BiLSTM aand CNN-LSTM respectively
for future TCC forecasting. Figure 2 shows the detailed steps
of the proposed system.

A. Total cloud cover estimation

In the collected satellite image sequence dataset, the earth’s
surface is in a darker color and clouds are in white or a
comparatively lighter color. It was identified that, with a binary
image conversion approach, pixels covered by clouds could
be identified. First, each image was converted to a grayscale
single-channel image. Next, a threshold value was applied to
each image to convert the single-channel image to a binary
one. For calculation of the threshold value per image, the
Otsu’s thresholding method was used. To be specific, the
Otsu’s method recursively searches for a threshold value that
minimizes the intra-class variance score o2, defined as the

w?

weighted sum of two variances as shown in (1).

02 = wy(t) * op(t) + wr(t) *a?(t) (D)

where wy(t) and wy(t) are the probabilities of numbers of
pixels for background and foreground classes at threshold ¢,
respectively.
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pp(t) and fif(t) are the mean values of background and
foreground classes at the threshold ¢, respectively.
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o2(t) and afc(t) are variances of background and foreground
classes at threshold ¢, respectively.
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From any generated binary image, TCC could be estimated
by calculating cloud pixels in white. Figure 3 shows the
comparison between an example image and the generated
binary image with the Otsu’s thresholding method.

Fig. 3. Results with the Otsu’s thresholding

Although cloud identification was satisfactory with the
generated binary images as indicated in the above example, it
was identified that illumination or the brightness of different
regions of the image changes with time due to the movement
of the sun. Therefore further investigation proved that the
cloud cover identification could be improved by generating
binary images using a region based Otsu’s threshold value.
Therefore, instead of applying the Otsu’s method for the
overall image directly, we divide each image into nine equal
named regions as shown in Figure 4 where the Otsu’s threshold
values were calculated per named region. Figure 5 shows im-
provements with respect to the proposed region-based Otsu’s
thresholding than applying the thresholding method using the
image threshold value at the image level. Figure 6 depicts the
detailed steps for the proposed TCC prediction.

Fig. 4. The divided nine named regions



Fig. 5.

Comparison between (a) the actual image, (b) per image Otsu’s
thresholding and (c) per named region Otsu’s thresholding

B. Time-series dataset generation

By going through the collected image sequences, it was
observed that short-term future TCC of a certain area is influ-
enced by moving clouds in the surrounding areas. Therefore
TCC values were estimated per named region (see Figure 4)
assuming that the short-term future cloud coverage of a middle
centred region will be mainly influenced by the current cloud
coverage of the surrounding eight regions. It was also assumed
that the visible sky area from a particular location on earth is
denoted by a named region. For each named region, TCC was
estimated by calculating the proportion of white pixels in the
generated binary image.

By using these estimated TCC values, a time series dataset
with nine features was generated for each image sequence.
Each image sequence contains 250 images covering TCC
variation throughout the daytime of a particular day. A dataset
of 12,500 images is therefore generated for subsequent time
series forecasting. The generated dataset consists of 112,500
estimated TCC values with a mean frequency score of 0.4420.
To be specific, the dataset consists of frequency values between
0.01-0.86. The detailed frequency distribution is provided in
Figure 7, while distribution measures of the dataset are also
shown in Table I.
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Fig. 6. The proposed approach for TCC estimation

TABLE I
DISTRIBUTION MEASURES OF THE DATASET

Measure Value

Range (Tmaz — Tmin) 0.8500
InterQuartile Range (IQR)  0.2348
Mean 0.4420
Standard Deviation 0.1511
Coefficient of Variation 0.3420

C. Data pre-processing for time-series forecasting

The generated time-series data were then rearranged for
time-series forecasting. The time-series data generated from 25
consecutive images were used as the input data and the time-
series data generated from the next 10 consecutive images in
the image sequence were considered as the target prediction.
Data generated from 40 image sequences (i.e. 10,000 images)
were considered as the training data and data generated from
10 image sequences (2,500 images) were employed as test
data in this experiment.
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D. Model development and testing

In this research, LSTM, BiLSTM and CNN-LSTM models
are used to test and compare the results of time series
forecasting. These deep networks are chosen owing to their
impressive performances for time-series forecasting in existing
studies [18]. We subsequently compare the performances of
the three deep networks. The input shape of the networks is
(25, 9) and the output data shape is (10, 9). Moreover, the
model configurations of the aforementioned models are listed
in Table II, Table III and Table IV respectively.

For all the trained models, the root mean squared error
function is used as the loss function, while the “rmsprop”
method is used as the optimizer. For evaluation and result
comparison, a normalized root mean squared error (NRMSE)
is calculated. To be specific, root mean squared error (RMSE)
as defined in (8) is a standard metrics to measure the error
of a model in quantitative data forecasting. It provides a
measurement of the deviation between the predicted and the
real values. The smaller the RMSE score, more accurate of
the forecasting is. For this research, NRMSE as indicated in
(9) was calculated by dividing the RMSE by the value range.

®)

where RMSE denotes the root mean square error, and N
is the number of data points. In addition, z; indicates the
actual observations of time-series values, and Z; denotes the
estimated time-series values.

NRMSE:M 9)

Tmax — Tmin
where NRMSE denotes the normalized root mean square error,
while x,,4, and z,,;, indicate the maximum and minimum
values of the dataset.

IV. EVALUATION

For each neural network, the average RMSE scores were
calculated against the validation dataset. To find the most
suitable models for this task, a total of five rounds of testing
were carried out with each proposed network. The BiLSTM

TABLE II
MODEL AND PARAMETER SUMMARY OF LSTM NETWORK

Layer Output Shape Parameters
LSTM (None,25,200) 168000
Dropout (None,25,200) 0
LSTM (None,50) 50200
Dense (None,90) 4590
Reshape (None,10,9) 0
Total
parameters 222790
Trainable
parameters 222790
TABLE III
MODEL AND PARAMETER SUMMARY OF BI-DIRECTIONAL LSTM
NETWORK
Layer Output Shape Parameters
Bi-directional LSTM  (None,25,100) 24000
Bi-directional LSTM  (None,100) 60400
Dense (None,90) 9090
Reshape (None, 10,9) 0
Total
parameters 93490
Trainable
parameters 93490

model obtains the lowest average RMSE results. Figure 8,
Figure 9 and Figure 10 show the training and testing RMSE
score variations in accordance with different training epochs
in LSTM, BiLSTM and CNN-LSTM networks, respectively.
Table V shows the detailed training and testing RMSE scores
for all the three models.
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Fig. 8. RMSE variations with different training epoch settings in the LSTM
network

As indicated in Table V, it is identified that the proposed
BiLSTM model achieves the best performance with the lowest
average RMSE and NRMSE scores. For instance, it obtains the
lowest RMSE score of 0.0275 (i.e. a NRMSE score of 0.0323).

The best performant BiLSTM model with an RMSE score of
0.0275 is then tested with multi-step forecasting. First, the esti-
mated TCC of succeeding 125 consecutive images is predicted
using the estimated TCC of the first 25 consecutive images of
an image sequence. In each image sequence generated from a



TABLE IV
MODEL AND PARAMETER SUMMARY OF CNN-LSTM NETWORK

Layer Output Shape Parameters
Time distributed
conv 1D (None,1,22,10) 370
Time distributed
max pooling 1D (None,1,11,10) 0
Time distributed
flatten (None,1,11,10) 0
LSTM (None,100) 84400
LSTM (None, 1,20) 9680
Dense (None,90) 1890
Reshape (None,10,9) 0
Total
parameters 96340
Trainable
parameters 96340

0.2001 —— train_rmse

test_;mse

0.1754

0.150 1 |

0.125 1 |

7
E 0.100 4

0.075 4

0.050 4

0.025 4

6 2‘0 4‘0 6‘0 Bb 160 12‘0 1‘;0
Epochs

Fig. 9. RMSE variations with different training epoch settings in the BILSTM
network

time-lapse video, the full day time is covered with 250 images
approximately. Therefore with 125 images forecasting from
the first 25 images, the model’s performance of forecasting
TCC over the first half of daytime on a particular day can be
evaluated.

The trained BiLSTM model is then used to forecast an
estimated TCC of succeeding 125 images (from the first 25
images as input) with an average RMSE score of 0.0543 (i.e.
a NRMSE result of 0.0639). The average RMSE result of
0.0823 (i.e. a NRMSE score of 0.0968) was achieved for
TCC forecasting of succeeding 250 images with multi-step
forecasting. The multi-step forecasting results for 10 days with
respect to the BILSTM model are shown in Figure 11.

V. DISCUSSION

In this research, satellite image sequences generated from
recorded time-lapse videos were extracted for dataset construc-
tion. The yielded dataset was subsequently used to model the
intended proof of concept for TCC prediction. Although the
sufficient training is conducted using the dataset, lower RMSE
values could have been achieved with a larger dataset. Also
with a larger dataset, the numbers of named regions could have
been increased.
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Fig. 10. RMSE variations with different training epoch settings in the CNN-
LSTM network

TABLE V
FORECASTING ERROR RATES FOR DIFFERENT METHODS

Neural Network Training RMSE  Testing RMSE

LSTM 0.0347 0.0563
0.0345 0.0503
0.0355 0.0474
0.0352 0.0526
0.0363 0.0487
Average RMSE 0.0352 0.0511
Average NRMSE 0.0414 0.0601
Bi- 0.0213 0.0282
directional 0.0217 0.0275
LSTM 0.0221 0.0292
0.0223 0.0289
0.0226 0.0279
Average RMSE 0.0220 0.0283
Average NRMSE 0.0259 0.0333
CNN 0.0293 0.0574
LSTM 0.0278 0.0550
0.0284 0.0548
0.0297 0.0532
0.0284 0.0550
Average RMSE 0.0287 0.0551
Average NRMSE 0.0338 0.0648

In the proposed approach, the Otsu’s thresholding method
was used to identify the clouds in images for estimating
the TCC. Threshold values have been generated per named
region to capture illumination changes from one region to
another. As indicated in the empirical results, the region
based Otsu’s thresholding works well in identifying clouds
and sky/lands in the background. But this approach may result
in inconsistencies in cloud identification when there is more
noise or in the cases that the earth’s surface is whiter (e.g. for
the satellite images of polar regions). Therefore as a future
implication, the use of a more complex approach for cloud
identification in satellite images could be investigated.

The proposed approach uses image sequences and has
divided satellite images into multiple regions assuming each
region’s future TCC is influenced by surrounding regions’
current TCC. For each region, TCC is estimated in each
image. With these extracted features, impressive RMSE scores
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Fig. 11. Results of multi-step forecasting using the best performant BiLSTM
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have been achieved with all three proposed deep networks.
In particular, the proposed BiLSTM model achieves the best
average RMSE result of 0.0275 (i.e. the average NRMSE
score of 0.0323) for forecasting the TCC of the succeeding 10
images from data extracted from 25 images. With multi-step
forecasting, this best performant BiLSTM model has achieved
an RMSE result of 0.0543 (a NRMSE score of 0.0639) in
average for forecasting TCC over the first half of daytime on
a particular day and 0.0823 RMSE in average (a NRMSE
score of 0.0968) for forecasting TCC over a full daytime
on a particular day. For this forecasting, the trained model
only requires TCC data of 1/10-th of daytime on a particular
day. Overall, the proposed region-based image segmentation
based on the Otsu’s method as well as the three proposed
deep networks (LSTM, BiLSTM and CNN-LSTM) accounts
for the superior performance of our proposed system for TCC
forecasting.

VI. CONCLUSION

In this research, we have proposed region-based cloud
segmentation using the Otsu’s method and three deep net-
works for short-term TCC forecasting. The proposed system
uses satellite image sequences to identify TCC variations
and forecast future TCC from extracted regional features.
Specifically, clouds in satellite images are effectively identified
by applying the thresholding-based Otsu’s method to the nine
named regions. From visual observation of the segmented
results, the region-based Otsu thresholding method has masked
cloud cover better than the image-level Otsu’s thresholding.
Moreover, LSTM, BiLSTM and CNN-LSTM have produced
competent RMSE results for TCC prediction based on time-
series data extracted from the aforementioned regional fea-
tures, which ascertains the efficiency of the proposed models
for TCC forecasting.

Owing to the efficiency and light-weight characteristics of
the proposed deep networks, our approach could be easily
deployed to IoT devices to aid the general public in estimating
future TCC in diverse real-world deployments. Furthermore,

since our system does not require specialist machinery and
equipment which may incur additional cost, the development
of such a low-cost efficient method without additional hard-
ware requirements could also open up future research in using
the proposed method with mobile technologies, pertaining
to energy efficiency and net-zero emission applications. In
addition, hyper-parameter fine-tuning and deep architecture
generation with attention mechanisms will also be exploited
using evolutionary algorithms to further enhance performance
[39]-[47].
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