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ABSTRACT  

Accurate state of charge (SOC) estimation at different operating temperatures is essential for the 
reliable and safe operation of battery management systems (BMS) for lithium-ion batteries in electric 
vehicles (EVs). In this paper, an optimized long-short-term memory-weighted fading extended Kalman 
filtering (LSTM-WFEKF) model with wide temperature adaptation is proposed as a temperature-
conditioned model for SOC estimation. Firstly, the input datasets are categorized based on the 
operating temperatures for EVs in the United States Advanced Battery Consortium manual: cold (− 10 
◦C), normal (25 ◦C), and hot (50 ◦C) temperatures and optimized with an attention mechanism for 
faster training of the LSTM model to cross-train and test to specifically study the effects of 
temperature on the SOC estimation through a transfer learning mechanism. Secondly, the SOC 
estimated by the LSTM model is input into a WFEKF method, which introduces adaptive weighing and 
fading factors to correct, denoise, and optimize the final SOC for each temperature variation under 
complex working conditions. Finally, the results show that the training and testing temperatures have 
distinctive SOC effects using the LSTM model. Also, the proposed LSTM-WFEKF model estimates the 
SOC with overall best mean absolute error (MAE), root mean square error (RMSE), and R-squared (R2) 
values of 0.0697%, 0.0784%, and 99.9965%, respectively, under different temperatures and complex 
working conditions, which is optimal compared to other existing models. Based on the MAE, RMSE, 
and R2 values under different operating temperatures and complex working conditions, this paper 
concludes that the 25 ◦C training dataset ensures a more accurate SOC estimation. Meanwhile, the − 
10 ◦C and 50 ◦C training datasets cause more and less noisy estimates, respectively. The proposed 
LSTM-WFEKF model has wide temperature and working condition adaptability for real-time BMS 
applications in EVs. 

 

Abbreviations: ADAM, Adaptive moment estimate; Ah, Ampere-hour integration method; BBDST, 
Beijing bus dynamic stress test; BMS, Battery management system; CC, Constant current; CNN, 
Convolutional neural network; CV, Constant voltage; DL, Deep learning; DST, Dynamic stress test; ECM, 
Equivalent circuit model; EV, Electric vehicle; FUDS, Federal urban driving cycle; GRU, Gated recurrent 
unit; HPPC, Hybrid pulse power characterization; HWFET, Highway fuel economy test; IFO, Improved 
fractional order; LNCM, Lithium nickel cobalt manganese; LSTM, Long short-term memory; MAE, 
Mean absolute error; ME, Maximum error; ML, Machine learning; NEDC, New European driving cycle; 
OCV, Open-circuit voltage; PSO, Particle swarm optimization; R2, R-squared; RMSE, Root mean 
squared error; RNN, Recurrent neural network; RT, Room temperature; SOC, State of charge; TL, 
Transfer learning; UDDS, Urban dynamometer driving schedule; USABC, United States Advanced 
Battery Consortium; WFEKF, Weighted fading extended Kalman filter. 

 



Introduction 

 Lithium-ion batteries have gradually become the most promising system for power storage in smart 
devices, e-bikes, electric tools, hoverboards, electric vehicles (EVs), spacecraft, and solar power 
backup systems. Compared to other rechargeable batteries (nickel–cadmium, nickel-metal hydride, 
lead-acid, etc.), lithium-ion batteries are preferred due to their appreciable advantages, such as high 
specific energy, high energy density, no memory effect, low self-discharge rate, longevity, wide 
operating temperatures, etc. [1–3]. However, due to the high nonlinearities, such as aging degree, 
temperature, over-charge, over-discharge, etc., encountered during the operation of lithium-ion 
batteries, an accurate state of charge (SOC) estimation is highly essential [4]. The term “SOC 
estimation” refers to the ability of the battery management system (BMS) to functionally determine 
the available capacity of the battery [5,6]. Equivalent to fuel gauges in internal combustion engine 
vehicles, the SOC indicates the total energy remaining in the batteries of battery, hybrid, and plug-in 
EVs and other smart devices [2,7]. The BMS requires accurate SOC not only for EV range calculation 
and trip preparation but also to maximize and guarantee the service life and safety of the battery pack 
and its users. As a result, one of the key characteristics of the BMS is SOC estimation [8]. The SOC value 
of the battery is mostly estimated by utilizing some measurable battery parameters, such as current, 
voltage, etc., and considering the effect of operating temperatures, self-discharge, aging, and other 
nonlinear factors [9–11].  

The methods used for estimating the SOC of the battery can be categorized into four: measurement 
methods based on characterization parameters, ampere-hour (Ah) integration methods, model-based 
methods, and data-driven methods. The methods based on characterization parameters include the 
electrochemical impedance spectroscopy (EIS) method [12] and the open-circuit voltage (OCV) 
method [13]. The EIS measures the battery’s impedance characteristics over a wide range of 
frequencies. Even though its implementation is straightforward, it has complex computation and is 
highly vulnerable to the battery’s state and working conditions [14]. The OCV method estimates the 
SOC based on the OCV-SOC relationship, but it requires a long rest time for the battery to regain its 
equilibrium state. Furthermore, its estimates are affected by measurement errors in the OCV value, 
which makes them unsuitable for onboard applications [15]. For the Ah integration method, its 
accuracy is susceptible to erroneous initial SOC value and error accumulation during the integration 
due to load current fluctuations. Also, it is difficult to determine the Coulombic efficiency under 
different operating conditions [16,17].  

For the model-based method, the SOC is estimated based on the characteristic parameters of the 
battery model established for the state observer. It considers the SOC as a hidden state and constructs 
a state-space model that associates the SOC with the measured variables, such as current and voltage 
[8]. Battery models commonly established for model-based methods include the empirical model, 
electrochemical model, and equivalent circuit model (ECM) to monitor and control the 
thermodynamic equilibrium potential of the battery [18,19]. Currently, model-based methods include 
state observers, such as the auto-recursive Kalman filter (KF) [20], extended Kalman filter (EKF) [21], 
unscented Kalman filter (UKF) [22], particle filter (PF) [23], H-infinity filter [24], and their optimized 
variants, which have proven to estimate appreciable results [25–29]. These methods exhibit 
satisfactory robustness against inaccurate SOC initialization and measurement noise. However, it 
turns out that their performance largely relies on the accuracy of the underlying battery model [8]. 
Whenever the battery is exposed to complicated load profiles and adverse working conditions, the 
voltage behavior becomes very difficult to model. As a result, the battery model established for the 
state observers is often subjected to trial-and-error model parameter identification, resulting in poor 
SOC estimation and increased computation [30–32].  



For the data-driven method, the battery is regarded as a “black box” model rather than a practical 
mathematical model. This estimation method is model-free, and its performance is highly dependent 
on the quality of the data with optimal training and hyperparameter selection [33,34]. This model uses 
feature extraction and sufficient training and testing datasets to directly map the nonlinear 
correlations between its states and the measured variables, such as current, voltage, temperature, 
etc. [35,36]. Many nonlinear stresses, such as the current rate, cell aging, operating temperature 
variations, and other operating conditions that affect the battery, are accounted for in the training 
and testing process, which are difficult to establish for the model-based estimation methods [30,37]. 
Several data-driven methods proposed for SOC estimation have served as the most promising 
methods to overcome the limitations of other existing methods in recent years [38]. Due to their 
excellent self-adaptation, self-learning, and high estimation accuracy, data-driven methods have been 
used to accurately estimate the SOC of lithium-ion batteries. Machine learning (ML) models, such as 
linear regression models [2], support vector machine [36], k-nearest neighbor [39], Gaussian process 
regression [40], etc., have been proposed for SOC estimation due to their simple estimation process 
and efficient computation. However, these ML models do not incorporate the high nonlinearities, such 
as the electrochemical, electrothermal, material degradation, etc., characteristics of the battery under 
complex working conditions [41]. Also, the accuracy and performance of the ML models heavily 
depend on the quality and quantity of the input data, and unbalanced datasets lead to overfitting and 
underfitting problems [42]. On the other hand, the capability of deep learning (DL) models, a type of 
ML model that automatically maps the complicated and nonlinear temporal correlation between 
battery data and SOC, has drawn substantial interest in the literature on SOC estimation. DL models 
such as fully connected neural network (FCNN), convolutional neural network (CNN), and other 
advanced recurrent neural networks (RNNs), such as long short-term memory (LSTM) and gated 
recurrent unit (GRU) networks, have greatly expanded by increasing the number of computational 
layers. They can self-learn their weights and biases using gradient descent methods without any 
mathematical models, which requires laborious tuning of the parameters [43].  

Several DL-based hybrid models have been proposed to address the inherent constraints of the DL 
models for better SOC estimation of lithium-ion batteries. To estimate the battery’s SOC at room 
temperature (RT), Fan et al. [44] proposed a hybrid CNN with an ultra-lightweight subspace attention 
mechanism with a simple recurrent unit (CNNULSAM-SRU) model with key feature processing and 
transfer mechanism for SOC estimation. Chen et al. [45] proposed a denoising autoencoder (DAE)-
GRU model for SOC estimation under three working conditions. The DAE-NN is introduced to extract 
relevant battery data features at RT. For the estimation of the SOC under noise characterization, Ren 
et al. [46] presented a hybrid particle swarm optimization (PSO)-LSTM model and compared it with 
the LSTM model at RT.  

However, understanding the effects of the different operating temperatures on lithium-ion batteries 
is critical in designing the best thermal management systems to minimize thermal runaways during 
charging and discharging [47]. Several temperature-based DL models have been established for SOC 
estimation. Ma et al. [41] co-estimated the SOC and state of energy based on the LSTM model under 
two working conditions: battery chemistry and noise interference at operating temperatures of 0, 10, 
and 25 ◦C. Oyewole et al. [48] proposed a controllable deep transfer learning (CDTL) model for the 
short and long-term estimation of SOC at the early stages of degradation using two LSTM models as 
the source and target cells at a temperature of 30 ◦C. Yang et al. [49] used a GRU-RNN model to 
estimate the SOC at varying operating temperatures ranging from 10 to 50 ◦C. Tian et al. [50] proposed 
an LSTM model with an adaptive cubature KF method to achieve accurate and robust SOC estimation 
of lithium-ion batteries at operating temperatures ranging from 10 to 50 ◦C under dynamic loading 
profiles. Bian et al. [51] proposed a computationally complex stacked bidirectional LSTM model for 
SOC estimation at various operating 3 temperatures of 0, 10, and 25 ◦C under two working conditions. 



Yang et al. [52] proposed an LSTM-RNN model to model the sophisticated battery behavior under 
varying temperatures for SOC estimation. The estimated SOC is then combined with a UKF method to 
filter out the noise and reduce the estimation errors at varying temperatures from 10 to 50 ◦C. Fasahat 
et al. [53] proposed a model by combining an autoencoder neural network and LSTM for SOC 
estimation of lithium-ion batteries under two working conditions and temperatures of 0, 25, and 45 
◦C. Wang et al. [54] proposed an improved GRU-based TL for SOC estimation using small target sample 
datasets under three working conditions at temperatures ranging from 32–50 ◦C. Ma et al. [55] 
proposed a sequence-to-sequence mapping model with a process information (SSMPI) model for SOC 
estimation by improving the LSTM. It allows the modeling of the state information and the process 
information with a two-stage pretraining strategy implemented to enhance the feature learning 
capability of the model at operating temperatures of 0, 25, and 45 ◦C.  

However, understanding the temperature effects on the SOC estimation of lithium-ion batteries plays 
a significant role in the optimal design, training, and testing using the LSTM model. According to the 
United States Advanced Battery Consortium (USABC) manual, battery working temperatures for EVs 
are categorized into cold (T ≤ -8 ◦C), cool (-8 < T < 0 ◦C), normal (20 ± 10 ◦C), warm (30 < T < 38 ◦C), and 
hot (T ≥ 38 ◦C) [56,57]. From the existing studies above, it can be observed that none of them cross-
trained and tested their models under cold (− 10 ◦C), normal (25 ◦C), and hot (50 ◦C) temperatures to 
specifically study the effects of different training and testing temperatures on the SOC estimation 
accuracy under different complex working conditions and proposed a robust model to solve the 
estimation effects, but they estimated the SOC under different temperatures (0–50 ◦C) and working 
conditions.  

In this paper, a computationally optimized temperature-conditioned LSTM model with wide 
temperature adaptation is established, which is cross-trained and tested under cold (− 10 ◦C), normal 
(25 ◦C), and hot (50 ◦C) temperatures to specifically study the effects of the training and testing 
temperatures on the SOC estimation under three complex working conditions through a TL 
mechanism. Then, a weighted fading extended Kalman filter (WFEKF) method is proposed to denoise 
and optimize the final SOC effects under different temperatures and working conditions to address 
the research gap. The training datasets are obtained from battery tests under the hybrid pulse power 
characterization (HPPC), dynamic stress test (DST), and Beijing bus dynamic stress test (BBDST) 
working conditions to study the robust deep-learning, generalization ability, and TL accuracy of the 
LSTM model. The main contributions of this paper are in four folds: 

 (1) The cross-trained and tested LSTM model is optimized using an attention mechanism, adaptive 
moment estimate (ADAM), and optimal hyperparameter selection to solve the long training time and 
overfitting and improve its generalization ability with accurate SOC estimation under different 
temperatures and complex working conditions.  

(2) The SOC estimated by the LSTM model is input into the proposed WFEKF method to denoise and 
optimize the final SOC for each operating temperature variation under complex working conditions. 
The WFEKF method introduces adaptive weighing and fading factors to recursively correct the 
posteriori state estimate and error covariance matrix updates of the conventional EKF method.  

(3) The results show that the proposed hybrid LSTM-WFEKF model exhibits quick convergence, low 
noise, significant optimization, and accurate end-of-discharge error correction ability of the final SOC. 
Furthermore, it outperforms the LSTM model and other existing temperature-based SOC estimation 
methods after evaluation using the maximum error (ME), mean absolute error (MAE), root mean 
square error (RMSE), and R-squared (R2) metrics.  



(4) The proposed hybrid model is a data-driven initialized model and does not require an OCV-SOC 
relationship or an ECM to establish a lookup table under different operating temperatures and 
working conditions.  

The remaining sections of this paper are organized as follows: Section 2 introduces the mathematical 
analysis: the working principle and architecture of the LSTM model, the training procedure and 
hyperparameter selection for the LSTM model, the working principle of the WFEKF method; data 
description and pre-processing; and the flowchart of the LSTM and LSTM-WFEKF models for SOC 
estimation. Section 3 describes the experimental analysis: the experimental test platform, the BBDST, 
HPPC, and DST experimental test procedures, SOC estimation results, and the performance evaluation 
for the LSTM and LSTM-WFEKF models. Section 4 is the conclusion of this paper. 

2. Mathematical analysis  

2.1. Working principle and architecture of the LSTM model The RNN is an extension of the 
feedforward neural network (FNN).  

The RNN is an extension of the feedforward neural network (FNN). The colored nodes symbolize the 
sensitivity of the outputs to the inputs, with a darker shade indicating a higher sensitivity level, as 
presented in Fig. 1.  

 

 

Fig. 1. Basic architecture of the recurrent neural network. 

 

In Fig. 1, the output at time step k +1 is based on the current input and previous information. This 
result implies that an RNN can capture pattern recognition in sequential datasets in great detail [50]. 
However, due to its short-term memory, it cannot solve time-series problems with long-term 
dependencies caused by the weight in its neurons’ transition matrix [58,59].  

The LSTM is a practical method for SOC estimation because it considers battery capacity reduction as 
a time-series problem. Through a memory cell as a gating mechanism, the LSTM precisely simulates 
the long-term dependencies with its encoder connections to solve the gradient explosion of the 
conventional RNN. As the characteristic features of the LSTM, the unique memory cell and forgetting 
modes ensure the model’s flexibility to adapt to the arbitrary time-series features of the input during 
its training [60]. The memory cell maintains and updates information transfers by judging whether 
they are useful or not throughout its training process [53,61]. The LSTM uses three gates to protect 
and control the memory cell, which are the forget fk, the input ik, and the output ok gates. 

The forget gate fk determines which information from the current input xk and hidden state hk− 1 of the 
previous LSTM cell should be stored or discarded through the sigmoid layer by directing each input 
information to either 1 or 0. The information directed at 1 is stored, while the information directed at 
0 is discarded. The mathematical expression for the forget gate is presented in Eq. (1). 



 

The input gate ik (cell status update) decides which new information needs to be stored in the memory 
cell. It receives the information from the current input data xk and the previous hidden state hk− 1 by 
passing them through the sigmoid and tanh layers to decide the information that needs to be either 
stored or discarded in the cell state. The mathematical expressions for these two layers are presented 
in Eq. (2). 

 

The output information of the forget gate fk is multiplied with the previous cell state Ck− 1 information. 
Then, it is added to a point-wise multiplication of the input gate ik and the cell state vector C�k to 
establish an updated memory cell for a current cell state Ck, as presented in Eq. (3). 

 

 The output gate ok determines the information for the next hidden state hk+1 output based on the 
filtered information contained in the cell state Ck. The mathematical expression of the new output 
gate ok and the current hidden state hk is presented in Eq. (4). 

 

 In Eqs. (1)–(4), xk is the input information at the time step k. σs (•) is the sigmoid layer, which 
determines the information to retain or discard by weighing it towards 1 or 0, respectively. The tanh 
(•) is the hyperbolic tangent function used to control between –1 and 1 the information flowing 
through the model to avoid fading. Each gate in the model has a weight wf , wi, wc, and wo, and a bias 
vector bf , bi, bc, and bo, which corresponds to the forget gate, input gate, memory cell, and output 
gate, respectively. These correspond to the respective gates to enhance the flexibility of the model to 
adapt to the training dataset. 

 2.2. Training procedure and hyperparameter selection for the LSTM model 

Data-driven methods can self-learn the correlation between the SOC and the measured variables, such 
as current, voltage, and temperature, in contrast to model-based methods. The model-based methods 
depend on the precise formulation of battery models to estimate the SOC, which is highly 
computationally expensive and difficult to establish [32]. The SOC is estimated as a time-series 
problem based on the theoretical equation of the Ah integration method. However, because of the 
memory cell and gating mechanism, an LSTM model is an appropriate method to solve this problem. 
In this paper, the time-varying current, voltage, and temperature variables are selected as the inputs, 
which are directly monitored during the battery test under the respective operating temperatures and 
working conditions, and the output is the SOC.  

Several hyperparameters concerning the LSTM model’s overall architecture are determined. The input 
window size and mini-batch size are the initial hyperparameters. The estimated SOC should be more 
reliable and accurate, with less noise caused by other nonlinear effects. Therefore, the input window’s 
size should be accurately determined. The size should, however, be assumed to have a reasonable 
value rather than a very high one to meet the need for real-time SOC estimation. In this paper, the 
window size and mini-batch are defined as 50 and 32, respectively. The number of hidden and dropout 
layers is the second set of hyperparameters. DL models are known to perform better than shallow 
models. However, one or two hidden layers are capable of estimating the SOC. As a function of the 



dropout layer, overfitting is decreased, and the model’s performance is enhanced. Therefore, one 
hidden layer and one dropout layer are selected to make the model lighter and have higher 
computational efficiency. The number of hidden units in an LSTM cell is another crucial factor. Finding 
the ideal value is complicated since it turns out to have different effects on the SOC. After testing 
various units, including 10, 20, 30, and 50, 30 units are used to lighten the LSTM model because 
changing them does not improve the performance significantly. For the epochs, a lower number 
produced more noisy results, and an increased number increased the computation cost with no 
significant improvement. Therefore, 300 epochs are selected after a gradual search for optimal 
performance.  

Using the ADAM optimizer, the gradient (β1) and squared gradient (β2) decay rates are defined as 0.9 
and 0.999, respectively, with a constant learning rate of 0.01 and a gradient threshold of 1. After 
adjusting the afore mentioned hyperparameters, a fully connected LSTM layer is established to 
produce just one output, the desired SOC estimation, which is applicable in real-time. Therefore, the 
established model can derive the temporal dependencies from past and future information by 
capturing the battery’s temporal contexts in both backward and forward directions. The 
hyperparameters used to establish the LSTM model in this paper are summarized in Table 1.  

 

 

For the gradient, which refers to the model’s weights dropping as anticipated, the difference between 
the estimated and actual SOC during the forward pass must be represented appropriately by the loss 



function of the LSTM model. In this paper, the RMSE is used as the loss function, as presented in Eq. 
(5). 

 

  

In Eq. (5), N is the length of the data sequence; yk is the actual SOC value and ŷk is the estimated SOC 
value at time step k.  

In this paper, the LSTM is constructed using MATLAB. Then, a stochastic gradient optimizer, ADAM, is 
used as a default training optimizer due to its computational efficiency and requires low memory. The 
ADAM optimizer updates the model’s weights and biases based on the gradient of the loss function in 
the forward and backward passes until a convergence measure with minimal loss is achieved [62,63]. 

However, due to the high nonlinearities during the battery’s operation as a result of the operating 
temperatures and complex working conditions, the SOC estimation accuracy of the LSTM model is not 
optimal. Therefore, the WFEKF method is proposed, which is presented in Section 2.3.  

2.3. Working principle of the WFEKF optimization method  

The KF method obtains the optimal state estimation based on the state-space model established for 
the system. Several advanced models of the conventional KF, such as the EKF, UKF, PF, etc., methods, 
have been successfully applied in many fields. The EKF method applies partial derivatives and the first-
order Taylor series expansion to the system’s inputs and nonlinearities to estimate the SOC of lithium-
ion batteries [64]. Even though it is an optimal regression data processing method compared to the 
conventional KF, the estimated SOC is highly affected by the system’s nonlinearities and uncertainties 
[65].  

In this paper, an adaptive weighing factor is applied to the Kalman gain to recursively optimize its 
accurate scaling during the posteriori state estimate. Then, a fading factor is introduced to correct the 
uncertainties in the update of the posteriori error covariance matrix for accurate estimation, as 
presented in Eq. (6). 

 

 

In Eq. (6), x+ k and x̂− k are the posteriori and priori state estimates, respectively. ek is the innovation 
residual, which is the difference between the previous and current measurements. Kk is the Kalman 
gain, which is the adjustment weight used to update the measurements to enhance the contribution 
of the residual to the priori state estimate during the posteriori state estimate. γ is the adaptive 
weighing factor, which is tuned within 2 ≤ γ ≥ 4 to denoise the estimated SOC and enhance its 
adaptability to the actual SOC. The update of the posteriori error covariance matrix is also expanded 
by s times, indicating that the estimation ability is optimized. The fading factor s is optimally tuned 
within a range of 0.80 < s ≤ 1, to adaptively adjust the estimation based on the extent of model 
mismatch and the error fluctuations. N is the total filtering time domain, and k is the arbitrary time in 
the operating domain. Meanwhile, all the other working steps of the conventional EKF method remain 
the same.  



The SOC is the ratio of the available capacity to the nominal capacity of the battery. It is 
mathematically expressed, as presented in Eq. (7). 

 

In Eq. (7), SOCk is the estimated SOC, and DODk is the depth of discharge at time step k, where 
Coulombic efficiency and self-discharge are neglected. Qk is the remaining capacity measured at time 
step k and Qn is the nominal capacity, which is the maximum possible charge that can be stored in a 
battery. SOC0 is the initial SOC value, η is the Coulombic efficiency defined as 1, and Ik is the working 
current at time step k.  

2.4. Data description and pre-processing 

 2.4.1. Data description  

Several approaches have been used to establish better NN models: First, the NN model input is pre-
processed to extract the relevant “features” from the battery’s response data. For lead-acid-based 
batteries, the variation in the terminal voltage directly correlates with the battery’s SOC. As a result, 
input for model training often simply uses the current and voltage of the battery. For nickel-metal 
hydride and lithium-ion batteries, due to the short-term dynamics of the terminal voltage, other inputs 
such as temperature are required by including pre-processed voltage derivatives to extract the 
nonlinear features of the voltage [30,31].  

In the paper, as a temperature-conditioned LSTM model, three models are established with different 
training temperature datasets (cold, normal, and hot) and the same hyperparameter selections. 
Meanwhile, the testing temperature dataset is changed based on the purpose of the study. The 
training and testing datasets for each operating temperature variation include the current, voltage, 
and temperature. The variables are obtained with a standard sampling interval of 0.1 s. 

2.4.2. Data pre-processing  

Since data processing is significant for accurate training of the model, the corresponding current, 
voltage, and temperature [Ik, Vk, Tk] variables measured at each time step are used as the input. In the 
training process, an attention mechanism is introduced into the LSTM model. It extracts the relevant 
features from the input datasets by attaching weights. It optimizes the LSTM model’s training process 
to adaptively select the relevant intrinsic features for faster training. The summarized mathematical 
expression of the attention mechanism is presented in Eq. (8). 

 

 

In Eq. (8), 𝑥𝑥�𝑘𝑘 is the attention-weighted input, and 𝑒𝑒𝑘𝑘𝑛𝑛 is a certain attention weight assigned to each of 
the features to measure the significance of the N-dimensional feature at time step k. xk is the context 
vector, which is a weighted sum of the attention probability (βk) and hidden state (hk) information at 
time step k. 

 2.5. Flowchart of the LSTM and LSTM-WFEKF models for SOC estimation  



The SOC estimated by the LSTM model with the current and temperature variables are taken as inputs 
into the WFEKF method to denoise and optimize based on the estimated inputs for the final SOC, as 
presented in the flowchart in Fig. 2.  

 

Fig.2. The flowchart of the LSTM and LSTM-WFEKF models for SOC estimation. 

2.6. Performance evaluation metrics for the LSTM and LSTM-WFEKF models 

In this paper, to critically evaluate the performance of the LSTM and LSTM-WFEKF models for SOC 
estimation at different temperatures and working conditions, the ME, MAE, RMSE, and R2 metrics are 
used. The mathematical expressions for the metrics are presented in Eq. (9). 

 

In Eq. (9), k is the non-missing data steps, N is the total number of data sample steps, and Ek is the 
estimated SOC error, which is the difference between the actual SOC value (yk) and the estimated SOC 
(𝑦𝑦�k) at time step k. 𝑦𝑦� is the average value of the actual SOC at time step k. ME is the absolute maximum 
error value in the estimated error data sequence. The MAE means that all the individual differences 
(both positive and negative values) are equally weighted in the error data sequence. The RMSE 
measures how dispersed the error is from the actual SOC values. The R2 (coefficient of determination) 
measures the perfection of the models in estimating the SOC compared to the actual SOC values.  

3. Experimental analysis  

3.1. Experimental test platform and procedure  

 

An LNCM70Ah (lithium nickel manganese cobalt oxide) lithium-ion battery is used for the experiments 
under varying operating temperatures. It has a nominal capacity and voltage of 70 Ah and 3.7 V, 



respectively. It has a cathode electrode made of nickel cobalt manganese and an anode electrode 
made of natural graphitic carbon with a metallic backing. The basic technical specifications of the 
LNCM70Ah battery are presented in Table 2.  

 

 

A high precision and multi-range Neware battery test equipment (CT-4016-5V100A-NTFA) is used for 
the experimental tests. It has a maximum current of 100 A, a range of charge and discharge voltage of 
25⁓100 V, and a maximum charge and discharge power of 12 kW. The temperature testing equipment 
is a DGBELL BTT-331C, which controls the operating temperature of the battery under cold (− 10 ◦C), 
normal (25 ◦C), and hot (50 ◦C) for each working condition test. The experimental test platform for the 
temperature variation and the working condition tests is presented in Fig. 3. 

 

Fig.3. Experimental test platform constructed for the temperature tests. 

 



Fig. 3 shows the experimental testing platform set-up to obtain the charge–discharge characteristic 
responses of the lithium-ion battery, such as the current and terminal voltage, for all temperature 
variations and working conditions. The main components of the experimental platform are the battery 
test equipment (charge–discharge control circuit, a circuit measurement system, a signal detector, 
and electronic load), temperature test equipment, and a direct current power supply cable connected 
to the lithium-ion battery. A general-purpose computer is used for setting, monitoring, and retrieving 
the response data at the end of the test. The experimental results of the cyclic charge and discharge 
states are visually recorded, displayed, and retrieved from the general-purpose computer, which 
mainly includes the time-varying current, voltage, temperature, capacity, energy, power, etc., values 
of the lithium-ion battery. From the capacity tests, the maximum available capacities of the battery 
are 40, 70, and 52 Ah at − 10, 25, and 50 ◦C operating temperatures, respectively.  

3.2. Test procedures of the BBDST, HPPC, and DST working conditions  

3.2.1. BBDST working condition  

The experimental data for the BBDST working condition is obtained by processing the data retrieved 
from the start, acceleration, slide, brake, rapid acceleration, and stop of the Beijing bus. A constant 
current-constant voltage (CC-CV) is applied until the maximum charge voltage is reached, and a 30-
minute rest is followed by the complex working steps, as presented in Table 3.  

 



 

 

Assuming the charging to be negative and the discharging to be positive, the characteristics of the 
current and voltage datasets under the BBDST working condition for each temperature variation are 
presented in Fig. 4. 



 

Fig. 4. The characteristics of the current and voltage datasets under the BBDST working condition. 

 

3.2.2. HPPC working condition  

The HPPC test measures the pulse capability of the lithium-ion battery under varying step discharge 
levels at different time intervals. The experimental steps are illustrated as follows:  

(i) A CC-CV is applied to charge the battery to its maximum charge voltage. (ii) The battery is rested 
for 40 min to ensure electrochemical and thermal equilibrium before the next test profile. (iii) A 10-
second discharge pulse is applied at a constant current rate depending on the operating temperature 
and the maximum available capacity of the battery. The battery is then rested for 40 s. (iv) A 10-second 
charge pulse is initiated at a 1C current rate, followed by a rest time of 2 min at the same current rate 
based on the operating temperature. (v) A discharge pulse at a current rate of 6 min is applied to end 
the first cycle. (vi) The next cyclic HPPC test is conducted on the battery by repeating Steps (ii) to (v) 
for the ten (10) SOC levels at a 10% discharge interval.  

The corresponding open-circuit voltage for each SOC level is accurately measured before the start of 
the next HPPC test cycle. 



 

Assuming the charging is negative and the discharging is positive, the characteristics of the current 
and voltage datasets under the HPPC working condition for each temperature variation used for the 
SOC estimation are presented in Fig. 5. 

 

Fig.5. The characteristics of the current and voltage datasets under the HPPC working condition. 

3.2.3. DST working condition  

The complex DST working condition is self-defined. The experimental test steps are described as 
follows:  

(i) The battery is charged to a maximum charge voltage of 4.20 V with a CC-CV. Then, a rest 
time of 30 min to ensure thermal and electrochemical equilibrium before the next test 
profile.  

(ii) A CC discharge is applied at a rate of 0.5C for 4 min, which is dependent on the defined 
operating temperature. Then, the battery is rested for 30 s after the discharge. 

(iii) The battery is charged at a CC rate of 0.5C for 2 min and rested for 30 s.  
(iv) A CC discharge is applied at a rate of 1C for 4 min.  
Steps (iii) and (iv) are repeated until a cut-off voltage is reached.  



Assuming the charging is negative and the discharging is positive, the characteristics of the current 
and voltage datasets under the DST working condition for each temperature variation used for the 
SOC estimation are presented in Fig. 6.  

 

Fig. 6. The characteristics of the current and voltage datasets under the DST working condition. 

3.3. SOC estimation and performance evaluation of the LSTM and LSTMWFEKF models 

In this paper, a computer system with an AMD Ryzen 5 2600 Six-Core processor @ 2.60 GHz, 16 GB of 
memory, and a 64-bit OS (x64-based processor) is used for the training and testing of the LSTM model 
for SOC estimation. An epoch of 300 is selected after conducting an optimal search criterion to avoid 
overfitting in the global optimization process. To examine the generalization and TL abilities of the 
LSTM model, the training and testing sequence for SOC estimation is presented in Table 4.  



 

 

The validation and training states to initialize the training of the LSTM model and its training progress 
RMSE and loss curves are presented in Fig. 7.  

 

Fig.7. Validation and training progress of the LSTM model. 

The validation and training state performance curves of the parallel training pool are presented in Fig. 
7 (a), which shows the maximum gradient and the mu values with the total number of epoch iterations 
to initialize the training of the LSTM model. Fig. 7 (b) shows the curves for the training progress, the 
trained model’s RMSE and loss versus total iterations during the training of the LSTM model.  

 

 

 



3.3.1. SOC estimation using the LSTM and LSTM-WFEKF models  

Based on the training and testing temperature sequence presented in Table 4, the SOC estimation 
results for the LSTM and LSTM-WFEKF models under the HPPC working condition are presented in Fig. 
8.  

 



  



Fig. 8. SOC estimation results of the LSTM and LSTM-WFEKF models at different temperatures under 
the HPPC working condition. 

 

To study the effects of different operating temperatures on the SOC, the LSTM model is tested using 
different temperature datasets under the HPPC working condition. Then, the WFEKF method is 
proposed to denoise and further optimize the final SOC.  

In Fig. 8 (a), it can be observed that training the LSTM model with a − 10 ◦C (cold) dataset introduces 
more noise to the system, which increases the “spikes” in the estimation caused by the increased 
resistance and self-discharge at cold temperatures. It can be observed that the noise increases with 
the decreasing SOC level. It results in high SOC estimation ME values of 9.395% and 6.547% when the 
− 10 and 25 ◦C testing datasets are used, respectively. However, it can be observed that the noise in 
the estimated SOC error is overcome when a 50 ◦C testing dataset is used, which results in an ME 
value of 3.491%. Meanwhile, the proposed LSTM-WFEKF model does well in denoising and optimizing 
the final SOC to result in estimated ME values of 1.421%, 3.361%, and 0.8831% using testing 
temperature datasets of − 10, 25, and 50 ◦C, respectively.  

In Fig. 8 (b), it can also be observed that training the LSTM model with a 25 ◦C (normal) dataset shows 
the least noise effect for the 25 and 50 ◦C tests by estimating the SOC with ME values of 1.192% and 
0.9175%, respectively. However, testing with the − 10 ◦C dataset shows a high ME value of 10.51%, 
which means the noise is inherent in the − 10 ◦C dataset. This is a result of the increased resistance 
and self-discharge at cold operating temperatures. Meanwhile, the proposed LSTM-WFEKF model 
denoises and optimizes the final SOC to result in estimated ME values of 0.6028%, 0.6501%, and 
0.4311% using testing temperatures of − 10, 25, and 50 ◦C, respectively.  

In Fig. 8 (c), it can be observed that training with a 50 ◦C dataset offers the best choice to ensure 
minimized estimation errors and noise for the three testing temperature datasets. The ME values of 
the LSTM model are 6.418%, 1.614%, and 1.063% using the testing datasets at − 10, 25, and 50 ◦C, 
respectively, which also indicates that the − 10 ◦C testing dataset has the highest ME. While using 
testing temperatures of − 10, 25, and 50 ◦C, the proposed LSTM-WFEKF model yields estimated ME 
values of 0.9366%, 1.275%, and 0.1243%, respectively.  

Generally, these results show that using the 50 ◦C datasets for training the LSTM model ensures a less 
noisy and more accurate SOC estimation at varying testing temperatures compared to other training 
datasets under the HPPC working condition.  

The SOC estimation results for the LSTM and LSTM-WFEKF models at a training temperature variation 
of − 10, 25, and 50 ◦C under the DST working condition are conducted and presented in Fig. 9.  



 



 

Fig. 9. SOC estimation results of the LSTM and LSTM-WFEKF models at different temperatures under 
the DST working condition. 

In Fig. 9 (a), it can be observed that training the LSTM model under the DST working condition with a 
− 10 ◦C (cold) dataset introduces noise to the estimation. It causes the estimation to have large error 
spikes and variations around the actual SOC, resulting in high ME values of 5.326% and 4.821% when 
tested with − 10 and 25 ◦C datasets, respectively. However, it can be observed that the noise in the 
training dataset is reduced when a 50 ◦C testing dataset is used for the estimation, which results in an 



ME value of 3.337%. Moreover, employing testing temperatures of − 10, 25, and 50 ◦C datasets, the 
proposed LSTM-WFEKF model performs well enough in denoising and optimizing the final SOC, with 
estimated ME values of 1.123%, 1.780%, and 0.4755%, respectively. Furthermore, it can be observed 
that a similar pattern of estimation errors under the HPPC working condition occurs under the DST 
working condition when the − 10 ◦C dataset is used in training the LSTM model.  

In Fig. 9 (b), it can also be observed that training the LSTM model with a 25 ◦C (normal) dataset shows 
a minimal noise effect for the 25 and 50 ◦C tests, estimating ME values of 0.9888% and 1.620%, Fig. 8. 
SOC estimation results of the LSTM and LSTM-WFEKF models at different temperatures under the 
HPPC working condition. 12 respectively. However, testing with the − 10 ◦C dataset yields a high ME 
of 5.463%, confirming that the − 10 ◦C testing dataset has inherent noise. Meanwhile, employing 
testing temperatures of − 10, 25, and 50 ◦C, the proposed LSTM-WFEKF model denoises and optimizes 
the final SOC, resulting in ME values of 1.204%, 0.2092%, and 0.6346%, respectively.  

As presented in Fig. 9 (c), training the LSTM model with a 50 ◦C (hot) dataset is the optimal choice for 
ensuring minimal errors and noise Fig. 8. (continued). 13 effects for three testing temperatures under 
the DST working condition. Using testing temperatures of − 10, 25, and 50 ◦C, the ME values are 
2.698%, 3.360%, and 0.9342%, respectively. Furthermore, employing testing temperatures of − 10, 25, 
and 50 ◦C, the proposed LSTM-WFEKF model yields SOC estimation ME values of 0.5229%, 1.1137%, 
and 0.1717%, respectively.  

For further verification, the SOC estimation is conducted for the LSTM and LSTM-WFEKF models under 
the BBDST working condition using training temperatures of − 10, 25, and 50 ◦C from the DST working 
condition experiment, as presented in Fig. 10.  



 



 



Fig. 10. SOC estimation results of the LSTM and LSTM-WFEKF models at different temperatures 
under the BBDST working condition. 

 

In Fig. 10 (a), it can be observed that training the LSTM model with a − 10 ◦C (cold) dataset under the 
BBDST working condition results in noisy and unstable SOC estimation. It results in large U-shaped 
error curves and variations from the actual SOC, leading to high ME values of 8.857% and 6.883% 
when tested with − 10 and 25 ◦C datasets, respectively. In particular, for the cold-to-cold temperature 
training and testing, high noise effects are observed, which also verifies that they are unsuitable 
matching pairs for the model. However, it can be observed that the error reduces significantly when 
a 50 ◦C dataset is used for testing or estimation, which results in an ME value of 2.377%. Furthermore, 
using testing temperature datasets of − 10, 25, and 50 ◦C, the proposed LSTM-WFEKF model performs 
well in denoising and optimizing the final SOC, with estimated ME values of 1.793%, 1.903%, and 
1.235%, respectively. Under the BBDST working condition, when the LSTM model is trained with a − 
10 ◦C dataset, similar estimation error effects are also observed as exhibited under the HPPC and DST 
working conditions.  

Also, as presented in Fig. 10 (b), comparably, training the LSTM model with a 25 ◦C (normal) dataset 
has moderate noise effects for the 25 and 50 ◦C tests, estimating the SOC with ME values of 1.307% 
and 2.276%, respectively. However, testing with the − 10 ◦C dataset yields a high ME value of 4.874%, 
reiterating the inherent noise effect in the − 10 ◦C testing dataset. For the − 10, 25, and 50 ◦C tests 
under the BBDST working condition, similar estimation error effects are observed for both the HPPC 
and DST working conditions. Meanwhile, the proposed LSTMWFEKF model denoises and optimizes 
the final SOC using testing temperatures of − 10, 25, and 50 ◦C, yielding ME values of 0.6213%, 
0.3838%, and 0.7714%, respectively.  

Furthermore, in Fig. 10 (c), the results show that training the LSTM model with a 50 ◦C (hot) dataset is 
the right approach for ensuring estimations with reduced noise and ME values for the three testing 
temperatures under this working condition. The ME values are 4.155%, 3.865%, and 1.257% using 
testing temperatures of − 10, 25, and 50 ◦C, respectively. However, when tested at − 10, 25, and 50 
◦C, the proposed LSTM-WFEKF model delivers SOC estimation ME values of 0.2322%, 1.805%, and 
0.4444%, respectively.  

Generally, the estimation results under the BBDST working condition also confirm the findings under 
the HPPC and DST working conditions that using the 50 ◦C datasets for the training ensures less noisy 
estimates and good SOC ME values at different temperatures than the other temperatures. It can also 
be observed that whenever a 25 ◦C testing dataset is trained under different temperatures (− 10 and 
50 ◦C), it results in a U-shaped error profile (error initializes appreciably well but diverges in the middle 
of the estimation and converges towards the end of the estimation). Similarly, this is also observed 
under the HPPC and DST working conditions, which confirms the U-shaped error profile and provides 
a signal that it is not advisable to test a normal (25 ◦C) temperature with neither cold nor hot 
temperature datasets.  

Even though under the HPPC, DST, and BBDST working conditions, the LSTM model is highly affected 
by the high-level battery discharge, which results in high errors. In addition to the denoising and 
optimization by the LSTM-WFEKF model, it does well in correcting these end-of-discharge errors to 
give accurate estimates.  

Furthermore, it can be observed that the tested SOC estimation results under the HPPC, DST, and 
BBDST working conditions are consistent for each training and testing temperature sequence, 
respectively, using the LSTM model, which verifies the findings in this paper.  



3.3.2. Performance evaluation of the LSTM and LSTM-WFEKF models  

The critical performance evaluations of the LSTM and LSTM-WFEKF models for SOC estimation under 
the HPPC working condition are conducted using the MAE, RMSE, and R2 metrics, as presented in Fig. 
11.  

 

Fig. 11. Performance evaluation of the LSTM and LSTM-WFEKF models at different temperatures 
under the HPPC working condition. 

 

Fig. 11 shows the evaluated performance of the LSTM and LSTMWFEKF models using the same training 
and testing sequence. It can be observed that the proposed hybrid LSTM-WFEKF model has smaller 
metric values compared to the LSTM model. The MAE and RMSE values verify the robustness and 
accuracy of the proposed hybrid LSTM-WFEKF model over the data-driven LSTM model. Under the 
HPPC working condition, it can be observed that the LSTM model has the overall best MAE, RMSE, and 
R2 values of 0.2103%, 0.2579%, and 99.96%, respectively, at training and testing temperatures of 50 
◦C and 50 ◦C, respectively. Meanwhile, the LSTM-WFEKF model has the overall best MAE, RMSE, and 
R2 values of 0.0697%, 0.0784%, and 99.99%, respectively, at the same training and testing 
temperatures. These results show the accuracy and robustness of the LSTM-WFEKF model with MAE 
and RMSE performance improvements of 66.86% and 66.90%, respectively. From the R2 values, it can 
also be observed that both models exhibit a high level of fitness to the actual SOC of the battery 
system.  



The performance of the estimated SOC by the LSTM and LSTMWFEKF models under the DST working 
condition is critically evaluated using the MAE, RMSE, and R2 metrics, as presented in Fig. 12.  

 

Fig. 12. Performance evaluation of the LSTM and LSTM-WFEKF models at different temperatures 
under the DST working condition. 

 

Fig. 12 presents the evaluated performance of the LSTM and LSTMWFEKF models using the same 
training and testing sequence. Compared to the LSTM model, the proposed hybrid LSTM-WFEKF 
model has smaller metric values. The MAE and RMSE results show that the proposed hybrid LSTM-
WFEKF model outperforms the data-driven LSTM model in terms of robustness and accuracy. Under 
the DST working condition, it can also be observed that the LSTM model has the overall best MAE, 
RMSE, and R2 values of 0.2334%, 0.2844%, and 99.89%, respectively, using 50 ◦C training and 50 ◦C 
testing datasets. However, the hybrid LSTM-WFEKF model has the overall best MAE, RMSE, and R2 
values of 0.07787%, 0.0943%, and 99.98%, respectively, using the same training and testing 
temperatures. These results also indicate the LSTM-WFEKF model’s accuracy and robustness, with 
MAE and RMSE performance improvements of 66.64% and 66.84%, respectively.  

Furthermore, the critical performance evaluations of the SOC estimation by the LSTM and LSTM-
WFEKF models under the BBDST working condition are presented in Fig. 13.  



 

Fig. 13. Performance evaluation of the LSTM and LSTM-WFEKF models at different temperatures 
under the BBDST working condition. 

 

Fig. 13 shows the critical performance evaluation of the LSTM and LSTM-WFEKF models using the 
same training and testing sequence and metrics. Also, the proposed hybrid LSTM-WFEKF model has 
smaller metric values compared to the LSTM model. In terms of robustness and accuracy, the MAE 
and RMSE results show that the proposed hybrid LSTM-WFEKF model outperforms the data-driven 
LSTM model. Using 25 ◦C training and 25 ◦C testing datasets, the LSTM model has the overall best 
MAE, RMSE, and R2 values of 0.3303%, 0.4179%, and 99.98%, respectively, under the BBDST working 
condition. However, the proposed LSTM-WFEKF model has the overall best MAE, RMSE, and R2 values 
of 0.1179%, 0.1333%, and 99.99%, respectively, using training and testing temperatures of 50 ◦C and 
− 10 ◦C, respectively, showing good fitness than the LSTM model. These results demonstrate the 
accuracy and stability of the LSTM-WFEKF model, with MAE and RMSE performance enhancements of 
64.31% and 68.10%, respectively.  

Based on the metric values for the LSTM and LSTM-WFEKF models under the HPPC, DST, and BBDST 
working conditions, it can be observed that using a 25 ◦C (normal) training dataset ensures a more 
accurate estimation. Meanwhile, from the SOC estimation, the 50 ◦C (hot) training dataset has positive 
effects on the testing datasets to ensure less noisy SOC estimation, but the − 10 ◦C (cold) training 
dataset has noisy effects on the estimates. Also, even though the LSTM-WFEKF model outperforms 
the established LSTM, it has low MAE and RMSE metrics and optimal fitness (R2) values, which verifies 
their robustness under different temperatures and working conditions.  



3.3.3. Comparative performance evaluation of the proposed LSTM-WFEKF with other existing 
models 

 The proposed LSTM-WFEKF model is compared with other existing SOC estimation methods using the 
overall best metric values to evaluate their performance. In a total of seven case studies at different 
operating temperatures, including PSO-SRCKF [27], polynomial regression-based battery model-
adaptive UKF (PRBM-AUKF) [28], fractional-order dual (FOD)-UKF [29], dynamic time warping (DTW) 
[66], and other optimal models are employed in comparison with the proposed LSTM-WFEKF model, 
as presented in Table 5.  

 

 

 



In Table 5, using the overall best model performance under different temperatures and working 
conditions in the respective studies, it can be observed that the proposed LSTM-WFEKF model is 
superior and robust after comparing it with other existing SOC estimation models. The proposed 
LSTM-WFEKF model estimates the SOC with an overall best MAE, RMSE, and R2 values of 0.0697%, 
0.0784%, and 99.9965%, respectively, at different temperatures of − 10, 25, and 50 ◦C and under three 
complex working conditions. It can be observed that the SSMPI model [55] is next by estimating the 
SOC with ME and MAE values of 0.34% and 0.664% at operating temperatures of 0, 25, and 45 ◦C.  

4. Conclusion  

In this paper, an optimized LSTM-WFEKF model with wide temperature adaptation is proposed for the 
SOC estimation of lithium-ion batteries. Firstly, the input datasets are categorized based on the 
operating temperatures for EVs in the USABC manual: cold (-10 ◦C), normal (25 ◦C), and hot (50 ◦C) 
temperatures and optimized with an attention mechanism to cross-train and test the LSTM model and 
study the effects of temperature on the SOC estimation through a TL mechanism. Secondly, the SOC 
estimated by the LSTM model is input into the WFEKF method, which introduces adaptive weighing 
and fading factors during the update of the posteriori state estimate and error covariance matrix, 
respectively, of the conventional EKF method to denoise and optimize the final SOC for each 
temperature variation under three complex working conditions. The results show that the training 
and testing temperature datasets have distinctive effects on SOC estimation. Also, the proposed 
LSTM-WFEKF model provides accurate convergence, low noise, and good end-of-discharge error 
correction ability with optimal accuracy compared to the LSTM model. It estimates the SOC with the 
overall best MAE, RMSE, and R2 values of 0.0697%, 0.0784%, and 99.9965%, respectively, under the 
HPPC working condition. Under the DST working condition, it estimates the SOC with an overall best 
MAE, RMSE, and R2 values of 0.0779%, 0.0943%, and 99.9842%, respectively. Finally, the proposed 
LSTM-WFEKF model estimates the SOC with an overall best MAE, RMSE, and R2 values of 0.1179%, 
0.1333%, and 99.9819%, respectively, under the BBDST working condition. It further denoises and 
optimizes the final SOC to ensure a steady-state estimation for real-time BMS applications with wide 
temperature and working condition adaptation compared to other existing SOC estimation models. 
Finally, this paper concludes by proposing that the 25 ◦C training dataset ensures more accurate SOC 
estimation based on the MAE, RMSE, and R2 values under the HPPC, DST, and BBDST working 
conditions. Meanwhile, the training datasets at − 10 ◦C and 50 ◦C produce more and less noisy 
estimates, respectively. The proposed LSTMWFEKF model has wide temperature and working 
condition adaptability for real-time BMS applications in EVs.  

In this paper, it is observed that the proposed WFEKF method produces a more accurate SOC 
estimation. However, it increases the total estimation time due to the adaptive adjustment of the 
weighing and fading factors, even though the attention mechanism is used to reduce the training and 
testing time of the LSTM model. Therefore, in our future work, we will focus on further reducing the 
total estimation time to study different aging levels and charge–discharge current rates at different 
temperatures and working conditions. Moreover, different battery chemistries will be considered and 
compared with other methods to enhance the practicality of the proposed LSTM-WFEKF model for 
optimal real-time BMS applications. 
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