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Abstract. Text detection is a very common task across a wide range of
domains, such as document image analysis, remote identity veri�cation,
amongst others. It is also considered an integral component of any text
recognition system, where the performance of recognition tasks largely
depends on the accuracy of the detection of text components. Various
text detection models have been developed in the past decade. However,
localizing text characters is still considered as one of the most challeng-
ing computer vision tasks within the text recognition task. Typical chal-
lenges include illumination, font types and sizes, languages, and many
others. Furthermore, detection models are often evaluated using speci�c
datasets without much work on cross-datasets and domain evaluation.
In this paper, we present an experimental framework to evaluate the
generalization capability of state-of-the-art text detection models across
di�erent application domains. Extensive experiments were carried using
di�erent established methods: EAST, CRAFT, Tessaract and Ensem-
bles applied to various publicly available datasets. The generalisation
performance of the models was evaluated and compared using precision,
recall and F1-score. This paper opens a future direction in investigating
ensemble models for text detection to improve generalisation.
Keywords� Text Detection.

1 Introduction

Text detection separates text from non-text objects in a given image or video
while recognition classi�es and identi�es text from images. An example is ex-
tracting labels, and annotations from engineering diagrams [8]. Text recogni-
tion is common across a wide range of applications. Examples include surveil-
lance, number plate recognition, information retrieval, and others [16]. Similar
to other computer vision tasks, text detection and recognition have seen signif-
icant progress in recent years due to the latest development in Deep Learning
[4]. Traditional text recognition methods consist of localising individual charac-
ters, building a features space, and use speci�c machine learning algorithms for
the classi�cation tasks (recognition) [16]. In the deep learning era, it is common
to see an end-to-end framework for text recognition, or simply splitting it into
detection and recognition components [15].

Despite the signi�cant achievement in text detection and recognition in re-
cent years [24, 25, 12], localising and recognising text in speci�c domains still a
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very challenging task. For example, consider the Processing and Instrumentation
Diagram (P&ID) which is commonly used in the Oil and Gas industry (Figure 1).
Such diagrams contain various types of graphic elements (symbols, lines, other
shapes), and text which in most cases overlap with other elements and thus
makes the text detection task more challenging [8]. This scenario shows that
the complexity of text detection/recognition can also be found in many other
domains, including document veri�cation, medical images, and others.

A relatively recent review paper [18] shows that, despite the signi�cant
progress in deep learning, and in particular applied to the computer vision do-
main, traditional text detection and recognition methods are still widely used
in such complex scenarios. Nonetheless, they are largely ine�ective as they are
incapable of dealing with the aforementioned issues (i.e.shape overlap).

The typical approach in deep learning is to use a Convolution Neural Net-
work (CNN) to detect and localise text [13]. For recognition, a Recurrent Neu-
ral Network (RNN) is commonly employed [12] to read words and sequences
from image features. Other end-to-end systems combine both CNN and RNN
to localise and recognise text from images [26]. Deep learning approaches have
become more popular recently because learned features are more invariant to
text recognition challenges. However, some challenges like text perspective are
better handle with dedicated modules such as the recti�cation network in [26].
This can add to the complexity/scalability of the model in a typical application
domain. The availability of public datasets and text detection challenges have
elevated the performance of text recognition models. These datasets have pro-
vided text detection task in three main scenarios; text detection from a scanned
document, focused text detection and text detection in the wild. Samples and
task in these datasets are carefully curated and may not necessarily re�ect the
real-world domain.

In this paper, we evaluate the performance of state-of-the-art text detection
models. We analysed how these models generalise on similar tasks in di�erent
datasets. We focused on the text detection task and we consider the text de-
tection models: E�cient and Accurate Scene Text Detector (EAST) [33], Char-
acter Aware Region Awareness for Text Detection (CRAFT) [2], and Tesseract.
We evaluate these models on ICDAR2013 [10], ICDAR2015 [9], MIDV-500 [1]
datasets and P&ID diagrams. We also created an ensemble of the outputs from
various models to address text detection challenges in P&ID. Cross dataset per-
formances were also investigated, and the results show a drop in model perfor-
mances but with noticeable improvement in some metrics for the ensemble.

The rest of the paper is organised as follows. In Section 2, related text recogni-
tion literature is reviewed and discussed. Section 3 presents the methods used in
this work. Section 4 discusses in details the experimental set-up and the datasets
used. Findings are discussed in section 5. Finally, we conclude and suggest future
directions in Section 6.
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2 Related Work

Traditional Optical Character Recognition (OCR) systems rely on features en-
gineering to isolate a character. These are good at localising text from a scanned
document and focused texts. However, they require preprocessing steps such as
binarisation and de-blurring to de-noise images in most cases. Pre-processing
steps could be domain-dependent and adds an extra step in the detection pipe.
For instance, Strokelets [32] are a multiscale representation of di�erent struc-
tural characteristics of characters ranging from arcs and corners to the character
itself. Again, a region-based detector like Features pooling [11], combines pixel-
wise low-level features by using a region-based pooling scheme. This was found
to perform better than Histogram of Gradients (HOG) features in terms of both
speed and accuracy. However, Curved text, perspective text and text detection
in the wild are challenging for traditional OCR system. Thus, there is a renewed
interest in modern deep learning approaches.

Deep learning based models are preferred over traditional approaches because
they address text detection challenges better [8], [16]. These approaches could be
categorised based on di�erent characteristics such as prediction pipeline (single
shot / text proposal networks), model type (discriminative / generative model),
the task (document, perspective text and text in the wild) or bounding box
post-processing technique (bounding box regression and binarisation methods).
Loosely, we use the detection pattern to categorise deep learning approaches viz;
character-based, word-based, line-based or a text segmentation-based approach.

2.1 Character-based detectors

Character-based methods rely on character features and shape in the detection
pipeline to isolate, �ne-tune or build the �nal text. Shi et al. [23] proposed Seg-
ment Linking (SegLink) approach to detecting oriented texts. Segments are parts
of a word or text line while a link connects two adjacent segments belonging to
the same word. Both were predicted using a VGG-16 backbone with convolu-
tional predictors. A depth-�rst search was used to �nd connected segments from
a word. SegLink is e�cient in terms of speed and in detecting oriented texts.
However, spaces between texts are not uniform, and SegLink fails in detecting
text with large character spacing.

Similarly, Character Region Awareness Text Detector (CRAFT) [2] is a deep
model that performs text detection using character-level detection with char-
acter a�nity. CRAFT was designed to handle curved and long texts which are
challenging cases for rigid word box predictors. CRAFT uses weak supervision
to estimate character-level ground truths which are lacking in-text detection
datasets. A�nity and region scores are used to guide the model during train-
ing. Craft out-performed state-of-the-art model on ICDAR2013, ICDAR2015,
ICDAR2017 and MSRA-TD500 datasets.
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2.2 Word-based detectors

Words are irregular in the wild with obvious challenges such as scale, perspec-
tive and curved sequences [26]. Irregular texts detection was addressed by At-
tentional Scene Text Recognizer with Flexible Recti�cation (ASTER) using a
recti�cation network. The recti�cation step uses Spatial Transformer Networks
(STN) [7] totransforms curved texts into regular horizontal text image before a
recognition model is applied. An interesting aspect of this is that recti�cation
does not require human annotation or character level detection. Experiments
were conducted on ICDAR datasets [9, 10], CUTE80 [22], SVT-Perspective [20],
Street View Text (SVT) [29] and IIIT5k-Words (IIIT5k) [17] and SynthText [5],
and results reported show superior performances over existing techniques.

Using a fully convolutional network and NMS, E�cient and Accurate Scene
Text Detector (EAST) [33] achieved state-of-the-art performance on ICDAR2015
dataset. EAST uses a novel loss function and does not require text region pro-
posal, word partitioning or other intermediate steps. The Fully Convolutional
Network (FCN) outputs text score maps and geometry from multiple channels
which are passed to Non-Maximum Suppression (NMS) for post-processing. The
model was designed to use rotated boxes or quadrangles for detection and a sep-
arate loss was used for each case. Results showed that EAST performed well in
challenging scenarios such as irregular illumination, low resolution, orientation
and perspective distortion.

2.3 Line-based detectors

Line-based detectors combine a sequence of text detections into text lines or di-
rectly localise text line as objects. Cascade Convolutional Text Network (CCTN) [6]
detect whole text region and text line from a coarse low-resolution image to �ne-
grain as regions are enlarged. Interestingly, this approach does not rely on any
post-processing. Rectangular convolutions with in-network fusion is employed to
handle multi-shape and multi-scale text lines. The model consists of a coarse net-
work that outputs per pixel heat map that indicates the location and probability
of the text region. And a �ne network that outputs two heats map representing
a �ner text line and text area. Experiments showed that CCTN has a high dis-
criminative ability to distinguish text and no text line in multiple text variations
while surpassing best results on ICDAR datasets.

Connectionist Text Proposal Networks (CTPN) [28] is an extension of Re-
gion Proposal Networks (RPN) [21] in text detection. Text line proposals are
generated from convolution maps obtained from a VGG-16 network. Then a
vertical anchor mechanism is used to predict text, non-text score and y-axis lo-
cation of each proposal. An in-network recurrence layer is used to improve text
context (using RNN with LSTM) to re�ne location in the vertical direction.
Then side re�nement is used to estimate o�sets of each proposal in a horizontal
direction. This essentially connects sequential text proposals. CTPN was e�ec-
tive on muli-lingual and multi-scale (i.e small scale text) problems and are quite
fast at about 0.14s per image (GPU time). CTPN out-performed other existing
detection methods on ICDAR, SWT and MULTILINGUAL [19] datasets.
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2.4 Segmentation-based detectors

While other approaches rely on word/text/line proposals and eliminate false de-
tection in post processes, segmentation methods approach detection in a holistic
manner [31]. For instance, Liao et. al used a lightweight segmentation network
with a novel Di�erentiable Binarisation (DB) module [14] to detect text from
images. DB adaptively predict threshold values at di�erent pixels to isolate
text from background. The DB+segmentation set-up is trainable end-to-end,
lightweight and consequently a very fast detector. At inference, bounding boxes
are generated from binary and probability maps. Extensive experiments showed
that DB is robust and e�ective in detecting curved and multi-lingual texts. Sub-
sequently, DB became the choice detector in text recognition system such as
PP-OCR [3] for its computational e�ciency.

Yao et. al in [31] approached text detection as a semantic segmentation task.
Using a single CNN, the authors detected texts from pixel-wise prediction maps
and build a graph that predicts character properties such as scale, location, ori-
entation and others. The framework predicts text regions, individual characters
and the relationships between them at runtime. Experiments were conducted on
COCO-Text, ICDAR2013, ICDAR2015 and MSRA-TD500 dataset. The results
show that the model out-performed existing methods and was invariant to text
orientation, font, scale and local distractors.

All these models excel in many di�erent ways but are limited in certain
context. For instance, contextual information is lost in selecting correct text
boxes in proposals and also text bounding boxes have a much larger aspect ratio
than objects. A common limitation of all segmentation approaches is that they
fail to detect correctly text that is enclosed in another text.

3 Method

3.1 EAST

The EAST model utilised in this experiment uses a ResNet50 stem rather than
PVANet2x. Although the same U-shape is maintained with the model divided
into feature extraction branch, a feature merging branch and the output branch.
The network outputs a score map (con�dence) for pixel locations and a set of
geometry representing the predicted text boxes. Again, the output geometry
is based on a rotated box only. Outputs regions are further post-processed by
binarising each region followed by a locality aware NMS to obtain the best
possible text location. The loss function is a sum of the score map loss and the
geometry loss, L = Ls + λgLg where λg is a hyper-parameter. Score map is
evaluated using class-balanced cross entropy [30] as shown in Equation 1. The
geometry loss is the sum of IOU using Axis-Aligned Bounding Box (AABB),
and the rotation angle loss, L = LAABB + Lθ. This is shown in Equation 2.

Ls = balanced-xent(Ŷ , Y ∗)

= −βY ∗ log Ŷ − (1− β)(1− Y ∗) log(1− Ŷ )
(1)
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LAABB = − log IoU(R̂, R∗)

Lθ = 1− cos( ˆθ, θ∗)
(2)

where Ŷ is the predicted score map, Y ∗ is the ground truth, β is a balancing
factor, R̂ is the predicted AABB geometry, R∗ is the ground truth, θ̂ is the
predicted rotation angle and θ∗ is the corresponding ground truth. See [33] for
details on the loss functions.

3.2 CRAFT

CRAFT model is similar to EAST in terms of architecture. Both use the same U-
Net structure however, CRAFT relied on a VGG-16 backbone. Again, CRAFT
is built for character level detection. The �nal output of the model is a region
score and an a�nity score. The region score predicts the centre of a character
while the a�nity score is the centre probability of space between adjacent char-
acters. As most text detection datasets use word-level annotations, character
level annotations are generated using weak supervision. CRAFT uses connected
component labelling to generate word boxes by �nding the rotation angle. The
loss function is shown in Equation 3.

L =
∑
p

Sc(p) · (||Sr(p)− S∗
r (p)||22 + ||Sa(p)− S∗

a(p)||22 (3)

where Sc(p) is the pixel-wise con�dence, Sr and Sa are the predicted region
score and a�nity score, S∗

r and S
∗
a are the pseudo-ground truth region score and

a�nity score. For more details, the reader is referred to [2].

3.3 Tesseract

The fourth model used in this experiment is Tesseract. Tesseract is an open-
source OCR engine developed by Hewlett Packard and now maintained by
Google. Tesseract-4 was used in our experiment which is extended with a deep
learning engine. In particular, Tesseract-4 uses LSTM based recogniser3 for more
details). to predict text which is better than the traditional pipeline in 3.0. Im-
ages are processed by sliding window over the image. Each window is fed to
the LSTM engine in a sequence [27]. Tesseract still requires ideal images for
improved performances.

3.4 Outputs Ensemble

Our �nal model is an ensemble that combines outputs from the models described
above. The aim is to boost performance by merging the outputs of participating

3 https://tesseract-ocr.github.io/tessdoc/NeuralNetsInTesseract4.00
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models. Di�erent permutations of the models were considered, and a total of ten
ensembles were created. Multiple detections and overlap con�icts were resolved
through post-processing using three criteria. The �rst case coalesces the results
based on a reference model. The reference model is the �rst model in the ensem-
ble name. Outputs from the reference model and none overlapping boxes from
the other model(s) are chosen as output candidates. Thus, overlapping boxes
from other models are eliminated using a threshold value. The second scheme
eliminates overlaps by selecting the box from the models with the highest con�-
dence. And the third criterion averages overlapping boxes from all models in the
ensembles. Results from all these three scenarios are reported and compared.

4 Experiment

4.1 Datasets

Four datasets were considered in this experiment, namely ICDAR2013 [10], IC-
DAR2015 [9], MIDV-500 [1] and P&ID [18] datasets.

ICADAR2013, which is a focused scene text localisation dataset, consist of
229 samples in train set and 233 samples in test set. Samples contain random im-
ages of text in sign post and written text from di�erent scenes and backgrounds.
Generally, text are focused in the image center.

ICDAR2015, which contains an incidental scene text localisation dataset,
consist of 1500 samples with 1000 images for training and 500 samples for testing.
Samples are challenging with cluttered scene and texts of di�erent shape, size
and orientation.

Meanwhile, MIDV-500 dataset consist of 15000 card samples from 50 coun-
tries from around the world. Card samples were generated from a single card
from each country by taking a picture of the card in di�erent view angle, clut-
tered environment, lightening condition and camera. Each sample creates a more
challenging task for card detection, face localisation and text �eld OCR.

Finally, the P&ID dataset consists of engineering drawings cluttered with text
and symbols. Thus P&IDs have text with varying fonts, font sizes and di�erent
orientations. The images are large (approximately 5239 by 7417) with uniform
white background. The texts here are symbol names and standard acronyms
which are mostly alpha-numeric. The models were evaluated on 155 P&ID draw-
ings with 39538 ground-truth boxes in total.

4.2 Experimental Set-up

For the �rst experiment, we conducted a text localisation test using EAST.
We used a pre-trained model from 4 (which we refer to as EAST-1). We also
trained another EAST model from scratch on ICDAR2015 dataset only using
the same protocol (also referred to as EAST-2.). A pre-trained CRAFT model
was also evaluated on these datasets. We report the precision, recall and F1-score

4 https://github.com/argman/EAST
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on ICDAR2013, 2015 test sets using the o�cial evaluation script from 5. The
evaluation was done without any samples pre-processing.

Our second set of experiments consisted of text localisation on MIDV-500.
This was more challenging because ground truths are not available for all card
samples text �elds. However, the base card from which the samples were gen-
erated contains text annotation of the data �elds. The dataset also provided a
card annotation box (only) for all samples. To work around this, we used the
provide card quadruple box to crop the card images from the samples. Then we
applied perspective transform on the cropped card to neutralise any orientation
change. Finally, cards are resized to the size of the base card in the categories.
Then, ground truth from the base card is overlaid on the card crop serving as
a pseudo ground truth. The number of text �elds across the card type di�ers
between 2-11. For evaluation, we discard partially occluded card but allowed for
irregularly illuminated cards. In total, 12000 card samples were used to evalu-
ate the models. A point to note is that no model was trained on this dataset.
We used models trained from our initial detection experiments described earlier.
Again, we ignored picture annotations, signature annotations and text detected
by models that are not part of the annotated �elds. In this case, false-negative
detections were considered as missed �eld boxes and false positives are detections
that are below the IOU threshold (0.5).

The third set of experiments were carried out on text detection in P&IDs.
Again, no model was trained on this dataset hence, all images were used for eval-
uation. In these experiments, detected bounding boxes from the legend sections
were discarded as no ground truth was available for comparison. IOU threshold
was kept at 0.4 and we report the precision, recall and f1-score for each model.

5 Results and Discussion

Table 1 and 2 shows the quantitative performances of the methods described in
section 3 on di�erent datasets. We employed precision, recall and the f1-score
to compare these performances. For ICDAR2013 and ICDAR2015, the o�cial
evaluation script from6 was used. MIDV-500 and P&ID required us to write
a separate evaluation script to meet the experimental requirements. Figures 1
and 2 shows sample detections from models.

Table 1: Text localisation results. The highest value for the selected metrics in each
dataset is highlighted in bold

ICDAR 2013 ICDAR 2015 MIDV-500 P&ID

East-1 East-2 CRAFT Tesseract East-1 East-2 CRAFT Tesseract East-1 East-2 CRAFT Tesseract East-1 East-2 CRAFT Tesseract

Precision 0.88 0.80 0.90 0.41 0.84 0.84 0.85 0.05 0.49 0.59 0.35 0.32 0.52 0.50 0.45 0.13
Recall 0.93 0.76 0.92 0.27 0.77 0.77 0.79 0.04 0.51 0.41 0.50 0.15 0.46 0.34 0.12 0.20
F1-score 0.90 0.78 0.91 0.33 0.81 0.80 0.82 0.04 0.50 0.49 0.34 0.21 0.49 0.40 0.18 0.15

5 https://rrc.cvc.uab.es/?ch=4&com=downloads
6 https://rrc.cvc.uab.es/?ch=14
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EAST-1 and EAST-2 performances are identical on ICDAR2015. However,
EAST-1 showed better recall on ICDAR2013 which is no surprise given that the
model was trained on a combined dataset conformed of ICDAR2013 and IC-
DAR2015. Again, ICDAR2013 contains focused text images and a smaller test
set hence, performance from EAST-1 was high. On the other hand, this was not
the case for EAST-2 where the performance dropped slightly. The results from
EAST-2 on ICDAR2013 indicated the true performance of the model across a
di�erent dataset. The CRAFT and EAST models also performed well on IC-
DAR2015 with CRAFT obtaining slightly better precision, recall and f1-score
among all models.

Tesseract performance was poor, particularly on ICDAR2015. The experi-
ments highlighted the limitations of Tesseract in scene detection while the poor
results on focused text detection indicated its reliance on traditional approaches
to isolate text from background. The tesseract detector also had a lot of false
detection and missed texts. Tesseract struggles because it relies on preprocessing
and in most cases, there is no clear text-background separation in samples.

(a) EAST-1 (b) CRAFT

Fig. 1: Sample detection from cross-section of a P&ID.

More interesting to this research are the results from MIDV-500 and P&ID
datasets which shows across domain performance. The results indicated a con-
siderable drop in performance across models. In particular, on MIDV-500, apart
from missing on complete word detection, some �elds were detected halfway or
a single �eld may be detected with two separate bounding boxes. The e�ect of
text orientation is not signi�cant here as cards were transformed to a natural
horizontal position before detection but some text boxes appeared with a skewed
orientation such as in Figure 2a (EAST-1). While the polygon points returned
help with oriented texts, these conditions could contribute to bounding box
shape distortion. These conditions can push IoU down and may have reduced
the number of positive boxes detected. Furthermore, di�erent text languages on
cards have also contributed to low performance. For instance, the Chinese ID
card is written in the Chinese alphabet which is drastically di�erent from the
mostly English training examples.
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Table 2: Text localisation results on P&ID from outputs ensemble.

Coalesce Con�dence Average

Models Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

EAST-1 + EAST-2 0.50 0.53 0.51 0.52 0.62 0.57 0.52 0.45 0.48
EAST-1 + CRAFT 0.51 0.6 0.55 0.52 0.62 0.56 0.52 0.45 0.48
EAST-1 + Tesseract 0.52 0.6 0.56 0.51 0.62 0.56 0.52 0.45 0.48
EAST-1 + EAST-2 + CRAFT 0.49 0.67 0.57 0.52 0.77 0.62 0.52 0.45 0.48
EAST-1 + EAST-2 + Tesseract 0.5 0.67 0.57 0.51 0.77 0.61 0.52 0.45 0.48
EAST-1 + EAST-2 + CRAFT +Tesseract 0.49 0.79 0.61 0.51 0.87 0.64 0.52 0.45 0.48
EAST-2 + CRAFT 0.49 0.48 0.48 0.49 0.5 0.5 0.5 0.34 0.4
EAST-2 + Tesseract 0.5 0.47 0.48 0.48 0.5 0.49 0.49 0.34 0.4
EAST-2 + CRAFT + Tesseract 0.49 0.62 0.54 0.48 0.67 56 0.49 0.34 0.4
CRAFT + Tesseract 0.45 0.19 0.27 0.45 0.21 0.28 0.46 0.12 0.19

(a) EAST-1 (b) CRAFT
Fig. 2: Sample detection from models.

Similarly, models performances dropped signi�cantly on P&ID. This can be
attributed to the challenging nature of the domain. Apart from text orientation,
size and fonts, the resolution of diagrams in relation to the text size negatively
a�ected performance. Figure 1a shows a sample detection from EAST-1 which
was by far the best model on P&ID. In comparison, majority of the text within
symbols were missed by Tesseract. Moreover, there were diagrams that Tesseract
missed all none horizontal texts.

With ensemble outputs, there is a noticeable performance improvement.
Overall, the best results from the P&ID are obtained when con�dence is used as
the voting criterion. That said, in terms of individual performances, no ensemble
setup out-performed its peers in all three metrics. For instance, the best recall
was obtained when all four models are combined based on con�dence however,
this was at the expense of a slight dip in precision.

6 Conclusion

In this paper, we analysed the performances of state-of-the-art text detection
algorithms. Experiments were conducted to compare models trained on public
datasets with varying text detection scenarios. Furthermore, the performances
of these models were evaluated across the datasets using di�erent metrics. The
results indicated that despite the models trained on challenging scene text de-
tection tasks, the performance dropped signi�cantly when tested on text �eld
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detection on identity documents, and P&ID (Processing and Instrumentation
Diagrams) with varying text fonts and background conditions. Hence, this high-
lighted some of the limitations of established text detection models in general-
ising to di�erent text detection scenarios and domains. Future direction for this
work is to investigate ensemble learning in the text detection across domains.
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