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Abstract— This paper presents the implementation and ex-
perimental validation of a central control framework. The
presented framework addresses the need for a controller, which
provides high performance combined with a low-computational
load while being on-line adaptable to changes in the control
scenario. Examples for such scenarios are cooperative con-
trol, task-based control and fault-tolerant control, where the
system’s topology, dynamics, objectives and constraints are
changing. The framework combines a fast Nonlinear Model
Predictive Control (NMPC), a communication interface with the
Robot Operating System (ROS) [1] as well as a modularization
that allows an event-based change of the NMPC scenario. To ex-
perimentally validate performance and event-based adaptability
of the framework, this paper is using a cooperative control
scenario of Unmanned Aerial Vehicles (UAV s). The source code
of the proposed framework is available under [2].

I. INTRODUCTION

The cooperative use of mobile robots in transportation,
surveillance, maintenance, etc. has increased over the last
decades. The combination of multiple specialized robots
allows executing versatile tasks in a highly efficient way
and can furthermore provide safety redundancy. To fully
exploit this versatility, the control of the system has to adapt
to the specified task, utilized robots and environment. The
challenging nature of such dynamically changing cooperative
control tasks has motivated the development of the here
presented control framework.

Fig. 1: Centrally controlled cooperative control scenario[3]
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For large-scale multi-robot scenarios typically distributed
control solutions are applied due to computational limits.
However, the adaptation of such decentralized controllers
to different tasks is difficult to realize, as all control units
have to be updated separately, also including consensus
mechanisms. As a first step, this work is therefore focusing
on an adaptable central control strategy for scenarios with a
limited amount of involved robots. An example for such a
scenario is given in Fig. 1, where the interaction of three
single robots with different objectives is controlled by a
central processing unit. Each robot can be abstracted to a
single cohesive entity defined as an agent. An agent is defined
by its objective (e.g. surveillance, landing) and its inherent
constraints (e.g. dynamics, actuator limits). In cooperative
control scenarios, these agents are interacting which is ab-
stracted in this paper as coupling (e.g. collision avoidance
constraints). The implemented control framework is able to
adapt to such scenarios by adding and removing agents,
their constraints, objectives and couplings and changing their
parameters.

In order to formulate such complex control scenarios,
the framework is based on NMPC which allows describing
system constraints as equality and inequality constraints
in a constrained optimization problem. A detailed review
on related work about cooperative control and NMPC is
given in section II. The advantage of being able to con-
sider constraints comes in hand with a typically complex
controller and a high computational burden. The desired
on-line adaptability is further exacerbating this issues, as
additional adaptation mechanisms are required. An efficient
solution for such a mechanism has been presented in previous
work [4], by collecting the mathematical equations of agents,
constraints and couplings which are required by the solver
in separate modules. The control scenario is then composed
of these single exchangeable modules.

This paper is contributing an extension of the presented
modularization to handle constraints with a logarithmic bar-
rier method which is implemented as shown in section III.
Furthermore, section IV is presenting the implementation
structure of the framework and the utilized fast pointer
based function access scheme in C++. As a result, the
computational overhead introduced by the modularization
is minimized. In addition the contributed framework imple-
mentation, uses ROS to trigger the framework adaptation
by message events. The final contribution of the paper
is the experimental validation of the event-based on-line



adaptability of the NMPC, shown in section V. This includes
the on-line switching of dynamics, constraints and coupling
constraints in a quadrotor formation flying scenario. The
setup of the validation scenario is described in subsection
V-A. A performance analysis and final validation of the
proposed event-based NMPC method is given in subsection
V-B. The final conclusion and future perspective of the
presented work is summarized in section VI.

II. RELATED WORK

To tackle multi agent problems, a wide variety of Dis-
tributed Model Predictive Control (DMPC) algorithms are
available. A comprehensive summary of DMPC is given in
[5], which covers game based, consensus based, tube and
robust distributed model predictive control techniques. [6]
and [7] give an overview on NMPC cost functions for mobile
robotics regarding swarm behavior. A non-NMPC based
framework (”CAVIS“) for multi robot aerial manipulation
is introduced in [8]. Also [9] and [10] are presenting open
software platforms for swarm coordination. However, all
these control solutions are either task specific or are lacking
the desired on-line adaptability. For this reason, previous
work [4] has introduced a modularization technique for
NMPC. NMPC is a generic control approach to handle
constrained nonlinear systems and is based on solving an
optimal control problem (OCP) over a receding horizon.
This means at each time instant the optimal controls are
determined for a defined prediction horizon. The disad-
vantage of NMPC is its high computational burden, par-
ticularly regarding real-time applicability for systems with
fast dynamics e.g. mobile robotics. One way to limit the
computational burden of NMPC is to choose the control
trajectory from a limited set of predefined control sequences
as discussed in [7]. In this context [7] also gives various
examples for NMPC penalty techniques to control multiple
unmanned aerial vehicles (UAV ). In contrast to predefined
control sequences, [11] is proposing a gradient descent
method to solve OCPs and offers easy to access source code.
The widely spread real-time NMPC framework ACADO
[12] is offering a variety of NMPC algorithms. Among
others, the implemented sequential quadratic programming
method with Gauß-Newton approximation of the Hessian
offers very low computation times. The computational ef-
ficiency of ACADO is for example stated in a collision
avoidance and aerial manipulation scenario of a quadrotor
in [13]. Another promising real-time NMPC approach is
the continuation generalized minimal residual (CGMRES)
method [14]. Its source code is accessible via [15] and its
computational efficiency has been validated in hover crafts
[16], gasoline engines [17] and eco cruise control scenarios
[18]. An overview on related constraint handling methods is
given in [19]. A multiple-shooting derivative (MSCGMRES)
has been developed in [20] to increase the computational
stability. The resulting higher computation time due to the
increased amount of optimization variables has been tackled
by introducing a condensation method in [21]. The efficiency
of this condensed multiple shooting continuation generalized

minimal residual approach (CMSCGMRES) has been already
proven in previous work [22], where it was evaluated in
a single quadrotor collision avoidance scenario. Due to its
performance in this scenario, the CMSCGMRES solver is
applied as solver for the presented framework.

III. MODULARIZATION WITH LOGARITHMIC BARRIER
CONSTRAINT HANDLING

NMPC is determining optimal controls u to minimize a
given performance index J by predicting the system states
x under use of a model for the system dynamics f. The
corresponding optimization problem that has to be solved
in each controller update interval is an OCP:

min
u(·)

J (u) =V
(
x
(
t f
)
, t f
)
+
∫ t f

t0
l (x(τ) ,u(τ) ,τ)dτ (1)

u.c. ẋ = f(x,u,τ) , 0≥ c(x,u,τ)
x(t0) = x0, τ ∈

[
t0, t f

]
.

The performance index or cost function J typically consists
of stage costs l and terminal costs V . The system behavior
is predicted in a specified interval

[
t0, t f

]
and determined

at each control update interval using the current state mea-
surement x0 as starting point. The model predictive control
(MPC) loop is then closed by applying the determined
optimal controls for the current time instant and shifting the
problem horizon to τ ∈

[
t0 +∆t, t f +∆t

]
under use of new

state measurements.
A major advantage of MPC is the capability of also consid-

ering system constraints c. On the other hand the handling of
inequality constraints in NMPC is not trivial. In the previous
publication [4], a modularization technique was introduced
based on an auxiliary variable technique as described in [16].
The auxiliary variable constraint handling is transforming
inequality constraints into equality constraints with the help
of slack variables α [14]. Accordingly, each inequality
constraint is expressed with two additional optimization
variables: the slack variable and the equality constraint
Lagrange multiplier. For example a robot with 4 inputs and
a limitation constraint on each input yields to 12 variables to
be optimized over the horizon. This leads to a high problem
dimension and therewith computational burden. As alterna-
tive, the framework implementation also features logarithmic
barrier constraint handling. This approach transforms each
inequality constraint c to an additional stage cost term lc
with the help of a logarithmic barrier function [23]

0≥ c(x,u,τ) → lc =−κ ln(−c(x,u,τ)) , (2)

where κ is a tuning parameter to adjust the logarithmic
barrier penalty to the other cost terms. The advantage is,
that no Lagrange multipliers and slack variables are needed
and the dimension of the OCP is therefore reduced. On
the other hand the OCP can become worse conditioned and
more suboptimal, as the logarithmic barrier function tends
to infinity at the point of constraint violation. However,
for most mobile robotics applications this is acceptable
as position constraints are typically realized as weakened
constraints in the stage costs and for input limitations a



suboptimal solution is mostly affordable. For example, a
control output is reaching 0.99 instead of the exact limit of
1. A further advantage is that the tuning of the logarithmic
barrier function is intuitive. For these reason the logarithmic
barrier method is implemented besides the auxiliary variable
method in the control framework at hand.

The procedure to derive the modularization for the OCP
with the logarithmic barrier inequality constraint handling is
similar as shown in [4] for the auxiliary variable method.
The considered OCP (1) optimality conditions are derived
through the Hamiltonian. Considering each agent has its
individual controls ui, states xi and set of coupled neighbors
N i the Hamiltonian yields to

H =
N

∑
i
[ li (xi,ui, t)+λ

>
i fi (xi,ui, t) ... (3)

− κ
>
i ln(−ci (xi,ui, t))

−
|N i|

∑
j

κ
>
i j ln

(
ci j
(
xi,x j,ui,u j, t

)]
. (4)

For means of simplicity the handling of equality constraint
has been neglected here, but can be achieved by augmenting
the optimization variable vector with the equality constraint
Lagrange multipliers, as shown in [4]. Each agent i is
contributing to the Hamiltonian H with its individual stage
costs li, dynamics fi and constraints ci additively. This holds
also for the coupling constraints ci, j, which are affecting
always two agents (agent i, agent j). Like the individual
constraints ci, they are contributing to H via the logarithmic
barrier method. The proposed modularization exploits this
additive structure of the Hamiltonian function.

Real-time NMPC algorithms like CMSCGMRES are de-
termining the optimal controls by solving the OCP first order
optimality conditions. For m agents, these can be composed
according to the concatenation of optimization variables
u = [u1, ...um] and state variables x = [x1, ...xm],

0 =
∂H
∂u

=
[

∂H
∂u1

>
, . . . ∂H

∂um

>
]>

(5)

ẋ =
∂H
∂λ

=
[
f1 (u1,x1, t)

> , . . . fm (um,xm, t)
>]> . (6)

λ̇ = −∂H
∂x

=
[
− ∂H

∂x1

>
, . . .− ∂H

∂xm

>
]>

. (7)

The idea is to exploit the additive structure of the Hamil-
tonian which is also visible in its derivatives. The modu-
larization is exemplary executed for an element ∂H

∂ui
of (5)

0 !
= ∂H

∂ui
=

∂ li(xi,ui,t)
∂ui

+λ>i
∂ fi(xi,ui,t)

∂ui
(8)

−(κi\ci (xi,ui, t))
> ∂ci(xi,ui,t)

∂ui
... (9)

−
(
κi j\ci j

(
xi,x j,ui,u j, t

))> ∂ci j(xi,x j ,ui,u j ,t)
∂ui

. (10)

where ”\“ is representing an element wise division. Regard-
ing the structure of (8)-(10), three influences can be distin-
guished. For example, (8) consists of the agents dynamics
and stage costs which typically formulate the objective. (9)
is associated with the constraints that are acting on agent i,
while (10) is the influence induced by coupling constraints.
In reverse conclusion, if (8) is provided for different agents,

(9) for different constraints and (10) for different coupling
constraints, the summands of this equation can be exchanged
according to the dynamics, objective, constraints and cou-
plings. To structure the full OCP, the modularization has to
be also executed for the other optimality conditions (6)-(7)
In case of (6) this is trivial, as it results in a concatenation of
system dynamics. For (7) the modularization can be executed
straight forward as for (8).

As described in [4] each of the summands (e.g.
λ>i

∂ fi(xi,ui,t)
∂ui

) in (5-7) can be considered as an atomic func-
tion. These can be provided in fast compiled code and mod-
ularly added or removed from the optimality conditions. For
example a change of an agent has influence on all optimality
conditions, therefore it makes sense to be able to change
all of its corresponding atomic functions at once. This is
realized by packing them in class containers, from which the
atomic functions are addressed via pointers. The fast function
access via pointers is reducing the computational overhead
caused by the modularization. This overlying structure of
class containers of the framework will be explained in detail
in the following section.

IV. FRAMEWORK STRUCTURE

Fig. 2: Control framework structure

The principle structure of the controller package is shown
in Fig. 2. It consists of five base class containers Controller,
Agent, Constraint, Coupling, Event which provide the
basic functionality for the user defined control problem. Each
user agent, constraint, etc. is implemented as child class of
these base class containers and therefore inheriting the inter-
face which is required for the modular composition of the
NMPC. The Scheduler class is handling the communication
of the agents with the controllers.

The Agent class represents a generalization of user defined
agents. It provides the interface for system dynamics, cost
functions and their derivatives. Furthermore, each agent
contains a list of pointers to constraints and/or couplings,
which are acting on it. Besides the declaration of the atomic
functions for the modularization, the Agent class provides a
ROS communication interface. This interface allows the sub-
scription of measurement data and publication of controls.

According to the modularization, also atomic functions
of constraints and couplings can be structured in the base
classes Constraint, respectively Coupling. These contain



interfaces for stage costs, final costs, equality and inequality
constraints functions, as well as their derivatives. In contrast
to the individual agent Constraint, the Coupling class
functions are acting on two agents. This allows establishing
interactions between agents and therefore the extension to
arbitrary multi agent systems.

The main function of the Controller base class is the
concatenation of optimization variables and the composition
of the optimality conditions (5-7). This concatenation is
based on the modularization for logarithmic barrier constraint
handling of section III or the auxiliary variable method as
presented in [4]. The controller contains a list of pointers to
all agents that are controlled. A schematic example of the
pointer access scheme to the atomic functions of the control
scenario is given in Listing 1 for the composition of ∂ l

∂x . The
controller iterates through all controlled agents (ptr1) and all
associated constraints (ptr2) as well as couplings (ptr3).

Listing 1: Schematic pointer access scheme for the example
of composing ∂ l

∂x
void C o n t r o l l e r : : d ldx ( out , t , u , x ){

/ / Loop over a g e n t s
f o r ( i n t i =0 ; i<t h i s−>a g e n t l i s t . s i z e ( ) ; i ++){

/ / Get p o i n t e r t o a g e n t
p t r 1 = a g e n t l i s t [ i ] ;
/ / Get f u n c t i o n v a l u e s
p t r 1−>d ldx ( out , t , u , x ) ;
/ / Loop over c o n s t r a i n t s i n a g e n t s
f o r ( i n t j =0 ; j<p t r 1−>g e t C o n s t r a i n t D i m ( ) ; j ++){

/ / Get c o n s t r a i n t p o i n t e r
p t r 2 = p t r 1−>c o n s t r a i n t [ j ] ;
/ / Get f u n c t i o n v a l u e s
p t r 2−>d ldx ( out , t , u , x )

}
/ / Loop over c o u p l i n g s i n a g e n t s
f o r ( i n t k =0; k<p t r 1−>ge tCoup l ing Dim ( ) ; k ++){

/ / G e t t i n g c o u p l i n g p o i n t e r
p t r 3 = p t r 1−>c o u p l i n g [ k ] ;
/ / Get f u n c t i o n v a l u e s
p t r 3−>d ldx ( out , t , u , x ) ;

}
}

}

Listings 1 shows that this pointer based modularization
allows a manipulation of the complete scenario by just
modifying the pointer reference. The computational overhead
is limited to the pointer access and iteration overhead times,
as well as the allocation of auxiliary variables that store
temporary results. According to this access scheme, the
complete optimality conditions (5)-(7) are composed and
then provided to the CMSCGMRES solver.

Besides the concatenation of the optimality conditions,
the Controller class is also handling the concatenation of
the optimization variables as x (states), u (controls), udes
(target states), xdes (target controls), p (parameters), λ (states
Lagrange multipliers), µ (equality constraint Lagrange mul-
tipliers) and under use of the auxiliary variable constraint
method µi (inequality constraint Lagrange multipliers), α

(inequality constraint slack variables).
Finally, the event class is the manifestation of the main

advantage of the provided approach in comparison to other
NMPC frameworks. It handles the event-triggered on-line
addition and removal of the discussed containers as agents,
constraints and couplings to the OCP. Furthermore, it al-

lows the on-line modification of parameters. A few useful
examples for this are the on-line adjustment of the state
tracking penalty factors, parameters of the agent dynamics
or the change of distances in formation coupling constraints.
As a result the optimal control problem can be modified
dynamically according to events like e.g. timers, ROS com-
munication events, etc.

V. EXPERIMENTAL VALIDATION

This section is validating the performance and on-line
adaptability of the event-based real-time NMPC framework
in a real quadrotor formation flying experiment.

A. Experimental setup

The considered scenario shows a cooperative control of
three AR.Drone 2.0 c© quadrotors. Each of the quadrotors
is controlled by its inputs (forward-, sideward-, upward-,
heading velocity)

ui (t) =
[
u f ,i, us,i, uz,i, uΨ,i

]>
, (11)

regarding its states (W : global Cartesian frame, V : vehicle
frame)

xi =
[
xW ,i, yW ,i, zW ,i, ΨW ,i, ẋV ,i, ẏV ,i

]>
, (12)

subject to its dynamics [22]

ẋi (t) = fi (xi,ui, t) =


ẋV ,i (t)cos(Ψi)− ẏV ,i sin(Ψi)
ẋV ,i (t)sin(Ψi)+ ẏV ,i cos(Ψi)

1 ·uz,i (t)
0 ·Ψi (t)+1.6 ·uΨ,i (t)

−0.5092 · ẋV ,i (t)+1.458 ·u f ,i (t)
−0.5092 · ẏV ,i (t)+1.458 ·us,i (t)

 . (13)

The controls of each quadrotor are limited to ‖ui‖ ≤ 1 with
the help of inequality constraints [22]

0≥ ci =
[
u2

z,i−1, u2
Ψ,i−1, u2

f ,i−1, u2
s,i−1

]>
. (14)

Furthermore, between each pair of quadrotors a collision
avoidance (CA) is implemented. This coupling forces the
quadrotors to keep a minimal Euclidean d distance from
each other. The coupling is realized as weakened constraint
by using a sigmoid cost function to penalize the violation of
the minimum distance d [22]

~xi =
[
xW ,i (t) ,yW ,i (t) ,zW ,i (t)

]> (15)

li j (t) =
a

1+ e−b
(

d2−(~xi(t)−~x j(t))
>
(~xi(t)−~x j(t))

) . (16)

Accordingly, the agents keep a minimum distance of d
meters, where a is determining the cost factor and b the
sigmoid slope steepness The scenario is chosen to show
the switching behavior with a change of formation. For this
purpose each agent is tracking the same point x∗ =

[
0,0,2

]>
and minimal energy consumption u∗ = 0 by means of stage
costs

li (t,x∗) = (x∗−xi (t))
>Qx (x∗−xi (t))+ui (t)

>Ruui (t) .(17)

Starting with two quadrotor agents (ag0, ag1) this results in
the OCP problem



min
u

J =
∫ t f

t0

1

∑
i=0

li
(

τ,
[
0,0,2

]>)
+ l01 (τ) dτ (18)

s.t. c0 (τ)≤ 0,c1 (τ)≤ 0
0 = f0 (x0,u0, t) ,0 = f1 (x1,u1, t) .

For means of simplicity the initial states are not shown
in the OCP formulation. At time t1 a quadrotor and the
corresponding constraints are added on-line to the system,
triggered by a ROS message. The resulting OCP for three
quadrotors is given by

min
u

J =
∫ t f

t0

2

∑
i=0

li
(

τ,
[
0,0,2

]>) (19)

+l01 (τ)+ l12 (τ)+ l02 (τ) dτ

s.t. c0 (τ)≤ 0,c1 (τ)≤ 0,c2 (τ)≤ 0
0 = f0 (x0,u0, t) ,0 = f1 (x1,u1, t) ,0 = f2 (x2,u2, t) .

At time instance t2, a second ROS message triggers the
removal of ag2. Accordingly, the OCP is switching again
from form (19) to form (18). The resulting change of the
quadrotor formation is discussed in section V-B.

To solve the given problem, a CMSCGMRES solver is ap-
plied under use of the logarithmic barrier constraint handling.
The scenario parameters have been determined empirically
to achieve a smooth system response. The state and control
penalty matrices are chosen to

Qx = Diag
([

2,2,8,3,10.5,10.5
])

(20)
Ru = Diag

([
5.5,5.5,3,3.1

])
. (21)

For ease of visualization of the experiment, the penalty on
the z-axis is chosen high to limit the movement mainly to
the x,y-Plane. The CA coupling parameters are

PCA =
[
d,a,b

]
=

[
1.5,4.0,2.0

]
. (22)

Parameters of the controller are the number of discretization
steps n = 10 of the prediction horizon T = 3, the desired
convergence rate ζ = 10, the maximal amount of iterations
kmax = 6 and the minimal tolerance rtol = 0.1 of the solver
(CMSCGMRES). The horizon expansion factor in the initial-
ization phase is given by α = 2. To control the fast dynamics
of the quadrotors, a short control update interval of ∆t = 0.1s
is chosen. The forward difference time step for the Hessian
approximation is set to ∆tH = 0.001s.

B. Analysis of the Experiment

This section is analyzing the system’s response to the on-
line modification of the OCP and the performance of the
proposed framework. The system behavior of the experiment
is visualized in Fig. 3. At the beginning of the scenario two
agents are tracking a center point x∗ =

[
0,0,2

]> (marked
as blue sphere in the image centers) which would result in
a collision in x∗. The collision avoidance is inhibiting this
behavior by forcing them to keep a minimum distance of
d = 1.5m. Accordingly, both drones form a linear formation
which is equidistant from the center point as shown in the
image on the left of Fig. 3a. The optimal control problem for

both drones is given by (18). At time t1 ≈ 8s the first event
is provoked by a ROS message which adds a drone (ag2) to
the system. Accordingly, also the quadrotor input constraints
(c2) and collision avoidance couplings (l02, l12) to each of the
previous agents (ag0, ag1) are added, which results in OCP
(19). As all drones are tracking the center point subject to
collision avoidance constraints, this results in a triangular
formation which is equidistant to the center. A second ROS
message at t2 is removing ag2 and the associated constraints
from the system again. Accordingly, ag0, ag1 are forming
the original linear formation again.

(a) Video footage: t1: 2 agents (left) vs. t2:3 agents (right)

(b) 3D position plot with formation visualization

Fig. 3: Experiment: One agent with input and coupling
constraints added on-line to a two agent formation

The trajectory of the agents in 3D space is given in Fig.
3b, where each agent is depicted as a small sphere. As the
tracking is limited to one point and the collision avoidance
is only considering the Euclidean distance of the agents,
the formation can rotate freely around the tracked center
point. The distance between corresponding agents at each
time instance is visualized as gray lines. Before t1, ag2 is not
within the bounds of the plotted region, as indicated by the
distance connectors. In accordance to the expected behavior,
Fig. 3b shows how the formation is then shifted from a linear
to a triangular formation between t1 and t2. This validates the
on-line modification of the OCP.

The aberration of the agent position is caused by distur-
bance. Particularly the mutual influence of the quadrotor air-
flow, including tracking and the repulsive collision avoidance
coupling, is causing oscillations in the quadrotor positions.



Fig. 4: Experiment: Agent position trajectories, agent dis-
tance and tracking error

These oscillations can be reduced by penalizing the UAV
velocity states under the cost of slower trajectory changes.
Another way to reduce this disturbance is to consider a
disturbance model within the quadrotor model (13).

To further validate the event-based MPC switching ap-
proach, the agent positions in Fig. 4 are analyzed. The
distance graph in Fig. 4 shows that at the beginning of the
experiment, ‖~xag2−~xag1‖2≈ 2.5m and ‖~xag2−~xag0‖2≈ 3.0m.
This indicates that ag2 is not tracking the target x∗ before
t1. At time instance t1 (left vertical bar in the graphs),
the distance of ag2 to the other agents converges to d =
1.5m. The “Tracking error to target [0,0,2]” graph in Fig. 4
confirms the equidistant alignment of the agents to the target.
This confirms an active CA-coupling and target tracking. The
increase in the distance after t2 (right vertical bar in graphs)
is evidence that the position tracking is not active anymore.
The agent trajectories show, that switching of tracking and
couplings are working, but it does not confirm, that the
input constraints are switched on-line as well. This can be
extracted from the control trajectory of ag2 in Fig. 5. As
previously discussed at time instance t1, the tracking error

Fig. 5: Experiment: Control trajectory and computation time

of ag2 is high ‖[0,0,2]> −~xag2‖2 ≈ 3m. Accordingly, the
controller response in the moment of adding the agent is
high. Fig. 5 shows such behavior in the uz control trajectory
of ag2. Due to the control limit constraints, the resulting
peak does not exceed the predefined limit of uz,max = 1. This
indicates an active constraint handling. The oscillations in
the controls are due to the position disturbance as discussed
previously.

A major advantage of the proposed method is the low
computation time as shown in Fig. 5. For the OCP (18) of
the double agent system (ag0,ag1) the average computation
time is tc,av = 1.5ms, the maximum computation time is
tc,av = 2.0ms. The measurements were made on a standard
notebook of type “Dell Latitue E5440 (CPU: i5-4300U with
11.29GFLOPS/s)“. The three agent system OCP (19) with
ag0, ag1 and ag2 is solved in tc,av = 4ms, whereas there
are some single peaks up to tc,max = 14.7ms. These single
peaks are expected to be outliers that are caused by delay
due to other CPU processes, but will be investigated further.
At first sight, adding one agent causing a doubling of the
computation time might look over proportional, however the
amount of CA couplings is increased by 2.

The average computation time of tc,av = 4ms for the three
drone scenario with a control update interval of ∆t = 0.1s
yields to an average computational load of 4% on a standard
notebook CPU . This states the computational efficiency of
the proposed event-based real-time NMPC approach, under
use of the proposed constraint handling technique, modular-
ization, framework structure and CMSCGMRES solver.



VI. CONCLUSIONS

This paper presents the implementation of a novel central
event-based real-time NMPC framework which offers the
flexibility to modify the control scenario on-line, while
maintaining low computation times. The framework targets
real-time control of dynamically changing control scenarios,
which makes it particularly interesting for single and multi
robot applications, as well as fault-tolerant control.

To achieve the desired flexibility, the paper is present-
ing the implementation structure to a previously presented
modularization of the OCP into atomic functions. To be
able to modify complete OCP modules, like agents, con-
straints and couplings, the corresponding atomic functions
have been structured into base class containers. Furthermore,
the modularization is extended by a logarithmic barrier
inequality constraint handling, to offer an alternative to the
previously shown auxiliary variable method which results
in high dimensional problems. The availability of the atomic
functions in compiled C/C++ code, together with an access
scheme via pointers, results in low computation times.

The performance and flexibility of the proposed event-
based real-time NMPC framework has been validated in a
quadrotor formation flying scenario. The experiment shows
a linear flight formation of two AR.Drone 2.0 c© quadrotors
that is extended to a three quadrotor triangular formation,
triggered by a ROS message event. The drone trajectories
have confirmed the on-line switching of quadrotor dynamics
and objectives (tracking), collision avoidance couplings and
input limitation constraints. The average computation time of
tc,av = 1.5ms for the two drone scenario and tc,av = 4ms for
the three drone scenario states the computational efficiency of
the proposed event-based NMPC framework. The framework
source code is available under [2].

Future work will focus on the implementation of dis-
tributed NMPC methods to make also use of event-based
NMPC on large-scale systems. Further implementations will
also address additional inequality constraint handling tech-
niques. To evaluate the performance of these techniques an
extensive benchmark and their mathematical evaluation is
a future field of interest. Furthermore, the effects of the
event-based NMPC adaptation have to be analyzed regarding
problem feasibility and control performance.
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