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Abstract

Designing an effective cost function has always been the key in image steganog-
raphy after the development of the near-optimal encoders. To learn the cost 
maps automatically, the Generative Adversarial Networks (GAN) are often 
trained from the given cover images. However, this needs to train two Convo-
lutional Neural Networks (CNN) in theory and is thus very time-consuming. 
In this paper, without modifying the original stego image and the associ-
ated cost function of the steganography, and no need to train a GAN, we 
proposed a novel post-processing method for adaptive image steganography. 
The post-processing method aims at the embedding cost, hence it is called 
Post-cost-optimization in this paper. Given a cover image, its gradient map 
is learned from a pre-trained CNN, which is further smoothed by a low-pass 
filter. The elements of the cost map derived from the original steganography 
are projected to 0,1 for separating embeddable and non-embeddable areas. 
For embeddable areas, the elements will be further screened by the gradient 
map, according to the magnitudes of the gradients, to produce a new cost 
map. Finally, the new cost map is used to generate new stego images. Com-
prehensive experiments have validated the efficacy of the proposed method, 
which has outperformed several state-of-the-art approaches, whilst the com-
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Image steganography is to embed a secret message into a cover image for
covert communication, where the sender uses a pre-defined method to embed
a secret message,

 

and

 

thus

 

the

 

receiver

 

can

 

extract

 

the

 

message

 

without

 

any

 

faults. There

 

are

 

two

 

types

 

of

 

image

 

steganography,

 

namely,

 

non-adaptive

 

steganography

 

and

 

adaptive

 

steganography

 

[1].

 

Non-adaptive

 

steganography

 

does not

 

consider

 

the

 

detail

 

of

 

the

 

cover

 

image

 

during

 

embedding,

 

while

 

adap-
tive steganography

 

usually

 

confines

 

the

 

embedding

 

to

 

more

 

textured

 

areas

 

of

 

the cover

 

image

 

for

 

enhanced

 

security

 

[2].

 

Nowadays,

 

most

 

researchers

 

work

 

on adaptive

 

steganography

 

for

 

its

 

superior

 

performance

 

in

 

securing

 

secret

 

messages [3,

 

4,

 

5,

 

6,

 

7].
Recently,

 

Mandal

 

et

 

al.

 

[3]

 

provided

 

a

 

literature

 

survey

 

in

 

digital

 

image

 

steganography,

 

which

 

discussed

 

the challenges and future directions in this
area. Muralidharan et

 

al.

 

[4]

 

did

 

a

 

detailed

 

comparison

 

between

 

the

 

develop-
ment

 

of

 

steganography

 

and

 

steganalysis,

 

which

 

covers

 

more

 

than

 

150

 

papers.

 

The battle

 

between

 

steganography

 

and

 

steganalysis

 

can

 

be

 

found

 

easily.

 

For

 

example, Zhang

 

et

 

al.

 

[5]

 

proposed

 

their

 

adaptive

 

robust

 

steganography

 

for

 

open-social-network

 

communication,

 

which

 

tried

 

to

 

implement

 

this

 

technique

 

in everyday

 

communication.

 

To

 

counter

 

this

 

problem,

 

Zhu

 

et

 

al.

 

proposed

 

a

 

deep learning

 

network

 

for

 

steganalysis

 

to

 

destroy

 

the

 

secret

 

messages

 

in

 

their

 

work [6].

 

More

 

related

 

works

 

can

 

be

 

found

 

in

 

[4].
The adaptive steganography can be roughly divided into two categories,

i.e., the model-based and the convolution-based, according to how the cover
images are processed. The convolution-based methods are widely used in
the design of image steganalysis due to their high efficiency in generating
stego images. To name a few, some typical methods include the Wavelet
Obtained Weights (WOW) [1], Spatial Universal Wavelet Relative Distortion
(S-UNIWARD)

 

[8]

 

and

 

the

 

HIgh-pass,

 

Low-pass,

 

Low-pass

 

(HILL)

 

model

 

[9].
Model-based

 

methods,

 

relying

 

on

 

the

 

statistical

 

correlation

 

among

 

pixels

 

and patches,

 

usually

 

require

 

complicated

 

matrix

 

analysis

 

and

 

hence

 

need

 

a

 

longer processing

 

time

 

[10,

 

11,

 

12].

 

For

 

example,

 

the

 

Highly

 

Undetectable

 

steGO (HUGO)

 

method

 

[13]

 

allocates

 

the

 

embedding

 

information

 

to

 

the

2

putational cost is also significantly reduced.
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textural

 

areas

 

of

 

images

 

by

 

calculating

 

the

 

sum

 

of

 

differences

 

between

 

the

 

Subtractive

 

Pixel

 

Adjacency

 

Matrix

 

(SPAM)

 

feature

 

vectors

 

[14].

 

Fridrich

 

et

 

al.

 

[15]

 

adopted

 

a

 

multivariate

 

quantized

 

Gaussian

 

(MG)

 

distribution

 

for

 

determining

 

the

 

cost

 

of

 

embedded

 

pixels

 

by

 

minimizing

 

the

 

Kullback-Leibler

 

(KL)

 

divergence

 

[2]

 

between

 

the

 

cover

 

and

 

the

 

stego

 

images.

 

Qin

 

et

 

al

 

[16]

 

modelled

 

image

 

residuals

 

obtained

 

by

 

high-pass

 

filters

 

with

 

MG

 

to

 

further

 

improve

 

the

 

performance.

 

Recently,

 

inspired

 

by

 

the

 

Ranking

 

Priority

 

Profile

 

(RPP)

 

[17],

 

Xie

 

et

 

al.

 

[18]

 

proposed

 

to

 

use

 

the

 

two-dimensional

 

Singular

 

Spectrum

 

Analysis

 

with

 

the

 

Weighted

 

Median

 

Filter

 

in

 

the

 

design

 

of

 

the

 

cost

 

function,

 

which

 

provides

 

comparable

 

performance

 

to

 

the

 

state-of-the-art

 

yet

 

being

 

relatively

 

computational-efficient.
After

 

determining

 

the

 

adaptive

 

steganography,

 

post-processing

 

techniques

 

are

 

applied

 

to

 

further

 

improve

 

the

 

security

 

of

 

steganographic

 

methods,

 

i.e.,
[19,

 

20,

 

21,

 

22,

 

23].

 

For

 

example,

 

Li

 

et

 

al.

 

[19]

 

proposed

 

the

 

clustering

 

modification

 

directions

 

(CMD)

 

to

 

exploit

 

the

 

interactions

 

among

 

embedding

 

changes,

 

which

 

could

 

decompose

 

the

 

cover

 

image

 

into

 

multiple

 

sub-images

 

and

 

dynamically

 

adjust

 

the

 

cost

 

of

 

pixels

 

in

 

these

 

images.

 

Recently,

 

Chen

 

et

 

al.

 

[20]

 

proposed

 

to

 

modify

 

the

 

generated

 

stego

 

images

 

based

 

on

 

the

 

residual

 

distance

 

between

 

the

 

cover

 

and

 

the

 

modified

 

stego

 

images

 

rather

 

than

 

the

 

cost

 

maps.
Due

 

to

 

the

 

fast

 

development

 

of

 

the

 

deep

 

Convolutional

 

Neural

 

Network

 

(CNN),

 

many

 

tasks

 

in

 

pattern

 

recognition

 

are

 

greatly

 

improved.

 

In

 

image

 

steganalysis,

 

taking

 

the

 

stego

 

signals

 

as

 

a

 

kind

 

of

 

pattern

 

has

 

facilitated

 

various

 

CNN-based

 

steganalysis

 

models,

 

such

 

as

 

the

 

Steganalysis

 

Residual

 

Network

 

(SRNet)

 

[24],

 

Siamese

 

Steganalysis

 

Network

 

(SiaStegNet)

 

[25],

 

and

 

the

 

Global

 

Covariance

 

Pooling

 

Network

 

[26],

 

which

 

is

 

referred

 

to

 

as

 

Deng-Net

 

in

 

this

 

paper.
In

 

addition,

 

CNN

 

is

 

also

 

widely

 

applied

 

in

 

image

 

steganography,

 

where

 

a

 

GAN

 

[29]

 

is

 

often

 

adopted

 

[30,

 

31,

 

32,

 

33,

 

34,

 

35,

 

36,

 

37].

 

For

 

example,

 

the

 

Au-
tomatic

 

Steganographic

 

Distortion

 

Learning

 

Framework

 

with

 

GAN

 

(ASDL-
GAN)

 

[30]

 

is

 

designed

 

to

 

learn

 

an

 

embedding

 

probability

 

directly

 

from

 

a

 

given

 

cover

 

image,

 

which

 

requires

 

training

 

two

 

networks,

 

i.e.,

 

a

 

steganographic

 

gen-
erative

 

network

 

and

 

a

 

steganalytic

 

discriminative

 

network.

 

As

 

an

 

enhanced

 

ASDLGAN,

 

the

 

UT-GAN

 

[31]

 

is

 

much

 

faster

 

and

 

more

 

powerful

 

in

 

securing

 

the

 

embedded

 

messages.

 

However,

 

the

 

Adversarial

 

Embedding

 

(ADV-EMB)

 

aims

 

to

 

embed

 

the

 

secret

 

message

 

into

 

the

 

cover

 

image

 

while

 

fooling

 

the

 

CNN

 

steganalyser.

 

In

 

[33],

 

the

 

cost

 

function

 

is

 

built

 

iteratively

 

along

 

with

 

a

 

min-max

 

strategy

 

after

 

each

 

iteration.
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Table 1: Comparison of different post-processing methods.

Method Modifications on Elements used to update

CMD [19] Stego Images Costs, directions of pixels
Chen et al. [20] Cover Images Stego Images
Zhou et al.[21] Cover Images Costs, pixels
Song et al. [27] Cover Images Costs, Signs of Gradients
Liu et al. [28] Cover Images Costs, Signs of Gradients

Proposed method Cover Images Costs, Signs and
Magnitudes of Gradients

Recently, Song et al. [27] combines both the cost maps from a stegano-
graphic algorithm and the gradients from a pre-trained CNN to adjust the
costs and re-generate different stego images. These re-generated stego im-
ages will be further compared and selected according to the Manhattan dis-
tance between the cover residual and the regenerated-stego residual using the
method from [20]. By using the signs of the gradients in the design of the
cost function, the security of the stego images has been greatly improved.

However, Song’s method does not consider the gradient sub-maps from
multiple sub-nets architectures of the CNN-based steganalysis. These gra-
dient sub-maps might have a boundary problem, i.e., unwanted gradients
shown in the boundaries of the maps, which may fail to provide satisfactory
performance. In their design, only the signs of the gradients are used, whereas
the magnitudes of the gradients are ignored, which might not provide enough
indications in selecting the suitable embedding areas. The differences among
the post-processing techniques are shown in Table 1.

To tackle the previously mentioned boundary problem, in this paper, we
propose a novel gradient-guided post-processing method for adaptive image
steganography. The major contributions are highlighted as follows.

• A novel gradient-guided post-cost-optimization method is proposed,
which considers both the magnitude and the sign of the gradient maps
to indicate the embedding positions. In our experiments, it is observed
that gradient maps are also capable of indicating peaks and valleys of
the magnitude, a useful clue for indicating the high-cost and low-cost
areas.

• Within our proposed approach, the previously mentioned boundary
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problem has been successfully solved.

• The curriculum training strategy of the current CNN-based steganaly-
sers is also investigated, which is often omitted in the previous works.
Compared to training from scratch, curriculum training may lead to a
different performance of the detectors. However, in our experiments,
the situation is fully investigated including tuning the algorithm.

Figure 1: The flowchart of the re-generating stego images, where the Steg is short for
Steganography, and the dash lines mean the production process.

The remainder of the paper is organized as follows. Section 2 introduces
the background knowledge and the related works. In Section 3, the details
of the proposed algorithm are given. Experimental settings and results are
presented in Section 4, where an ablation study is also provided. Finally,
some concluding remarks are drawn in Section 5.

2. Related Works

In this section, the research background and related works are introduced.
We will first explain how adaptive image steganography is modelled in a
framework of distortion minimization. Next, the recently proposed Song
et al.’s post-processing method with gradients is analysed [27]. Lastly, as
the post-cost-optimization method will generate multiple stego images for
each cover image, a selection process to choose the best stego images will be
discussed.

Let C and S denote an 8-bit grey cover image and its stego image, and
Cij, Sij represent their pixels in the ith row and jth column, respectively.
We have C = (Cij),S = (Sij) ∈ {0, . . . , 255}n1×n2 , where n1 and n2 denote
the width and height of the image, respectively. The superscript k will be
used to represent the element in a set C, i.e., the kth cover image in the cover
image set, Ck ∈ C.
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Figure 2: An example to show (a) the cover image, (b) its processed cost map, (c) its
gradient map, and (d) its embedding areas created by the proposed method.

2.1. Adaptive image steganography

In Filler et al. [38], the artefacts caused by embedding to each pixel are
assumed to be independent of each other, thus every element in the cover
image can be assigned with a scalar to indicate the cost of modifying it.

As the image steganography aims to provide secure communication of the
embedded message, the total distortion or the cost caused by the embedding
needs to be as small as possible. The impact of the embedding, i.e., the
modifications to the cover image, is measured by a distortion function d(C,S)
below, where %ij ≥ 0 denotes the cost or the security expenditure of changing
the pixel value from Cij to Sij.

d(C,S) =

n1∑

i=1

n2∑

j=1

%ij(Cij, Sij) |Cij − Sij| (1)

With the determined embedding cost, the pixel Cij can be designated for
embedding with a probability Pij:

Pij =
e−λ%ij

1 + 2e−λ%ij
(2)

where the Lagrange multiplier λ > 0 is determined from the payload con-
straint (for the payload-limited sender) by:

n1∑

i=1

n2∑

j=1

H(Pij) = m (3)

In (3), m is the total number of bits to be embedded and H(x) =
−2x log x − (1 − 2x) log(1 − 2x) denotes the ternary entropy embedded at
Pij [39]. Given a cover image, after calculating its probability map P, its
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stego image can be created using some near-optimal coding schemes, e.g.
Syndrome-Trellis Codes (STCs) [40] [41], to complete the embedding in adap-
tive steganography.

2.2. Concept of post-cost-optimization

Aiming to enhance the current adaptive steganography via stego gen-
eration and selection, Song et al. [27] proposed a post-processing method,
where the whole framework for re-generating the stego images is given in Fig.
1. First, a set of cover images and a steganographic algorithm are selected,
where the corresponding stego images are created using the steganographic
algorithm. At the same time, the cost maps for each of these cover images are
determined. Next, the cover and stego image pairs are used to train a CNN,
where the gradient map for each of these cover images is produced from the
trained CNN. The gradient map and the cost map from the steganography
are then utilized for optimizing the cost. The new cost maps will be used to
re-generate the stego images.

In Fig. 1, the functional module of Cost-Learning is usually replaced
by a GAN. Currently, most of the previous arts consider using the GAN to
generate the cost map. For example, papers [30, 31, 32, 34, 37]. However,
some papers are trying to reach the end of generating a new stego image
directly [35, 36]. To the best of our knowledge, the previous arts using GAN
to generate the cost map provide better performance. Hence, we followed
the direction and provide our solution.

In Song et al.s approach [27], for a given cover image, the gradient matrix
G in the same size as the cover is generated from a pre-trained CNN. Let the
superscripts + and − denote the modification of the pixel value by plus one
and minus one of the pixels, respectively, the cost matrices from a specific
steganographic algorithm, i.e., HILL for example, can be written as ρ+ and
ρ−. Let %+ij denote the embedding cost at position (i, j), and α > 1 denote
the adversarial intensity. For the cost map, if the gradient value of the
pixel is negative, the corresponding cost value of the pixel remains the same,
otherwise, it is increased by the adversarial intensity α. A candidate stego
image can be created using the new cost matrices %+ and %− as follows, where
Gij represents the gradient value of the pixel in the ith row and jth column.

%+ij =

{
ρ+ij, Gij < 0
ρ+ij + α, Gij > 0

(4)
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%−ij =

{
ρ−ij + α, Gij < 0
ρ−ij, Gij > 0

(5)

2.3. Stego image selection

With the post-cost-optimization algorithm, for each cover image, a set of
NS stego images will be generated for further selection. In image steganalysis,
the image residuals after high-pass filtering are the key to differentiating the
cover and the stego images. Hence, the distances of the residuals between a
cover image and its stego images should also be considered when selecting
the best re-generated stego samples. To this end, the residual distance in
[20] is used in post-processing of the stego images. Moreover, this process is
further adopted in the selection process in [27] as briefed below.

Let Ck denote a cover image in the cover image set C with NC samples,
Ck ∈ C, k = 1, . . . , NC . For Ck, let Sk,0 denote the original stego image
created by the steganography, a residual function FR(x) is employed to the
cover image and all its stego images are denoted as Sk,0,Sk,1, ...,Sk,l, ...,Sk,NS ,
yielding a serious of residuals of FR(Ck) and FR(Sk,0), FR(Sk,1), ..., FR(Sk,l),
..., FR(Sk,NS). These residuals are created by three adaptive high-pass filters
Bi inspired by [42]. The size of the filters is 7, which is experimentally
validated in [20]. Last, the Manhattan distances FD between FR(Ci) and all
the residuals of the stego images are calculated, where the stego image with
the smallest distance will be selected [27].

minFD(FR(Ck),FR(Sk,l)) (6)

FR(x) =
3∑

i=1

x⊗Bi (7)

3. The Proposed Method

The proposed method is inspired by several observations. First, often,
a higher value is observed from the cost map when the magnitude in the
gradient map is small. The reasons are mainly two fold. A large magnitude
is a result of the wet costs [43] or high-risk areas, which prevents the STC from
embedding into these areas. Hence, these areas are usually assigned with an
extremely large cost, or the wet cost, i.e., 10e+8, while the magnitudes of
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the costs in the suitable areas are usually less than 1. The second reason
is that an effective CNN is usually equipped with a Softmax layer, which
maps the magnitude of the output to a normalized interval of [−1, 1] before
data classification. The large jump of the magnitude needs to be considered
carefully during the design of the new cost map.

Next, the magnitude of the gradient map is also important, in addition
to the sign of the gradient as used in Song et al.s approach [27]. If a pixel
is assigned with a large gradient, this pixel seems more important for the
prediction. Hence, pixels with large magnitudes in a gradient map should be
carefully processed for improving the performance of steganography.

3.1. Process the gradient

As different CNNs have various network architectures, the input cover
images are processed in different ways. For example, some CNNs contain
multiple sub-nets for parameter-optimization or improved efficiency in train-
ing [25]. To smooth the boundaries of the sub-maps of the gradients created
by such CNNs, often a low-pass filter is used. According to the RPP [17]
[18], during the embedding, the embedding areas should better be clustered
to avoid being easily detected, hence an improved security performance. This
clustering process can be realized by a low-pass filter as detailed below.

Let Gk be the gradient matrix generated from a pre-trained CNN, F , for
the cover image Ck, we have Gk = F (Ck). Denote Lr as the average filter
with a kernel size r. For a cover image Ck, we can obtain a gradient matrix
gk below, where gk and G are of the same size.

gk =
∣∣Gk ⊗ Lr

∣∣ (8)

3.2. Cost map selection

Let ρk,+ denote the cost matrix of increasing the pixel value of Ck by one
and ρk,− the cost matrix of decreasing its pixel value by one. Both ρk,+ and
ρk,− are from the steganography Φ. We can rewrite the ρk,+ and ρk,− as in
(9), where N = n1 × n2, and ρ

k,+/−
1 ≤ ρ

k,+/−
2 ≤ · · · ≤ ρ

k,+/−
N .

ρk,+/− =
N∑

j=1

ρ
k,+/−
j (9)
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Define a selecting interval θ, θ = [θl, θh], where θl indicates the lower
bound and θh the upper bound. We can choose the pixels of the desired
costs within the selecting interval, by:

%
k,+/−
θ =

N∑

j=1

δ(ρ
k,+/−
j ), 0 6 %

k,+/−
θ 6 N (10)

δ(ρj) =

{
1, N · θl ≤ j ≤ N · θh
0, else

(11)

Here, we map the large costs, i.e., ranking N · θh to N , to 0 and map the
smaller costs to 1 for further processing below.

3.3. Generate the new cost map

Let βg denote the adversarial intensity, we can calculate the new cost

map %k,+ based on the gradient map gk and the modified cost map %k,+θ as
follows:

%k,+ =
∣∣∣1− %k,+θ − βg · gk

∣∣∣ (12)

%k,− =
∣∣∣1− %k,−θ − βg · gk

∣∣∣ (13)

The formulas can be explained in this way. First, ensure the magnitude
in the cost maps are no longer the dominant factors, they are mapped to
{0, 1} using (11). To adjust the extreme large magnitude of the wet costs
from the previous cost map ρ, these costs will be mapped to 1 by 1−%, where
% has already mapped the wet costs to 0. Notice that in 1 − %, the small
costs will be mapped to 0. Now the small-cost areas have the same weights.
To accurately guide the embedding process, the magnitudes of the elements
in the gradient map are employed. Although the magnitudes in the gradient
map are small, they are capable of indicating the peaks and valleys, or the
relatively high-cost and low-cost areas.

As illustrated in Fig. 2, the cover image 472.pgm in the BOWS dataset
is shown in (a), along with its processed cost map 1 − %+θ shown in (b), its
gradient map g shown in (c), and the embedding areas in (d). In the pro-
cessed cost map, the white pixels represent 1 and the black ones represent 0,
where those white pixels are not allowed to embed due to the large associated
costs. In the gradient map, the overall magnitude is small. However, it does
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provide the focused areas for embedding by adding weights to the cost map.
Hence, the exact locations are determined by the gradient map. As %+/− is
non-negative, an absolute operator is applied here.

3.4. Dealing with the wet costs

To ensure that easy-to-spot pixels in the cover image are not used for
embedding, a wet cost, i.e., 10e+8, needs to be defined. Let %k,+ij and %k,−ij be

the cost values in the ith row and jth column in %k,+ and %k,−, respectively,
we can adjust the corresponding cost value as follows:

%k,+ij = 10e+ 8, if Ck
ij = 255

%k,−ij = 10e+ 8, if Ck
ij = 0

(14)

In this way, these pixels are ensured to avoid being candidates for em-
bedding.

3.5. Generating multiple stego samples

By adjusting the selecting interval θ, a set of NS stego images can be
generated. The most suitable one will be selected based on Eqs. (6) and (7).
Finally, the whole framework of generating stego images is summarized in
Algorithm 1.

4. Experimental results and analysis

4.1. Experimental settings

4.1.1. Datasets

The widely used BOSSbase v1.01 [44] and BOWS2 [45] datasets are used
in our experiments, and each contains 10,000 uncompressed images sized of
512× 512 pixels. All the images are resized to 256× 256 using the imresize()
function in MATLAB. The stego images are created from the following adap-
tive steganographic methods, S-UNI [8], HILL [9] and WOW [1]. The relative
payloads tested are 0.1, 0.2, 0.3 and 0.4 bpp, respectively.

For a specific payload, the whole dataset is evenly divided into two non-
overlapping parts at random. The first half is used to train the CNN and
create the gradients for the whole dataset. The second half is used to re-train
the CNN and test the security performance, with 5000 cover-stego pairs used
to re-train the model and the remaining 5000 pairs for evaluation.
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Algorithm 1 The proposed stego image regeneration algorithm

Input: A set of NC cover images Ck ∈ C, the original stego image Sk,0, the
gradient map gk and the cost maps: ρk,+ and ρk,−

Output: A set of NC stego images Sk

1: for k = 1 to NC do
2: for l = 1 to NS do
3: T = FD(FR(Ck),FR(Sk,0))
4: Generate Sk,l according to (8) to (14) at the

same payload as Sk,0

5: if FD(FR(Ck),FR(Sk,l)) < T then
6: T = FD(FR(Ck),FR(Sk,l)
7: end if
8: end for
9: if FD(FR(Ck),FR(Sk,l)) < T then
10: Return Sk = Sk,l

11: else
12: Return Sk = Sk,0

13: end if
14: end for

4.1.2. The settings of the CNNs

Two classic CNNs for image steganalysis, i.e., the SiaStegNet [25] and
the Deng-Net [26] are utilized to generate the gradients. This is because
both of them can provide SOTA performance, and Deng-Net represents the
CNN with only one network while the SiaStegNet has two sub-nets. The
hyperparameters are all kept the same as defaults as detailed below. For
the SiaStegNet, the Adamax optimizer [46] with an initial learning rate set
to 0.001, and βg = [0.9, 0.999] is used. For the Deng-Net, the optimizer
Stochastic Gradient Descent (SGD), is used with a momentum of 0.9. We
set both CNNs to the default initialization method during the training.

Curriculum training [24] is used when re-train for payloads below 0.4 bpp,
as widely adopted by most CNNs for improved performance [24, 25]. For the
SiaStegNet, except for the 0.4 bpp scenarios where the training is run for 500
epochs, all the curriculum training will run for 200 epochs for fine-tuning.
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While for the Deng-Net, except for the 0.4 bpp cases where epochs are set
to 200, the network is trained for 100 epochs for fine-tuning.

Data augmentation was employed for all CNNs, which include random
rotation for 90 degrees and random flip with a probability of 0.5. The batch
size for all the CNNs is set to 32 by default. All the experiments were carried
out with Pytorch 1.7.1 on a Tesla V100 Graphics Processing Unit.

4.1.3. Settings of other parameters

In Song et al.’s post-processing algorithm, all the settings are set to de-
fault, where the adversarial intensity remains to be α = 2, and the number
of the generating stego sample is NS = 100.

For a fair comparison, we set the NS = 100 in our method as default. We
set the adversarial intensity as βg = 0.025 and the kernel size r = 7. The
selecting interval θ is created using a continuous uniform random number
generator, with the lower endpoint θl set to 0.1, and the upper endpoint θh
to 0.5 by default. The optimized parameters for NS, θl, θh are 40, 0.2, 0.8,
which will be justified below.

4.2. Ablation Study

4.2.1. Modification areas among different methods

We first show a cover image with edges and details, the ’472.pgm’, its
embedding areas using the SUNI algorithm, Song et al.’s method and our
method in Fig. 3 for comparison, to compare the differences of the embed-
ding. Fig. 3 (c-d) are the embedding areas in the regenerated stego images
that have been successfully selected by Algorithm 1.

As shown in Fig. 3 (c), although Song’s method had successfully created a
new stego image, the embedding area is very similar to the SUNI’s. However,
our method generated significantly different embedding areas, which are more
clustered than the other two, indicating the efficacy of the proposed low-pass
filter in smoothing the noise.

4.2.2. Differences of the gradients

One may ask why the gradients from the conventional methods are not
used but the ones from the CNNs. To answer this question, we show the im-
age gradients computed by using different methods in Fig. 4. These gradients
are generated by simply replacing the F with the gradient operators, such
as ’Sobel’ and ’Roberts’. The Sobel and Roberts are the operators that are
used to emphasise the edges in the images. We show the horizontal gradients

13



Figure 3: The comparisons of embedding areas in different methods at 0.4 bpp. (a) cover
image, (b) original SUNI method, (c) Song et al.’s method, and (d) the proposed method.

and the gradients along 45 degrees. The vertical gradient and the 135-degree
gradients are not shown due to the limited space, yet the conclusions remain
the same.

In Fig. 4, there’s almost no difference among them, which indicates that
simply using the gradients directly from these traditional methods can not
capture the weak stego signals. We also calculated the difference between
the cover image and stego images, again nothing noticeable was found.

Alternatively, we show the gradient maps from two CNNs in Fig. 5 and
Fig. 6. As seen, the gradient maps generated from the CNNs are different
from each other, though the images are visually the same. The magnitudes
of the gradient maps are different as well. For example, the maximum value
of the cover image from the Deng-Net is 0.0477 and the minimum is 9.09e-10;
whilst the maximum value of the stego image from the Deng-Net is 0.1396 and
the minimum is 1.07e-9. In addition, the maximum value of the cover image
from the SiaStegNet is 0.0033 and the minimum is 2.8e-11; the maximum
value of the stego image from the SiaStegNet is 0.4713 and the minimum is
2.37e-9. The large difference in the maximum value between the cover and
stego image helps the CNNs to differentiate the two images.

14



4.2.3. The influence of the adversarial factor βg and the kernel size r

Here, we will analyze the influences of the adversarial factor βg and the
kernel size r to see how they affect the security of the stego images. The
generated stego images will be retrained using the same Deng-Net with the
same settings, and the results are shown in Table 2.

As seen in Table 2, the best result is achieved with βg = 0.025 and r = 7,
where further increasing or decreasing βg may result in a degraded result.
Moreover, decreasing the kernel size from 7 will cause about 1% performance
loss. This may suggest that under the current settings, this kernel size works
the best.

Table 2: The influence of the adversarial intensity βg and the kernel size r.

βg r Retrain Acc (in %)

0.0125 5 77.04
0.025 5 77.23
0.05 5 76.94

0.0125 7 77.12
0.025 7 76.25
0.05 7 76.70

0.0125 9 76.49
0.025 9 76.31
0.05 9 76.61
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Figure 5: Gradient maps from the Deng-Net with gradients enhanced by 500 times. (a)
the cover image; (b) stego image.

Figure 6: Gradient maps from the SiaStegNet. (a) cover image (enhanced by 500 times);
(b) stego image (enhanced by 50 times).
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4.2.4. The number of generated stego samples

To reduce the time in generating and selecting the stego samples, the best
candidate for the number of generated stego samples needs to be determined.
For this purpose, only the number NS varies and the detection accuracies of
retraining those images are shown in Table 3. The results are obtained by
retraining the SiaStegNet on the regenerated HILL stego samples at 0.4 bpp.

In Table 3, it is observed that 40% of the generated samples can provide
a similar result to the default setting of 100 samples. Also, reducing the
number from 40 will deteriorate the security performance.

4.2.5. The influence of different selecting-intervals θ

To determine the best selecting-interval θ in the proposed algorithm, one
of the parameters θl and θh will be changed each time and the resulting stego
samples will be re-generated. Then, the SiaStegNet will be re-trained at 0.4
bpp, just as in the last experiment. The detection accuracies of retraining
those images are reported in Table 4.

Starting from [0.1, 0.5], θh is decreased by 0.1 and the performance drops
about 1%. Increasing θl yields a similar result. Hence, θh is progressively
increased by 0.1 and the result is getting better until θh reaches 0.9. In this
way, the best candidate for θh is found to be 0.8, and the θl is evaluated
by progressively increasing it by 0.1. Finally, the best result is found when
θl = 0.2 and θh = 0.8, which is about 2% better than the default setting.
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Figure 7: The comparisons of image gradients produced from different CNNs: Cover
image (top), Deng-net (middle), and SiaStegNet (bottom). The red rectangular areas in
the gradient maps are enlarged on the left of them.
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4.3. Performance evaluation
We compare our method with other steganographic methods against dif-

ferent steganalysis techniques and show the results in Table 5. For the
conventional steganalysis methods, the Spatial Rich Model (SRM) [47] is
employed to provide the detection results, which considers the quantized im-
age noise residual and its distribution. The cover and stego images are used
to train Ensemble classifiers [48], which are capable of detecting the stego
noises in the stego images. To avoid confusion, the experimental results of
the SRM in this table are created with samples generated using the gradients
from the SiaStegNet.

Starting from the steganalysis results of the SiaStegNet, it is obvious
that our proposed methods provide the best performance among all three
steganographic algorithms. For WOW, Song et al.’s method provides an
improvement of up to 3% across four payloads while ours can reach a 12%
improvement. For SUNI, the situation is about the same as WOW. However,
the improvement achieved by our method is slightly smaller due to the higher
security of the original SUNI algorithm. The improvement achieved by our
method is even smaller for the steganographic algorithm HILL, though still
the best among all the compared algorithms.

Another observation is that when using optimized settings, our method
can provide further improvements when the payload is 0.2 bpp or larger. For
the scenarios of 0.1 bpp payload, it is suggested to use the default settings.
This is because, in an extreme low payload situation, the number of the em-
bedding areas that allow the algorithm for selecting is small, hence requiring
NS to be large enough to create more samples for further selection.

For the results from the Deng-Net, some observations are highlighted be-
low. First, although Deng-Net provides a similar steganalysis performance
to the SiaStegNet, the security performance provided by the Song et al.’s
method is improved in most cases. However, the security performance pro-
vided by our method is not as good as using the gradients from the SiaSteg-
Net, especially for the WOW algorithm. This might be due to the multi-
subnet architecture of the SiaStegNet, whose gradient sub-maps are diverse
enough for our algorithm to create different re-generated samples.

Nevertheless, our proposed methods are still superior to Song et al.’s
method in all steganographic methods under different payloads. The margins
remain large especially when the embedding payloads are 0.1 and 0.2 bpps.
Again, the proposed method with the optimized settings is a better option
when the payloads are 0.2 and 0.3 bpps. For the WOW and SUNI, the default

22



settings are still the best. For HILL, the optimized settings achieved the best
performance for every payload listed.

For the conventional methods, i.e., the SRM attack [47], Song’s method
has a limited improvement while ours with the default settings can still
achieve about 3% improvement in the low payload scenarios on average ex-
cept for the HILL. For payloads 0.3 and 0.4 bpps, the optimized settings are
the best selection.

To further explain these results, we draw the gradients generated using
the two different CNNs in Fig. 7 with some observations highlighted below.
First, the gradient maps shown can indeed indicate the edges in the cover
image. Second, for this cover image, the gradient map from the SiaStegNet
is more clustered than the one from the Deng-Net.

The gradient map, shown in Fig. 7 (c), is a result of two sub-images due
to the sub-net architecture of the SiaSteNet. The orange rectangular area
separates the left and the right gradient map. This has led to two issues.
First, the red rectangular areas in the top-left show the faked gradients, and
this may have misled Song et al.’s method to select these areas for embedding.
However, thanks to our proposed low-pass filter, these false-alarm areas have
been successfully removed. Next, due to the hard separation part in the
middle of the gradient image, this has inevitably introduced problems in the
weight-ranking process of Song et al.s method.

One last observation from the results of the SiaStegNet is the proposed
method with the optimized settings has achieved comparable results for three
different steganographic algorithms. This can be explained in Fig. 8, where
the embedding areas in Figs. 8 (b)-(d) are scattered compared to the ones
created by the proposed algorithm with optimized settings. In Figs. 8 (f)-
(h), all three images indicate the clustering effect of the proposed algorithm,
much different from the original HILL algorithm, which may explain why
they are less vulnerable to the attacks [19].

4.4. Security performance of stego samples created by different gradients against
SRM attack

In Table 5, we have shown the security performance of the stego samples
produced using the gradients from the SiaStegNet against SRM. For com-
parison, we also show the corresponding results using the gradients from the
Deng-Net in Table 6.
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As seen in Table 6, both Song et al.’s approach and the proposed method
can improve the performance from the original steganographic methods.
However, the margins between them are small. The reasons are mainly two
fold. First, the gradient map generated from the Deng-Net is a complete map
instead of two split parts, which will make the gradient easier to process for
Song et al.’s method. Second, the gradients created from the Deng-Net are
more compact than the corresponding components from the SiaStegNet’s,
hence the lowpass filter in our method can only help more for the WOW and
SUNI.

Table 6: Detection Accuracy (%) of SRM for the stego images created using Deng-Net’s
gradients (The results are averaged for 3 times).

SRM*

Steg Payload
(bpp)

Ori Song
et al.

Prop
(Def)

Prop
(Opti)

WOW

0.4 74.96 73.58 73.12 72.56

0.3 70.40 68.47 68.08 67.22

0.2 63.59 61.73 61.04 61.54

0.1 56.22 54.61 53.95 54.90

SUNI

0.4 74.92 73.16 72.58 72.25

0.3 69.20 67.48 66.42 66.00

0.2 63.03 61.23 60.32 60.77

0.1 55.67 54.64 53.63 54.69

HILL

0.4 69.54 67.51 68.12 67.47

0.3 64.53 62.47 62.96 62.73

0.2 59.37 58.01 57.53 57.96

0.1 53.76 52.52 53.00 53.52

4.5. Modification rate comparisons

In this subsection, we calculate the actual changes to the original stego
image with different optimization methods. For this purpose, we define the
modification rate RS in (15) and the average modification rate RS in (16).
Given a cover image Ck, we use a given steganographic algorithm, i.e., HILL,
to produce the original stego image Sk,0. Afterwards, we optimize the cost
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Table 7: Average modification rate of different methods.

SiaStegNet Deng-Net

Steg Payload
(bpp)

Song
et al.

Prop
(Def)

Prop
(Opti)

Song
et al.

Prop
(Def)

Prop
(Opti)

WOW

0.4 4.72 2.39 3.74 4.24 1.80 2.42

0.3 3.33 2.68 3.35 3.25 1.52 2.15

0.2 2.31 2.03 1.88 2.22 1.42 1.53

0.1 1.23 0.74 0.37 1.17 0.95 0.80

Avg 2.90 1.96 2.33 2.72 1.42 1.73

SUNI

0.4 6.60 2.22 3.08 6.61 1.64 1.74

0.3 4.68 2.38 3.09 4.69 1.40 1.77

0.2 2.92 1.84 1.97 2.93 1.15 1.13

0.1 1.33 0.83 0.58 1.32 0.67 0.49

Avg 3.88 1.82 2.18 3.89 1.21 1.28

HILL

0.4 4.61 2.20 3.51 4.47 1.86 2.53

0.3 3.52 2.41 3.19 3.44 1.54 1.82

0.2 2.48 1.94 1.83 2.42 1.17 1.00

0.1 1.32 0.64 0.40 1.28 0.63 0.51

Avg 2.98 1.79 2.23 2.90 1.30 1.47

Table 8: Comparison of running time in seconds.

Steg Song et al.’s [27] Prop
(Def)

Prop
(Opti)

WOW 3.05 0.98 0.35
SUNI 3.41 1.22 0.39
HILL 2.95 1.17 0.43

using the gradients and re-generate a new stego image Sk,l with a post-
cost-optimization algorithm, i.e., Song et al.’s. We compare the average
modification rate RS on the Re-generated datasets, each with 10,000 images,
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between different methods in Table 7.

Rs = (

n1,n2∑

i,j=1

|Sk,0ij − Sk,lij |)× 100× (n1 × n2)
−1 (15)

Rs =

NS∑

l=1

Rs ×N−1
S (16)

As shown in Table 7, the proposed method with default settings intro-
duces much fewer modifications to the stego image compared to the Song et
al.’s method under both situations. In the situation where the gradients of
the SiaStegNet are used, 35% fewer modifications are introduced on average
for WOW. For SUNI, the average figure is about 53%, less than a half of
Song et al.’s. For the Deng-Net, the situation is similar to the SiaStegNet.

However, it is worth noting that fewer modifications to the original stego
image do not mean better performance against an attack. This can be ob-
served by combining both Table 7 and Table 5. Take WOW at 0.4 bpp for
example, where the proposed algorithm with optimized settings achieves the
best performance yet it has more modifications than that with the default
settings.

4.6. Comparison of the computational cost

We compare the running time in Table 8 and see how the selection
process can speed up our method. All the running times are recorded on an
AMD 4800H laptop with 8 cores and 16 GB RAM, which is averaged on 4
different payloads. For a fair comparison, the proposed method with default
setting produced 100 stego samples for each cover image, and the numbers
were recorded on 10,000 cover images. We also show the running time of our
optimized algorithm.

As seen in Table 8, it takes about 3 seconds for the whole process to pro-
duce one stego image for the WOW algorithm with Song et al.s method. Our
proposed method, however, is about twice as fast as Song et al.’s method [27]
in every steganographic method. With the optimized settings, the proposed
algorithm can be further sped up by about 65%.

5. Conclusions

In this paper, a new gradient guided post-processing method is proposed
to improve the security of image steganography. The idea is inspired by

27



the observations that there exists a large jump in the magnitude between
the gradient map and the cost map from the same cover image, where the
magnitude in the gradient map matters even though the overall magnitude is
often small. By considering the magnitude in the gradient map, we carefully
design a new post-cost-optimization method and use it in generating multiple
stego images for a given cover image. The best candidate will be selected
by a selection algorithm. Comprehensive experiments have validated the
effectiveness of the proposed method. In addition, our proposed method is
computationally efficient.

In the future, we will focus more on further enhanced post-processing
methods, including the GAN-involved methods. At the same time, more
network architectures in image steganalysis will be explored in the future for
designing such post-cost-optimization methods.
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[13] T. Pevnỳ, T. Filler, P. Bas, Using high-dimensional image models to
perform highly undetectable steganography, in: International Workshop
on Information Hiding, Springer, 2010, pp. 161–177.

[14] T. Pevny, P. Bas, J. Fridrich, Steganalysis by subtractive pixel adjacency
matrix, IEEE Transactions on information Forensics and Security 5 (2)
(2010) 215–224.
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