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Abstract—This paper is presenting the implementation and
experimental validation of the cooperative robot localization
framework ”Atlas”. For ease of application, Atlas is imple-
mented as a package for the Robot Operating System (ROS).
ATLAS is based on dynamic cooperative sensor fusion which
optimizes the estimated pose with respect to noise, respective
variance. This paper validates the applicability of Atlas by
cooperatively localizing multiple real quadrotors using cameras
and fiduciary markers.

1. Introduction

Position sensing is a key feature for many applications in
robotics such as pick and place tasks, collision avoidance or
navigation. Multiple technologies are available to estimate
the position of an object such as the Global Positioning
System (GPS) or the OptiTrac Motion Capture system. But
these technologies are either unavailable in indoor environ-
ments or costly.

Today, many Unmanned Aerial Vehicles (UAV) are
equipped with CCD cameras for video recording. One idea
is therefore to use these cameras for position measurements
using planar markers. The most commonly used marker type
is the ArUco marker, a black and white binary matrix, orig-
inally developed for applications in the augmented reality
domain. By detecting these markers with a camera, it is
possible to determine their position and orientation (pose)
within the camera frame. Besides low costs, the application
of this approach in multi-robot scenarios has two further
advantages as shown in Figure 1. This includes fusing mul-
tiple sensor measurements to increase the accuracy of the
estimated pose. Furthermore the sequential relative localiza-
tion from robot to robot allows the localization even in areas
with visual obstacles. However, the dynamically changing
topology of such systems combined with the fusion of sensor
data results is a challenging task. This paper is addressing
this issue by presenting the implementation of the Atlas node
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and validating its performance in a cooperative quadrotor
localization scenario.

Figure 1. Cooperative Localization Scenario

2. State of the art

Similar to ArUco markers, AprilTags [1] are also fiducial
marker based on a binary matrix. The main difference be-
tween the two is an improved coding scheme which signif-
icantly improves the robustness against false detection and
increases the reliability of the marker’s orientation detection.

A comparison [2] of the performance of AprilTags
and ArUco markers of different sizes under varying light
conditions with respect to the distance and viewing angle
has shown that both systems are highly efficient in terms
of computing time and perform well under most of the
tested conditions with a small advantage for the AprilTags.
Tests [2] have shown that planar markers of 3x3cm can be
detected up to a distance of 1m using a fairly low resolution
camera (640x480 pixels). Naturally the range in which these
markers can be detected increases with the resolution of the
camera as well as the size of the markers. Another important
factor is the viewing angle between the camera and the
marker. A viewing angle of 60◦ is achievable [2] even under
bad light conditions. Both marker systems are well suited
[2] for indoor localization systems.

However, both the ArUco and the AprilTag severely
suffer from motion blur which is inevitable in the detection
of moving objects like drones. The motion blur softens and
smuggles the edges of the markers and they become hard
or even impossible to detect. This phenomenon can also



be explained in frequency domain. As stated in [3], the
sharp edges making up the planar markers can in fact be
considered as high frequency regions which are attenuated
by the motion blur. The solution [3] is a new type of planar
marker which consists only of low mono-frequency compo-
nents which are hardly affected by motion blur. As such,
this new type of marker is still detectable under conditions
were the detection of the ArUco marker and AprilTag fails.

As for the application of cooperative position sensing
of moving drones, these mono frequency markers [3] are in
fact more suited than the monochrome markers. However, in
contrast to ArUco markers and AprilTags, there is no refer-
ence implementation available for an evaluation under real
conditions. Consequently, the AprilTags have been chosen
as the markers of choice for this application.

An advantage of using planar markers instead of e.g.
laser range finders (LRF) is that they carry a unique ID
which can be used for two cases: First, if the marker’s
world position is known, it can be used to calculate the
position of the measuring drone and, second if the marker’s
relative offset to the object, where the marker is attached
to is known, it can be used to calculate the object’s relative
position to the drone. With the knowledge of both it becomes
possible to make the drones fully aware of their environment
and the objects which are part of it.

In case of setups with multiple cameras, markers and
entities to which the markers are attached to, it becomes
likely that multiple sensors (cameras) are estimating e.g. the
pose of the same marker. These redundant measurements
can then be used to achieve higher accuracy and reliabil-
ity by fusing them. A comparison of the most common
filters [4] for that task has shown that the Kalman filter
can perform significantly better than simple filters like the
median, threshold voters or weighted average. However, the
authors also indicated that their test scenario is particularly
well suited for the Kalman filter as their sensor data is
perfectly normal distributed which might not be the case
in real applications.

Nevertheless, the Kalman filter is widely used when it
comes to sensor fusion and is considered to be an optimal
linear estimator [4]. However, in this work the weighted av-
erage fusion algorithm is used as it can deal with quaternions
with relative ease.

In order to share information between multiple drones it
is important to have a reliable communication. The Robot
Operating System (ROS) [5] offers a messaging infrastruc-
ture between different nodes. Nodes in the context of ROS
represent a process (or program) running on a device. These
nodes can be on the same machine or distributed (physi-
cally) among different devices. Nodes can send and receive
messages on different topics. This facilitates the cooperative
reception, fusion and sharing of the drone positions.

3. Problem Statement and Implementation

The following system is supposed to provide the poses
of different drones in an arbitrary environment by using
the sensors either provided by the drones (cameras) or the

environment (GPS, optitrack, etc.). The system has to fuse
the results from different sensors in order to improve the
measurements with respect to noise and variance.

The implementation of the system has to be compatible
with the Robot Operating System (ROS) i.e. it has to be
implemented as a ROS node and make use of the ROS
communication subsystem in order to receive and send data
from or to other nodes.

The first step of solving the problem of cooperative sens-
ing is to derive the abstract data structure of the scenario,
which can be distinguished in sensors, markers and entities.
With these it is possible to model a wide variety of scenarios.

• Sensor:

A sensor is defined by a name, a pose and the reference
frame. It can be attached to either a drone or the environment
(world). A sensor is supposed to provide the pose and
ID of the marker(s) it detects. Also, if possible, a sensor
has to provide an estimate of the standard deviation of its
measurements.

• Marker:

A (fiducial) marker has a unique ID, and a certain pose. Just
like the sensors it can be attached to either the environment
(world) or an entity.

• Entity:

An entity is defined by a name only. It can be any object,
real or fake (i.e. with physical meaning or without), with
zero or more sensors and with zero or more markers
attached to. It is an abstract representation of a drone or
any other object, serving as container for markers and
sensors.

The structural implementation of the Atlas node consists
of 4 main blocks:

1) Sensor listener: Listens to sensor information
(MarkerData) on the ROS messaging bus. This
block also performs some filtering to reject noise.

2) Transform graph: Takes the sensor information
from the sensor listener, builds a transformation
graph, and evaluates the poses of the entities.

3) Graph publisher: Takes the information contained
in the transform graph and publishes the trans-
formations via the ROS tf2 subsystem or on the
message bus via a ROS topic of type FusedPose.

4) Config: Reads a user defined config file which is
used to configure the blocks above.

The block diagram showing the interaction between these
blocks is shown in (Figure 2).

3.1. Sensor Data Acquisition (Sensor Listener)

The sensor data is acquired directly from the ROS
messaging bus. The Atlas node subscribes to the sensor’s
respective topic and expects the messages to be of type
MarkerData which is as defined in (Table 1). The sensor



Sensor
Listener

Transform
Graph

Graph
Publisher

ROS
Sensor Topics

Config

ROS
TF2/Topic

Atlas Node

Figure 2. Atlas block diagram

TABLE 1. MARKERDATA TYPE

Field Type Comment

id int32 The marker’s ID
sigma float64 The sensor’s standard deviation
pos geometry msgs/Point Translation in sensor space
rot geometry msgs/Quaternion Rotation in sensor space

is expected to deliver the marker’s pose in the sensor’s
frame. It should also deliver an estimate of its standard
deviation (sigma) which is later used to fuse sensor readings.
Next, with the help of the marker’s pose with respect to its
parent (either the world or another entity) and by taking
into account the sensor’s pose with respect to its parent, it
is possible to calculate the transformation from one entity
to another. As depicted in (Figure 3) the following three
transformations matrices are known:

• T1: The entity to sensor transformation. This trans-
formation is linked to the physical pose of the sensor
to the entities baselink.

• T2: The sensor to marker transformation. This is
the output of the sensor i.e. the marker’s pose in the
sensor frame. As such this is the only quantity that
varies at runtime.

• T3: The entity to marker transformation. Again, this
is linked to the marker’s relative pose to the entity’s
baselink.

• T: The entity to entity transformation. The entity’s
pose as seen by the observing entity.

The transformations T1, T2, T3 can be used to calculate
the entity to entity transformation T as follows:

T = T1 ·T2 ·T−1
3 (1)

Entity1 Entity2
 T

Sensor

 T₁
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Figure 3. Sensor data transformation

3.2. Transform Graph

A graph consists of an arbitrary amount of vertices and
edges. The edges form the transition between the vertices.
They can either be directed or undirected (bidirectional).
Both edges and vertices can have an arbitrary number of
properties.

The main function of the graph is to calculate transfor-
mations over an arbitrary amount of entities (vertices) e.g. if
DroneA sees DroneB which sees DroneC, the graph will be
able to calculate the transformation from DroneA to DroneC
by passing though DroneB.

In practice the Atlas node uses the graph’s vertices as
entities and the edges as sensor data. The transformation
contained within the sensor data is invertible which makes
edges traversable in both directions hence resulting in a
bidirectional graph.

3.2.1. Building the graph. Atlas expects the user to specify
the entities present in the world on startup (normally via
config file) which are then represented as vertices in the
graph. Hence, the vertices present in the graph are static,
contrary to the edges which are created and destroyed on
the fly whenever new sensor data becomes available.

• Vertices (Entities):

The vertices, representing entities, are statically specified in
the config and are known to Atlas on startup. The world is
also considered to be an entity. As such, the graph of an
empty world always contains a vertex called world.

The data saved within a vertex is shown in (Table 2).

• Edges (Sensor information):

The edges represent sensor information. They are always
created in both directions by using the transformation matrix
and its inverse. Which means that for every sensor informa-
tion there are two edges created in the graph.

The stamp field keeps track of the edge’s age. Whenever
the edge is updated with new sensor information its age gets
set to zero. If it exceeds a certain value (typically 250ms), it
is removed. This process makes sure that no old information
is used to calculate the pose of the entities. On the other
hand, if a sensor does not provide information for a few
frames, its last information might still be valuable as the
pose did not change much during that time, and hence gets
used for pose calculations.

3.2.2. Evaluating the graph. Evaluating the graph requires
some care due to the following problems:

1) Dependencies: Naturally the pose of an entity de-
pends on the pose of its observers (recursively).

2) Cyclic dependencies: Sometimes the pose of an
entity depends on the pose of the observer and vice
versa.

3) Quality: The quality of the measurements decreases
with the distance from the world as the error/uncer-
tainty increases with every transformation step.



TABLE 2. DATA STRUCTURES OF THE GRAPH

Type Field Description

Vertex Name The entity’s name
Pose The entity’s pose in world space
Level The distance in the graph from world
Evaluated Flag that tells if the entity has been evaluated

Edge Key A unique key describing the
origin and target of the information

Transform The transformation assigned to the edge (directed)
Stamp Time of the last activity
Sigma Standard deviation of the sensor

To tackle these problems, Atlas evaluates the graph in
two phases:

• Broad Phase:

The broad phase performs a breadth-first search of the graph
structure starting from the world vertex. The algorithm
works as follows:

1) Create a stack (or queue) starting with the starting
vertex

2) Take the topmost vertex from the stack and add its
unvisited children to the bottom of the stack

a) Set the vertex’s level to its parents level+1
b) Mark the vertex as visited

3) Go to 2) until all vertices are visited

The starting vertex is always the world. This makes sure
only vertices connected to the world are visited while those
who are in no way linked to the world or any of its children
are not. As shown in (Figure 4) the vertices D and E are not
visited which means that their pose cannot be determined
in the world space.

After the broad phase, all the vertices’ transformation
steps with respect to the world vertex are known. Using
this information will be sufficient to tackle the problems of
the graph evaluation.

• Pose Evaluation Phase:

Now follows the actual evaluation of the pose using the
level information from the broad phase. The order in which
the nodes are visited is the same as during the broad phase.
The pose P can easily be calculated by fusing their parents’
poses multiplied by their respective transformations relative
to each other:

Pchild = Fuse (PParent1 ·T1,PParent2 ·T2, ...) (2)

The children’s parents eligible to be used during fusion
need to have a direct edge to the child and to be exactly one
level lower in the stack. This avoids cyclic dependencies by
not considering vertices at the same level and also avoids
fusing data with inferior quality by ignoring vertices with a
higher level i.e. greater uncertainty.

Figure 4. Transform graph after broad phase. Node A and B form a cyclic
dependency. Vertex D, E are not connected to the world vertex and hence
not evaluated. The field eval denotes the order in which the vertices are
evaluated. The field level denotes their distance from the world.

4. Filtering and fusion

The Atlas package is using an exponential moving aver-
age (EMA) to filter sensor data and a weighted mean filter to
fuse it. The exponential moving average (EMA) also called
single exponential smoothing [6] is an infinite response filter
which can be formulated as

Yt = Zt · α+ Yt−1 · (1− α) (3)

Zt being the observation at time t, Yt the output of the
filter at time t and Yt−1 being the previous filter output.
The constant α can be seen as the memory of the filter.
With α close to 1, the filter will forget old values within
a few iterations. With α = 1 the filter will simply pass
through the measurement value Zt. With α close to zero, the
filter will keep old values in mind much longer (Figure 5).
Contrary to the weighted moving average, the exponential
moving average does not keep track of all values within its
observation window. In fact, only the last value Yt−1 has to
be kept in memory, making it very fast and lightweight thus
ideal for real time applications.
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The weighted mean is used to fuse sensor data from
multiple sources, resulting in a single more reliable and
qualitatively better measurement. It is one of the simplest [4]
fusing methods and well suited for real time applications.
The weighted mean is calculated as follows:

~y =

∑
wi · ~xi∑
wi

~y = output
~xi = ith sensor data
~wi = ith weight

(4)

While this is straight forward to calculate for scalars
and vectors things become more difficult when talking about
quaternions. The main problem here is that the quaternion q
and −q describe the same rotation [7], but using the formula
above they would cancel each other out. To address this issue
[7] describes a different method to calculate the weighted
average of quaternions by

Q =
[
w1 · q1 w2 · q2 ... wn · qn

]
(5)

Then the weighed average of the quaternions is given by
calculating the normalized eigenvector corresponding to the
largest eigenvalue of Q ·QT .

The quality of the fused result depends largely on how
well the weighting factors wi can be chosen [4]. Atlas cal-
culates the weighting factors wi by looking at the standard
deviation σi of all the sensor readings in question:

σmin = min(σi) (6)

wi =
σmin

σi
(7)

The sensor readings with a lower standard deviation will
thus be weighted higher, hence having a greater influence
on the result. This is important as it allows high quality
sensors to outvote their lower quality counterparts.

5. Validation

The node has been developed using the test driven
development approach. This means that for each (important)
part of the node there exists a unit test making sure it works
as intended.

5.1. Test 1: Self localization test

Moreover, a field test was conducted in order to test
the self localization functionality of the Atlas node. In the
SnT flight arena a total 13 AprilTags (size: 18cm) were
placed on the floor. The markers’ pose was captured us-
ing the OptiTrack motion capture system and subsequently
translated into a YAML config file with the markers attached
to the world entity of the Atlas node. A Parrot AR.Drone 2
was used as testing drone to locate itself using the markers
on the floor by fusing one or more detected marker poses
together. The AR.Drone was defined as another entity in the
YAML config file with the front camera being defined as a
sensor. Due to the weak resolution (320p) of the bottom
camera, the front camera (720p) had to be used by pointing
it to the bottom. The camera’s pose relative to the base-
link of the drone had been taken into account by specifying

the corresponding sensor transformation (entity to sensor
transformation). Finally, the drone’s pose as detected by the
Atlas node and by the OptiTrack system was recorded while
piloting the drone arbitrarily through the flight arena.

The results of the test are shown in Figure 6. The
position of the drone as seen by the OptiTrack system
and as seen by the drone (Atlas node) is plotted over
time. Moreover, the total number of measurements which
is equivalent to the number of markers detected at any time
is shown in Figure 6. Following observations can be made:

• The drone was oscillating heavily (related to its
controller’s parameters)

• The detection rate of the markers was quite poor
due to the oscillating movements of the drone and
the resulting motion blur

• The position as given by the Atlas node corresponds
to the reference position of the OptiTrack system

• The number of measurements is varying greatly,
often dropping to zero. Again a result from motion
blur.

5.2. Test 2: Entity localization test

In this test, two Parrot AR.Drone 2 are supposed to
localize another entity (in this case a marker with a size of
12cm) using their front cameras while moving around the
marker and always keeping it in sight. The actual position of
the marker has been measured using the OptiTrack system
and is at:

~p0 =

xy
z

 =

 −4
−52
9

mm

The results of the experiment are visualized in (Figure
7) which yields to following observations:

• The drones are able to localize other entities (Figure
7). Although only with a precision of about 30cm.
The results in (Figure 6) are much closer to their
actual value which might be related to the marker
size and viewing angle.

• The detection rate was high as can be seen from
the number of measurements. Most of the time at
least one drone was able to detect the marker. As
opposed to test 1, the drones were moving much
slower, hence reducing motion blur.

6. Conclusion and future work

The results of test 1 have shown that the drone can
locate itself using the markers placed in the environment
and that the position corresponds to the actual position
as measured by the OptiTrack system. The result show
furthermore, that motion blur is in fact a practical problem
as it prevents the detection of the markers during (fast)
movements. Fortunately, this is a hardware problem and
can be mitigated by reducing the exposure time of camera



Figure 6. Results of test 1: (From top to bottom) Data from the OptiTrack
system which serve as reference, data from the Atlas node (fused posi-
tion), comparison of the results from the OptiTrack and Atlas, number of
measurements for a given position

e.g. by increasing the brightness of the environment, using
global shutter cameras or by fusing a different type of
marker. The results of test 2 have shown that the drone(s)
can localize other drones although with rather weak
precision. Nevertheless, the Atlas node works as expected
and the inaccuracy is related to the hardware of the drone
(i.e. the camera) and related to the small marker size.
Hence, the experimental results validate the cooperative
localization capability of the presented framework.

Future development will focus on the extension of
framework features, as for example it is useful for some
applications to have the relative pose of two entities. Cur-
rently this is only possible if the pose of the entities is known
in world space. This is due to how the graph is evaluated
using a breadth-first algorithm starting from world (Figure
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Figure 7. Results of test 2: (From top to bottom) The position as measured
by Atlas and also the actual position (X0,Y0,Z0) as measured by OptiTrack,
the position of the two drones, the amount of measurements for the given
entity.

4). Furthermore, the current Atlas implementation favors
the most direct path when evaluating the transformation
graph. Although it is logical that the shortest path yields
the best results, this might not be the case if the sensor
quality is differing significantly. A possible solution could
be to use the standard deviation information of the graph
as distance parameter and consequently using it to find the
most promising transformation chain using a path finding
algorithm like Dijkstra. The final focus of future work is the
implementation of an Extended Kalman Filter (EKF) fusion
filter [4] instead of the primitive fusion algorithm (weighted
average). EKF has the advantage to be applicable to the
non-linearity of quaternions. In addition the filter inherent
system model leads to higher accuracy and can extrapolate
the pose in small periods of missing sensor data.
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