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Abstract: Safety assurance is essential for lithium-ion batteries in power supply fields, and the remaining useful life (RUL) 7 

prediction serves as one of the fundamental criteria for the performance evaluation of energy and storage systems. Based on 8 

an improved dual closed-loop observation modeling strategy, an improved anti-noise adaptive long short-term memory 9 

(ANA-LSTM) neural network with high-robustness feature extraction and optimal parameter characterization is proposed 10 

for accurate RUL prediction. Then, an adaptive state parameter feedback correction strategy is constructed through multiple 11 

feature collaboration with its internal coupling mechanism characterization, which considers varying current rates, ambient 12 

temperatures, and other influencing parameters. Subsequently, a collaborative multi-parameter optimization is carried out 13 

along with the model training and meta-structure fine-tuning. Compared with other optimal existing methods, the maximum 14 

root mean square error decreases by 51.80%, the mean absolute error reduces by 26.95%, the maximum mean absolute 15 

percentage error decreases by 33.87%, and the R-squared increases by 4.11%. The established multiple-feature collaboration 16 

model realizes multi-scale parameter optimization and robust RUL prediction, thus advancing the industrial application of 17 

lithium-ion batteries. 18 
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Highlights:  1 

 An improved ANA-LSTM model is built for RUL prediction of lithium-ion batteries 2 

 Multiple feature collaboration is conducted for internal parameter characterization 3 

 Adaptive feedback correction is established with the multi-feature collaboration 4 

 Collaborative and multiple factors are optimized through meta-structure fine-tuning 5 

 RUL prediction results show optimal MAE and RMSE of 0.390% and 0.604%, respectively 6 

1. Introduction  7 

With the continuous development of new energy vehicles and large-scale energy storage systems, lithium-ion batteries 8 

have become one of the most widely used energy storage systems due to their high energy and power densities, durability, 9 

low self-discharge, and long cycle life advantages. With deepening supply-side structural reform, lithium-ion batteries play 10 

an important role in energy transformation and industrial structure adjustment. For the third-generation battery-based energy 11 

storage system, reliability and safe management lay the foundation for effective and efficient industrial applications [1-4]. 12 

The high-accuracy remaining useful life (RUL) prediction promotes the infrastructure of battery systems as essential support 13 

in new energy development and management. Due to the inherent cell-to-cell differences and high nonlinearities as a result 14 

of the complex working conditions and multi-coupling characteristics, the robustness of the RUL prediction is difficult to 15 

improve, resulting in safety problems such as poor performance, rapid aging, and spontaneous combustion [5-7]. A constant 16 

change-point model is constructed to obtain the analytical results of the system reliability, lifetime distribution, and RUL 17 

prediction [8, 9]. Consequently, a robust and accurate RUL prediction is needed to ensure the long-term operation of the 18 

battery and the synchronous increasing dispersion among battery cells. 19 

The key to solving the safety problem is to express the interaction between battery cells by effectively considering the 20 

coupling relationship between multiple state parameters and the polarization effect caused by frequent temperature variations. 21 

An efficient approach is proposed for battery health management for small-sized rotary-wing electric unmanned aerial 22 

vehicles (UAVs) using a constrained computational platform [10]. For the internally cascaded cells, the battery system has 23 
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the limitation of the complex series-parallel construction structure and strict safety requirements. Therefore, real-time 1 

monitoring and safety control should be conducted to ensure safety, reliable power supply, and durability. The physics-based 2 

prognostics are analyzed for lithium-ion batteries using nonlinear least square strategies with dynamic bounds [11]. Accurate 3 

state parameter prediction, including the core factors such as state of charge (SOC), state of health (SOH), state of power 4 

(SOP), and RUL, is the basis for ensuring safety and effective control [12, 13]. Based on the collaborative multi-feature 5 

extraction, the RUL prediction is realized, which plays a crucial role in improving the energy supply efficiency and promoting 6 

the high-quality development of the structural energy storage reform. Under the influence of the current magnification, 7 

ambient temperature, the number of cycles, and battery pack structure, the robustness of the RUL prediction model has 8 

significant guidance for energy enhancement. 9 

The module-level single-factor mechanism is established to construct the optimization model suitable for the packing 10 

characteristics of multi-cell battery systems based on a single factor, which is extended to realize the combination of the 11 

modeling strategies. The dynamic model is used to express the time-dimension characteristics, which are integrated to 12 

supplement the physical distribution at a specific time point and typical state, effectively expressing the three-dimensional 13 

packing characteristics [14, 15]. To realize a robust RUL prediction, it is necessary to analyze and clarify the multi-factor 14 

mutual coupling mechanism on the working characteristics, including the coupling relationship and the prediction method 15 

for various state parameters [16-18]. The difference between battery cells is that their inherent characteristics affect the output 16 

parameters, including capacity, voltage, and internal resistance. Also, the causes are complex for the production influence 17 

and application process, including charging strategies, discharge modes, ambient temperature, and self-discharge effects, so 18 

the Bayesian hierarchical model-based prognostics are investigated for lithium-ion batteries. Over time, the parameter 19 

difference and coupling effect increase, which intensifies the impact on modeling parameters and state information variations. 20 

The nonlinearity, strong time variability, and significant differences between different lithium-ion battery cells lead to 21 

the RUL prediction difficulty, which has made adaptive models become a research hotspot. Considering the SOH variational 22 

influence, a single particle modeling method is introduced to construct a time convolution network for RUL prediction with 23 
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optimized robustness [19]. Applying multiple uncertainty evaluation strategies, the RUL value is predicted online based on 1 

the F-distribution method for the extraction of multiple hidden state variables to realize the nonlinear drift fraction 2 

synchronously [20]. Multi-time-scale filtering and estimation algorithms, including support vector regression (SVR), Wiener 3 

process, particle filter (PF), and other optimized methods, have been used to achieve remarkable RUL prediction results [21-4 

23]. The data-driven feature enhancement, adaptive optimization, and Gaussian regression methods are effective in the model 5 

parameter correction segments [24-26]. The RUL prediction is improved with the new index and score processing framework, 6 

combining the second-order central difference with grey modeling [27]. Based on the robust compound filter, the Gaussian 7 

regression and weighted averaging strategies are combined to form a new fusion for the RUL prediction, which is then 8 

combined with the nonlinear regression to construct a multi-time scale prediction framework [28]. The existing research 9 

mainly focuses on the battery cell under the single-factor influence rather than the perspective of the battery system 10 

considering the multiple-factor. However, the inaccurate RUL prediction problem has not been solved fundamentally. 11 

Integration modeling and data-driven methods based on artificial intelligence (AI) have made great breakthroughs in 12 

simplifying the evaluation process of the complex electrochemical reactions in lithium-ion batteries. Deep learning (DL) and 13 

adaptive correction improve the energy efficiency and reliability of the battery systems effectively to predict the RUL value 14 

with robust characteristics [29-31]. The DL-based prediction method adopts different modeling mechanisms by combining 15 

them with time series analysis to effectively realize the RUL value [32]. The long short-term memory (LSTM), Gaussian 16 

process regression (GPR), and recurrent neural network (RNN) models are effective methods that can reflect the battery 17 

performance degradation trend with high accuracy [33, 34]. With the combination of LSTM and an enhanced self-correcting 18 

(ESC) model, the efficient RUL prediction model is constructed [35]. The intelligent DL-based data-driven strategy is used 19 

to effectively realize the real-time RUL prediction of lithium-ion batteries for UAVs by quantifying the uncertainties [36]. 20 

Based on the extreme learning machine (ELM) and feedforward neural network (FNN) with generalized learning (GL), an 21 

improved GL-ELM model is constructed, which has fast-learning and good-generalization performance advantages [37]. 22 

Based on the data-driven aging model, the transfer learning (TL) of the capacity degradation trend is realized by combining 23 



5 

 

it with Gaussian regression and the optimized deep convolution neural network (DCNN) strategies [34, 38-40]. The RUL 1 

value is predicted accurately, mainly based on the variations in voltage, current, and capacity rates during the charge-2 

discharge processes. 3 

The accurate prediction of state parameters, such as SOC, SOH, SOP, etc., plays an essential role in improving the RUL 4 

prediction accuracy of lithium-ion batteries. Compared with the easily measured parameters of voltage, current, and 5 

temperature, the working characteristics are reflected by the battery state factors [41]. A large number of state parameter 6 

prediction models have been constructed for high-precision RUL prediction with high robustness and anti-interference ability 7 

[42]. The influencing factors of the aging characteristics are analyzed under various working conditions, according to which 8 

the RUL prediction strategy is explored in combination with the state parameters. A full theoretical analysis is conducted for 9 

the collaborative state parameter prediction [43-45]. Considering the changing laws of key state parameters, the iterative 10 

calculation provides strong support for the construction of accurate RUL prediction models [46-48]. The prediction 11 

algorithms are mainly constrained by short-time scale parameters such as voltage, current, temperature, and SOC instead of 12 

considering the influence of long-timescale parameters, such as capacity, internal resistance, and SOH [49]. The research on 13 

the action mechanism of inter-cell difference, multi-time scale constraint, and parameter coupling is still immature, so the 14 

RUL prediction under complex working conditions needs to be further studied [50]. The DL-based theory is an essential 15 

development trend to improve the RUL prediction robustness with the improvement strategy of adaptive algorithms. 16 

The existing RUL prediction methods under various application conditions are insufficient under several working 17 

conditions and characteristics where the mathematical expression and comprehensive evaluation of several potential 18 

characteristics are not considered [51-53]. The model-based and data-driven collaborative state prediction strategies based 19 

on multi-boundary fusion need further analysis. Modular circuit characterization methods have been introduced to improve 20 

RUL prediction accuracy under complex working conditions [54, 55]. Multi-time scale prediction models are established 21 

with the state-space model using the characteristic information of external measurable parameters, in which correction 22 

strategies are employed for the influencing factors, including the internal connected cell-to-cell difference.  23 
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Based on the urgent needs of the above research, this paper proposes an improved anti-noise adaptive long short-term 1 

memory (ANA-LSTM) neural network coupled with an adaptive feedback correction strategy, which is constructed through 2 

multiple feature collaboration to achieve a high-precision RUL prediction. The main contributions of this research are 3 

described as follows. Firstly, the composite and robust prediction algorithms are analyzed in combination with the urgent 4 

application requirements. Then, the battery performance is clarified by the influencing mechanism analysis of multi-time 5 

scale constraints and cell differences. Secondly, based on the compound modeling strategy and data-driven multi-factor 6 

collaborative state prediction framework, an anti-noise adaptive iterative calculation procedure is constructed with a feedback 7 

correction to improve the prediction accuracy and robustness. Finally, the collaborative prediction algorithm is designed for 8 

key state parameters. The multi-objective hierarchical composite prediction model is constructed for the RUL prediction 9 

under multivariable coupling influence, which effectively supports the intelligent control and active core state parameter 10 

protection of the battery system. 11 

2. Mathematical analysis 12 

The battery characteristics are analyzed by clarifying the coupling mechanism between multiple variables, which solves 13 

the inaccurate characterization problem in the RUL prediction process under complex working conditions. The energy 14 

attenuation influencing mechanism is revealed, according to which the differentiated prediction is realized to establish the 15 

functional relationship between the state parameters and the RUL value. A robustness RUL prediction strategy is carried out 16 

that is formulated according to the established research objectives. The life attenuation mechanism is revealed by establishing 17 

the functional description of the coupling relationship between key parameters to realize the robust prediction. Then, an 18 

optimized multi-index state prediction algorithm is formed by the in-depth data-driven mechanism, according to which an 19 

accurate RUL prediction model is constructed and realized when it is combined with the key parameter optimization and 20 

feedback correction.  21 
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2.1. Multiple-stage fusion model-based RUL prediction framework 1 

Based on the multi-stage composite modeling, multi-scale constrained anti-noise analysis, multi-boundary distributed 2 

prediction, and multi-factor coupling parameter optimization, the collaborative aging characteristics are analyzed to obtain 3 

the anti-noise parameter identification and expansion strategies. The phased optimization is conducted to describe the cell-4 

to-cell difference to improve universality and reduce complexity, establishing a highly adaptive compound equivalent circuit 5 

model (CECM). Based on the self-optimizing strategy, the adaptive prediction and correction strategies are employed to 6 

construct a robust RUL prediction model. The charge-discharge characterization and parameter performance expansion are 7 

conducted, in which the multi-factor coupling mechanism expansion is realized for different packing modes and the fusion 8 

of different SOC levels, respectively. After the capacity and internal resistance screening, the cell-to-cell performance 9 

difference turns out to be relatively small. The basic data charge-discharge characteristics are obtained with the series and 10 

parallel expansion. Combined with the variation law of multiple influencing factors, the adaptive CECM is constructed. The 11 

modular equivalent strategies are introduced to characterize the polarization effect, self-discharge influence, and charge-12 

discharge difference. The effects of different combining optimization methods are evaluated along with the application 13 

scenarios, improving the ECM theory and establishing a multi-stage fusion model framework, as shown in Figure 1. 14 
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Figure 1. Multi-stage fusion model framework for battery characterization 2 

In Figure 1, 𝐸(𝑡) is the open-circuit voltage (OCV) value; 𝑅𝑠 reflects the self-discharge resistance phenomenon; 𝑅0 is 3 

the ohmic resistance effect and describes the instantaneous voltage variations during the charge-discharge process. The 4 

resistor-capacitor (RC) parallel circuit simulates the polarization effect, 𝑅𝑝  is the polarization resistance, and 𝐶𝑝  is 5 

polarization capacitance. 𝑅𝑐  and 𝑅𝑑  are the internal resistance differences during the charge and discharge processes, 6 

respectively. 𝑈𝛿  and 𝑅𝛿 characterize the equilibrium influence that describes the difference between internal cascade battery 7 

cells. The output voltage variation of the constant current-constant voltage (CC-CV) stages is characterized by 𝑈𝐿 and 𝐼(𝑡) 8 

is the current flowing through the battery. When combined with the working characteristics and optimization strategies, the 9 

physical distribution is expanded in both time and space dimensions. Then, a complete model is constructed by integrating 10 

static and dynamic characteristics to expound the multi-physical quantity action mechanism and establish the effective 11 

mathematical state-space model. 12 
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2.2. Anti-noise adaptive multi-time scale cooperative state estimation 1 

Based on the adaptive CECM, the state information is defined to construct the optimized objective function. After that, 2 

the collaborative state prediction procedure is designed that is adaptive to the complex time-varying conditions when the 3 

noise is uncertain to accurately predict the RUL value through data fusion and feedback correction. An adaptive estimator is 4 

constructed for the nonlinear parameters to obtain the time-varying statistical information of measurement and modeling 5 

noises synchronously. The influencing degree of environmental conditions is introduced into the mathematical expression to 6 

construct the state of balance (SOB) weighting factor, and the initial value is preset for real-time correction. Through the 7 

numerical representation of the cell-to-cell difference, the state parameters are optimized to improve the modeling accuracy 8 

that is combined with the variance and coefficient evaluation. The coefficients of variation 𝜃  and 𝜀  are introduced to 9 

characterize SOB, as shown in Equation (1). 10 

𝑆𝑂𝐵 = 𝜀 = 𝜃
2
=
1

𝑛
∑(

𝑈
𝑐𝑖
− 𝐸(𝑈

𝑐
)

𝐸(𝑈
𝑐
)

)

2
𝑛

𝑖=1

 (1) 

In Equation (1), 𝜀 is the voltage difference between battery cells; 𝜃 is the coefficient of the cell-to-cell variation; 𝑈
𝑐𝑖

 is 11 

the measured voltage of the 𝑖th battery cell; 𝑛 is the number of battery cells. Based on the framework of the constructed 12 

adaptive state prediction model, the influencing mechanism of SOB is introduced into the modeling process, in which both 13 

the voltage and internal resistance changes are considered to characterize the influence of the cell-to-cell differences. 14 

Consequently, the correction goal is achieved to obtain the accurate expression, as shown in Equation (2). 15 
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 (2) 

In Equation (2), the influence of SOB is described mathematically and integrated into the iterative calculation process. 16 

Based on the typical parameter impact values on the prediction results, the dynamic effects are considered effectively, 17 
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including ambient temperature, aging characteristics, and current magnification. Consequently, TL strategies are introduced 1 

to obtain the pre-training of the prediction network and the fine-tuning of neuron structure. On this basis, multi-task training 2 

and optimization are carried out to improve the robustness of the prediction through iterative calculation with adaptability. 3 

Consequently, a dual closed-loop DL-based observation framework is constructed, as shown in Figure 2. 4 
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Figure 2. The dual closed-loop DL-based observation and RUL prediction model 5 

In Figure 2 (a), the dual closed-loop DL-based observation and RUL prediction methods in this paper contain two 6 

closed-loop structures, including pre-training DCNN and CNN-TL. The TL strategy is applied, in which the source domain 7 

points to the training data set are transferred to the target domain points to the test dataset. The training data part is selected, 8 

and the battery attenuation characteristics are extracted to predict the battery capacity, which reduces the computational 9 

burden of the algorithm. The coupling mechanism between SOC, SOH, and SOP is clarified by taking the statistical results 10 

as input factors. The SOC value is used as the intermediate state, and each state’s information is taken as input with each 11 

other to realize the iterative calculation with strong adaptability and anti-noise ability, constructing a multi-state parameter 12 

collaborative prediction model. The adaptive prediction ability is improved by the real-time correction of voltage signals. 13 

The intermediate parameters of mean voltage 𝑈
𝑎
 , variation coefficient SOB, and voltage change rate 𝑑𝑉  are calculated 14 

iteratively. The equivalent voltage of a single unit is obtained by calculating the effective state function of the adaptive CECM. 15 

A DL-based iterative calculation model is constructed for the robust RUL prediction, in which the unit voltages of 𝑈
1
, 𝑈

2
, 16 

𝑈
3
,..., and 𝑈

𝑛
 are measured in real-time. Then, the basic operations, such as difference, mean, and variance, are carried out 17 

in step S1. The key parameters are fused and calculated in step S2, which are introduced into the model in step S3 to obtain 18 



11 

 

the state-space equation (S_E). Also, the current 𝐼 under the working condition influence is taken as the main input parameter, 1 

and the temperature signal 𝑇 is taken as the correction factor. The DL-LSTM iterative calculation is carried out recursively 2 

to obtain the RUL value and the correction factor for the implementation procedure. 3 

Based on the ECM and state-space model, the particularity is revealed with the influencing factors of the key parameters. 4 

The correction strategy of the key parameters is obtained by the theoretical analysis of the influencing factors, including the 5 

charge-discharge current, ambient temperature, cycle life, self-discharge current rate, and cell-to-cell difference. Based on the 6 

multi-input and high nonlinearity characteristics, the transformation functions are obtained by considering both the mean and 7 

covariance. The dynamic random vector model is constructed to express the approximate Gaussian distribution of the 8 

sampling data points. The DL theory is also introduced to improve the adaptability of the prediction model for complex 9 

working conditions. The influencing factors of multi-time scale constraints are clarified, including the closed-circuit voltage, 10 

output current, ambient temperature, SOC, SOH, SOP, and RUL variations.  11 

Combined with the noise correction strategy, a multi-constraint collaborative state prediction algorithm is modeled to 12 

estimate the RUL value. The influencing factors of the inter-unit differences in the prediction process are combined with 13 

those of the multi-time scale constraints to construct an inter-unit differential corrector by reliability reasoning. The correcting 14 

coefficient is multiplied by the referenced value for the RUL prediction and the reliable correction of inter-unit differences. 15 

The algorithm structure is modeled and realized, as shown in Figure 3. 16 
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Figure 3. Multi-time scale RUL prediction based on the cell-to-cell difference feedback correction 1 

In Figure 3, various state parameters are taken into consideration, including CCCV, SOC, SOH, SOP, and RUL values. 2 

Multi-standard comprehensive error evaluation methods are introduced to verify the accuracy and robustness of the proposed 3 

method. If the expected accuracy is not achieved, the prediction calculation process is iterated to further improve the noise 4 

correction, collaborative state estimations, and multi-constraint RUL prediction. The multi-time scale and multi-objective 5 

state parameter collaborative prediction are conducted using the intelligent feedback correction strategy. 6 

2.3. Power supply update based on DCNN-TL and LSTM strategies 7 

The constraint mechanism of each boundary condition is established to realize the modular RUL prediction method 8 

through a logic DL-based iterative calculation. The n-dimensional target sampling point values are obtained by the state 9 

update. The prediction data set is obtained based on the calculation rules, which are transferred to the nonlinear function 10 

synchronously. Based on the state-space model and measurement noise correction factor, a new data set is resampled to 11 

improve the real-time adaptive correction effect. The framework of the optimal RUL prediction method through a logic DL-12 

based iterative calculation with the LSTM model is shown in Figure 4. 13 
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Figure 4. The structure of the DCNN-TL strategy and LSTM-based RUL prediction method  14 

In Figure 4 (a), the performance attenuation mechanism is introduced by considering the aging characteristics, including 15 

temperature, current magnification, depth of discharge, and SOC variations. The state-space model and data-driven 16 

mechanism are combined to optimize the parameter identification effects for accurate prediction outputs. Regarding LSTM 17 

as a black box, the single cell can be divided into several key units, which are the memory cell, forget, input, and output gates. 18 
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The input parameters are the hidden state ℎ𝑡−1 at a time point 𝑡 − 1, and the input data 𝑥
𝑡
 at a time point 𝑡. The mainline of 1 

the memory cell state from the previous 𝐶
𝑡−1

 to the current time point 𝐶
𝑡
, and the final processed output information for a 2 

single layer ℎ𝑡. 3 

The input information of the hidden layer ℎ𝑡−1 and input 𝑥𝑡 are used as the main input information and they control 4 

the three gates. The three gates in the LSTM model include a forget gate 𝑓
𝑡
, an input gate 𝑖

𝑡
, and an output gate 𝑜

𝑡
 to protect 5 

and control the memory cell. The forget gate 𝑓
𝑡
  determines which parameter information from the current input 𝑥

𝑡
  and 6 

previously hidden state ℎ𝑡–1 of the memory cell to keep or discard through the sigmoid layer by directing each piece of 7 

information to either 1 or 0, respectively. The mathematical expression for the forget gate is shown in Equation (3). 8 

𝑓
𝑡
= 𝜎 (𝑊

𝑓
ℎ
𝑡−1

+𝑊
𝑓
𝑥
𝑡
+ 𝑏

𝑓
) (3) 

The new information to be stored in the memory cell is determined by the input gate 𝑖
𝑡
 (cell status update). It takes 9 

information provided by the current input 𝑥
𝑡
 and previously hidden state ℎ𝑡−1 and processes it using the sigmoid and 𝑡𝑎𝑛ℎ 10 

layers. The sigmoid layer first chooses which current input 𝑖
𝑡
  data should be used to update the cell. The 𝑡𝑎𝑛ℎ  layer 11 

subsequently generates a 𝐶
𝑡
 cell state vector, which is then added to the cell state. These sigmoid and 𝑡𝑎𝑛ℎ layers collaborate 12 

to determine what information is kept in the cell state, as mathematically expressed in Equation (4). 13 

{
𝑖
𝑡
= 𝜎 (𝑊

𝑖
ℎ
𝑡−1

+𝑊
𝑖
𝑥
𝑡
+ 𝑏

𝑖
)

�̃�
𝑡
= 𝑡𝑎𝑛ℎ (𝑊

𝑐
ℎ
𝑡−1

+𝑊
𝑐
𝑥
𝑡
+ 𝑏

𝑐
)
 (4) 

To update the memory cell for a new cell state 𝐶
𝑡
, the input 𝑖

𝑡
 and cell state vector �̃�

𝑡
 are multiplied and added to the 14 

previous cell state using the point-by-point multiplication of 𝐶
𝑡−1

 and 𝑓
𝑡
, as mathematically expressed in Equation (5). 15 

𝐶𝑡 = 𝑓𝑡 ∙ 𝐶𝑡−1 + 𝑖𝑡 ∙ �̃�𝑡 (5) 

Based on filtered information from the new cell state 𝐶𝑡, the output gate 𝑜
𝑡
 selects the information for the next hidden 16 

state or test output. First, the sigmoid layer specifies which information about the cell state should be the output. Second, the 17 

𝑡𝑎𝑛ℎ  layer regulates the information from the new cell state 𝐶𝑡 , which ranges between –1 and 1. The output 𝑜
𝑡
  is then 18 

multiplied by the output of the sigmoid layer to obtain the new hidden state ℎ𝑡 . Equation (6) shows the mathematical 19 

expressions for the output gate 𝑜
𝑡
 and the new hidden state ℎ𝑡. 20 
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{
𝑜
𝑡
= 𝜎 (𝑊

𝑜
ℎ
𝑡−1

+𝑊
𝑜
𝑥
𝑡
+ 𝑏

𝑜
)

ℎ
𝑡
= 𝑡𝑎𝑛ℎ (𝐶

𝑡
) ∙ 𝑜

𝑡

 (6) 

In Equation (6), 𝜎 is the sigmoid layer which aids the LSTM model in updating or dropping information between 0 and 1 

1. Also, 𝑥
𝑡
  is the current data input, and ℎ𝑡−1 represents the previous time point's hidden state or output. The 𝑡𝑎𝑛ℎ  is a 2 

hyperbolic tangent function that prevents fading by controlling the information flowing through the model between –1 and 3 

1. 𝑊
𝑓
 , 𝑊

𝑖
 , 𝑊

𝑐
 , and 𝑊

𝑜
  that are weights associated with the forgetting, input, cell, and output gates. Furthermore, the 4 

forgetting, input, cell, and output gates, which have bias vectors of 𝑏
𝑓
, 𝑏
𝑖
, 𝑏
𝑐
, and 𝑏

𝑜
 to boost the flexibility of the network 5 

that is adaptive to the training data. 6 

From Equation (6), the weight coefficient of the output gate is updated by the forward propagation and the 7 

backpropagation, which are optimized iteratively by conducting the error term transmission for the time sequence. In the 8 

early prediction stage, a multivariable hidden Markov model (HMM) is constructed to realize the multi-factor weighting 9 

correlation on the aging characteristics, state parameters, and RUL variation. It is used to achieve accurate short-term 10 

prediction and error correction. For the later prediction process, the long-term and short-term memory time series are 11 

combined by the LSTM model. The dual feedback correction is conducted for the feature and time series so that the 12 

correlation of time dependence is realized to improve the prediction accuracy. The correlation is extracted between the 13 

internal characteristic parameters, environmental conditions, and operation data, according to which the real-time correction 14 

is realized for the auxiliary information, independent key time point selection, and mathematical expression enhancement. 15 

Consequently, the prediction effect and stability are improved for a long time series, along with the prediction algorithm 16 

design based on ECM and data-driven fusion strategies. 17 

2.4. Feature decomposition preprocessing and iterative RUL prediction 18 

The capacity attenuation is usually accompanied by capacity regeneration, which is due to the slowing down of the 19 

internal electrochemical reactions after shelving, resulting in a slight recovery along with the capacity regeneration and 20 

attenuation trend, affecting the RUL prediction. The fast Fourier transform, wavelet, and Hilbert transform strategies are 21 
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combined to express the nonlinear characteristics with strong adaptability without setting the basic function and feasible 1 

decomposition layer. Consequently, the measured parameters are well-decomposed and distinguished between capacity 2 

regeneration and attenuation. The battery capacity is converted into components of different frequencies, including the 3 

eigenmode function and residual components. Therefore, the original capacity data 𝐶(𝑡) is mathematically expressed, as 4 

shown in Equation (7). 5 

𝐶(𝑡) =∑𝑐𝑗(𝑡)

𝑛

𝑗=1

+ 𝑟𝑛(𝑡) (7) 

In Equation (7), 𝑐𝑗(𝑡) is the jth eigenmode function that is used to describe the capacity regeneration; 𝑟𝑛(𝑡) is the 6 

residual component to express the real degradation process; 𝑛 is the number of the eigenmode functions. The decomposition 7 

is completed based on the mathematical expression, as shown in Equation (8). 8 

∑
[𝑐𝑗−1(𝑡) − 𝑐𝑗(𝑡)]

2

𝑐𝑗−1
2 (𝑡)

𝑛

𝑡=1

≤ 𝛿, 𝑗 = 1, 2,⋯ , 𝑛 (8) 

In Equation (8), 𝑛 is the cyclic charge-discharge number; 𝛿 is the ending judgment parameter with a value of 0.5 for 9 

the RUL prediction procedure. The SOH level is described by the capacity degradation characteristics, according to which 10 

the end-of-life (EOL) value is calculated and taken as 80% of the rated capacity. The mathematical expressions for the SOH 11 

in terms of capacity and EOL are shown in Equation (9). 12 

𝑆𝑂𝐻 =
𝐶𝑛
𝐶0
× 100% ⇒ 𝐸𝑂𝐿 = 𝐶0 × 0.8 (9) 

In Equation (9), 𝐶0 is the rated capacity; 𝐶𝑛 is the real-time capacity for the cyclic charge-discharge number of 𝑛. The 13 

RUL value is characterized as the number of the remaining cyclic charge-discharge, as shown in Equation (10). 14 

𝑅𝑈𝐿 = 𝑛𝑇_𝐸𝑂𝐿 − 𝑛𝑡 ⇒ 𝑅𝑈�̂� = 𝑛𝑃_𝐸𝑂𝐿 − 𝑛𝑡 (10) 

In Equation (10), 𝑛𝑇_𝐸𝑂𝐿 is the total number of cycles; 𝑛𝑡 is the current number of cycles; 𝑅𝑈�̂� is the predicted RUL 15 

value; 𝑛𝑃_𝐸𝑂𝐿 is the predicted number of cycles to the EOL value of the battery. To realize an accurate RUL prediction, the 16 

prediction model is constructed with a multiple-to-one structure for both SOH estimation and RUL prediction. The training 17 

model is constructed using the current and voltage as input parameters, as shown in Equation (11). 18 

𝑐𝑗𝑖 = 𝐿𝑆𝑇𝑀{
𝐼𝑗𝑖
1 , 𝐼𝑗𝑖

2, ⋯ , 𝐼𝑗𝑖
𝑛

𝑈𝑗𝑖
1 , 𝑈𝑗𝑖

2, ⋯ , 𝑈𝑗𝑖
𝑛 (11) 
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In Equation (11), 𝑐𝑗𝑖 is the 𝑗th cell in the 𝑖th cycle; 𝐼𝑗𝑖
𝑛 and 𝑈𝑗𝑖

𝑛 are the respective measured current and voltage values at 1 

the final time point in the cyclic charge-discharge process. For each parameter, 𝑛 is the total number of the sampling data 2 

points used as the input vectors. The trained ANA-LSTM model is trained to estimate the battery capacity, as shown in 3 

Equation (12). 4 

�̂�𝑗𝑖 = 𝐿𝑆𝑇𝑀 {
𝐼𝑗𝑖
1 , 𝐼𝑗𝑖

2, ⋯ , 𝐼𝑗𝑖
𝑛

𝑈𝑗𝑖
1 , 𝑈𝑗𝑖

2, ⋯ , 𝑈𝑗𝑖
𝑛 (12) 

In Equation (12), �̂�𝑗𝑖  is the estimated capacity for the 𝑗 th cell and 𝑖 th cycle. Then, the SOH value is calculated 5 

accordingly. For the RUL prediction, another LSTM sub-model is constructed using the one-to-one structure. The historical 6 

capacity is taken as the input parameter, and the predicted capacity value in the next cycle is taken as the output. The SOH 7 

sequence is constructed and the 𝑤 feature is introduced to predict the 𝑤 + 1 value by taking 𝑤 as the sliding window. A 8 

decomposition is conducted to preprocess the data sequence. The RUL prediction model is established to overcome the 9 

fluctuations in the SOH sequence that influence the prediction, as shown in Equation (13). 10 

{
𝑠𝑡+1 = 𝐿𝑆𝑇𝑀{𝑠𝑡−1

𝑅𝐸𝑆, 𝑠𝑡
𝑅𝐸𝑆,⋯ , 𝑠𝑡−𝑤+1

𝑅𝐸𝑆 }

�̂�𝑡+1 = 𝐿𝑆𝑇𝑀{𝑠𝑡−1
𝑅𝐸𝑆, 𝑠𝑡

𝑅𝐸𝑆,⋯ , 𝑠𝑡−𝑤+1
𝑅𝐸𝑆 }

 (13) 

From Equation (13), the data sequence is normalized before entering the LSTM model, as shown in Equation (14). 11 

𝑧𝑖
𝑛 =

𝑥𝑖
𝑛 −𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)
, 𝑛 ∈ {1, 2,⋯ , 𝑛} (14) 

In Equation (14), the data sequence is reversed to eliminate the normalization effect when it is taken as the output signal. 12 

Then, the root-mean-square error (RMSE) and coefficient of determination (R2) values are used to verify the prediction and 13 

model accuracy. The error (𝐸𝑖 ) and mean absolute error (MAE) are also introduced for performance evaluation. The 14 

calculation procedures of the error evaluation metrics are expressed mathematically, as shown in Equation (15). 15 

{

𝐸𝑖 = 𝑅𝑈𝐿𝑖 − 𝑅𝑈�̂�𝑖

𝑀𝐴𝐸 =
1

𝑛
∑|𝐸𝑖|

𝑛

𝑖=1

 (15) 

In Equation (15), 𝐸𝑖  is the prediction error or residual; 𝑅𝑈𝐿𝑖  is the actual RUL of the battery system; 𝑅𝑈𝐿�̂�  is the 16 

predicted RUL value at each time point by the proposed model; n is the total number of data points. 17 

The RMSE shows how dispersed the estimated error is away from the mean. The mathematical expression for the 18 
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calculation of the RMSE is shown in Equation (16).  1 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝐸𝑖)

2

𝑛

𝑖=1

 (16) 

The percentage-wise expression of the MAE is the MAPE. Its mathematical expression is shown in Equation (17).  2 

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑|

𝑅𝑈𝐿𝑖 − 𝑅𝑈�̂�𝑖
𝑅𝑈𝐿𝑖

|

𝑛

𝑖=1

 (17) 

The R2 value indicates the accuracy of a model to the actual RUL value, and it is scaled between 0 and 1. Its mathematical 3 

expression is shown in Equation (18). 4 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠
𝑆𝑆𝑡𝑜𝑡

= 1−
∑ (𝑅𝑈𝐿𝑖 − 𝑅𝑈�̂�𝑖)

2𝑛

𝑡=1

∑ (𝑅𝑈𝐿𝑖 − 𝑅𝑈𝐿̅̅ ̅̅ ̅̅
𝑖)

2𝑛

𝑡=1

 (18) 

In Equation (18), 𝑆𝑆𝑟𝑒𝑠 is the sum of squares of residuals, and 𝑆𝑆𝑡𝑜𝑡 is the total sum of squares. The other parameters 5 

have the same meaning as the previous error metrics. 6 

3. Experimental analysis 7 

According to the phased objectives, various dynamic working-condition RUL tests are carried out continuously. 8 

Considering the various influencing parameters, such as the effects of temperature, current rate, and cyclic charge-discharge 9 

time, the characteristics of the performance parameters are expounded at different energy stages. It reveals the effects of these 10 

influencing parameters on the battery packing mode, according to which a multi-stage fusion ECM is established by 11 

considering the internal multivariable coupling performance. A universal experimental verification is formed with a 12 

functional representation of external parameters based on the changing law of output characteristics under the influence of 13 

complex working conditions.  14 

3.1. Battery attenuation and BBDST parametric initialization 15 

When the activity of the battery increases, the positive and negative oxygen potentials decrease. Subsequently, when the 16 

current is varying, the voltage is low due to the fast charging reaction. The weakening of the charge-accepting ability leads 17 
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to the insufficient phenomenon. When the discharge current is large, the total battery power is low. The internal resistance 1 

decrease causes the multiple discharge current rates to increase, thus reaching the cut-off voltage fast. When the current inside 2 

the battery is large, the temperature rises and affects the power supply performance. However, when the discharge current is 3 

greater than the rated value, the internal polarization effect increases. The cut-off voltage is reached quickly, so the adoption 4 

rate and performance ratio drop sharply. It even leads to the deposition of lithium ions inside the battery, and the loss increases, 5 

which seriously affects the power capacity. The upper cut-off voltage facilitates the overcharge, resulting in a large amount 6 

of flammable gas, expansion, or even explosion. Subsequently, the irreversible electrochemical reaction occurs, which 7 

seriously affects the battery lifespan, so the testing procedure is designed along with the varying temperature and current rate 8 

conditions. The entire program design is shown in Figure 5. 9 
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(a) Whole-life-cycle aging procedure (b) Testing procedure for the BBDST 

Figure 5. Whole-life-cycle battery aging test procedure and BBDST 10 

In Figure 5, the design of the whole-life-cycle test shows that the battery characteristics are obtained from two main steps, 11 

including the basic characteristic test of changing temperature and the BBDST. Consequently, different temperature 12 

conditions are considered for the basic characteristic test, including 5, 25, and 45°C. In this case, the capacity, OCV, and 13 

HPPC tests are performed in a chamber with controlled working environmental conditions. Then, the BBDST is checked 14 

with 10 total cycling tests, and there are almost 21 small pulse-current charge-discharge cycles. As for the whole-life-cycle 15 
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test of the cyclic charge-discharge conditions, specific implementation steps are designed for the BBDST. The battery pack 1 

placed in one electric car is characterized by 𝑏 and the battery cell is characterized by 𝑐, so the SOP value of each battery cell 2 

can be obtained from the battery pack, as shown in Equation (19). 3 

𝑃
𝑐

′
= 𝛼𝑃

𝑐
= 𝛼

𝑈
𝑐
𝑄
𝑐

𝑈
𝑐
𝑄
𝑐

𝑃
𝑏
= 𝛼𝜆

𝑏
𝑃
𝑏

(19) 

In Equation (19), 𝜆𝑏 is the equivalent coefficient; 𝛼 is the overload capacity factor to expand the test power to obtain the4 

overloading capacity. The initial voltage value of the battery pack in the EV is 384 V, and the rated capacity is 360 Ah. Since 5 

the normal voltage of the battery cell is 3.60 V and the rated capacity is 2.2 Ah, the power calculation process can be obtained 6 

by setting α=5, as shown in Equation (20). 7 

𝑃
𝑐

′
= 𝛼

𝑈
𝑐
𝑄
𝑐

𝑈
𝑐
𝑄
𝑐

𝑃
𝑏
= 5×

3.6× 2.2

384× 360
× 𝑃

𝑏
= 2.8646× 10

−4
× 𝑃

𝑏
(20) 

In Equation (20), after the CC-CV charging, the BBDST is conducted to repeat the main discharge step until the CCV 8 

drops to the cut-off voltage value. Then, the charge-discharge test power is calculated accordingly. The average current rate 9 

is 1 C, which can be calculated by 𝐼 = 𝑃/𝑈 by taking 𝑈 = 3.6 V. Every time, the BBDST is performed for 300 s and the 10 

test lasts 12 times to fully discharge the battery. Then, the procedure turns out to be the CC-CV charging with a current rate 11 

of 0.5 C. A single BBDST time of the pulse-current charge-discharge treatment is 1 hour, and another charge time is 2.5 hours, 12 

making a total testing time of 3.5 hours. Considering the size of the data file, 1 file can be formed in 3 days for high efficiency, 13 

so the calculation formula for the cycling number is 24×3 / 3.5≈20. The iterative calculation procedure is mixed with 14 

theoretical steps to verify the testing results. Then, the dynamic loop test influence is considered to analyze the output factor 15 

of the measured data. The initial value is calibrated through adaptive parameter identification to verify the accuracy, 16 

robustness, and real-time performance. 17 

3.2. Whole-life-cycle BBDST and RPT results 18 

The whole-life-cycle BBDST working condition test is designed and realized for 1200 charge-discharge cycles at an 19 
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ambient temperature of 25 °C. For every 20 cycles, a testing data file is formed, and the battery characteristic tests are 1 

conducted for the reference performance test (RPT), including the capacity determination, OCV, and HPPC tests. The 2 

characteristic analysis is also conducted at various temperatures, which are 5, 25, and 45 °C. The capacity test is conducted 3 

using current rates of 0.3, 1, and 2 C. The OCV and HPPC tests are conducted for every 5% SOC decreasing internally from 4 

100 to 0%. The cyclic BBDST and RPT are conducted until the SOH value reaches 80%, as shown in Figure 6.  5 

  
(a) Current variation for 20 BBDST cycles (b) Voltage variation for 20 BBDST cycles 

  
(c) Capacity variation for 20 BBDST cycles (d) Energy variation for 20 BBDST cycles 

Figure 6. The RPT determination for the 20-BBDST cycle 

In Figure 6, for every 20-BBDST cycle, the experimental results are recorded, including current, voltage, capacity, and 6 

energy variations. The current variation is designed as shown in subfigure (a), in which 20 BBDST cycles are conducted for 7 

each single-file experimental test; the corresponding voltage variation is shown in subfigure (b); the corresponding capacity 8 

variation is shown in subfigure (c), and the corresponding energy variation is shown in subfigure (d). Then, the capacity 9 

determination, HPPC, and OCV variation testing results are obtained by conducting the RPT, as shown in Figure 7. 10 
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(a) Capacity determination at different current rates (b) Voltage variation at different current rates 

  
(c) Capacity variation for the whole cycle life test (d) Current variations and supplementary charging tests 

Figure 7. The RPT determination for every 20-HPPC cycle test 1 

In Figure 7, the capacity determination order is designed, as shown in subfigure (a), in which three full charge-discharge 2 

cycle tests are conducted. The voltage variation for the HPPC tests is plotted, as shown in subfigure (b), in which 20 BBDST 3 

cycles are conducted for every 5% SOC variation. The corresponding capacity variation is shown in subfigure (c). The current 4 

variation and determination are plotted, as shown in subfigure (d). After the whole-life-cycle BBDST, the detailed 5 

experimental data is obtained and shared on the website: https://www.researchgate.net/project/Battery-life-test. 6 

3.3. Capacity fading effect in the cyclic BBDST 7 

For the capacity fading process, the measured capacity values are recorded and selected from the original data. The 8 

capacity variation for the BBDST is obtained for different temperature, current, and SOH conditions, as shown in Table 1. 9 

Table 1. The cyclic BBDST capacity variation for battery C7 10 

SOH (%) T (°C) C-rate C (Ah) SOH (%) T (°C) Cr (1.00) C (Ah) 

100 5 0.30 2.079 85 25 2.00 1.476 

100 5 1.00 1.999 80 25 0.30 1.404 

100 5 2.00 2.006 80 25 1.00 1.157 

95 5 0.30 1.932 80 25 2.00 1.016 

95 5 1.00 1.820 75 25 0.30 1.089 
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95 5 2.00 1.790 75 25 1.00 0.851 

90 5 0.30 1.776 75 25 2.00 0.641 

90 5 1.00 1.639 70 25 0.30 1.018 

90 5 2.00 1.599 70 25 1.00 0.710 

85 5 0.30 1.528 70 25 2.00 0.354 

85 5 1.00 1.375 100 45 0.30 2.360 

85 5 2.00 1.323 100 45 1.00 2.340 

100 25 0.30 2.262 100 45 2.00 2.325 

100 25 1.00 2.187 95 45 0.30 2.197 

100 25 2.00 2.159 95 45 1.00 2.159 

95 25 0.30 2.113 95 45 2.00 2.123 

95 25 1.00 2.019 90 45 0.30 2.031 

95 25 2.00 1.977 90 45 1.00 1.961 

90 25 0.30 1.932 90 45 2.00 1.905 

90 25 1.00 1.836 85 45 0.30 1.694 

90 25 2.00 1.779 85 45 1.00 1.580 

85 25 0.30 1.661 85 45 2.00 1.540 

85 25 1.00 1.540 - - - - 

In Table 1, SOH is the calculated health level as an evaluation factor that is obtained from the battery manufacturer and 1 

cycle number, and T is the ambient temperature under which the experiment is conducted. C-rate is the charge-discharge 2 

current rate, and C is the capacity for the corresponding testing conditions. 3 

Table 2 The cyclic HPPC test capacity variation for battery C7 4 

SOH (%) T (°C) C-rate C (Ah) SOH (%) T (°C) Cr (1.00) C (Ah) 

100 5 0.30 2102 85 25 2.00 1.504 

100 5 1.00 1.931 80 25 0.30 1.395 

100 5 2.00 2.023 80 25 1.00 1.157 

95 5 0.30 1.932 80 25 2.00 1.003 

95 5 1.00 1.791 75 25 0.30 1.074 

95 5 2.00 1.786 75 25 1.00 0.843 

90 5 0.30 1.762 75 25 2.00 0.632 

90 5 1.00 1.597 70 25 0.30 1.009 

90 5 2.00 1.602 70 25 1.00 0.697 

85 5 0.30 1.547 70 25 2.00 0.362 

85 5 1.00 1.416 100 45 0.30 2.352 

85 5 2.00 1.311 100 45 1.00 2.297 

100 25 0.30 2.197 100 45 2.00 2.216 

100 25 1.00 2.201 95 45 0.30 2.189 

100 25 2.00 2.163 95 45 1.00 2.161 

95 25 0.30 2.109 95 45 2.00 2.118 

95 25 1.00 2.007 90 45 0.30 2.021 

95 25 2.00 1.989 90 45 1.00 1.959 

90 25 0.30 1.964 90 45 2.00 1.913 

90 25 1.00 1.861 85 45 0.30 1.687 

90 25 2.00 1.754 85 45 1.00 1.614 
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85 25 0.30 1.679 85 45 2.00 1.534 

85 25 1.00 1.499 - - - - 

In addition, the capacity changes are obtained under the HPPC working condition for different temperatures, current 1 

rates, and SOH levels, as shown in Table 2 The cyclic HPPC test capacity variation for battery C7. Based on the recorded 2 

parameter values, the capacity fading process is expressed and used for the training of the constructed ANA-LSTM model. 3 

3.4. Long-term RUL prediction effect for dynamic conditions 4 

The cycle next to 90% of the initial capacity is taken as a fixed starting data point, and various failure threshold 5 

mechanisms are used for the RUL prediction to verify the effectiveness of the proposed ANA-LSTM model. The prediction 6 

results are obtained, and the RMSE values are compared. The model is trained on a single GPU, and the main data training 7 

time points during the LSTM training process are recorded, as shown in Table 3. 8 

Table 3. The main data training time points during the LSTM training process 9 

Epoch Iteration Time elapsed (hh:mm:ss) Mini-batch RMSE Mini-batch loss Learning rate 

1 1 00:00:02 0.820000 0.30000 0.0005000 

13 50 00:00:05 0.100000 4.6e-03 0.0003000 

25 100 00:00:07 0.010000 7.7e-05 0.0001000 

38 150 00:00:09 0.060000 1.7e-03 7.5047e-05 

50 200 00:00:11 8.66e-03 3.8e-05 3.9883e-05 

In Table 3, the final mini-batch RMSE value demonstrates the effectiveness of the proposed ANA-LSTM model, which 10 

has minimum uncertainty with good efficiency and robustness. The RUL prediction result of the self-use dataset and B0007 11 

of the National Aeronautics and Space Administration (NASA) with the RMSE and effective loss values under the DST 12 

working condition is recorded, as shown in Figure 8. 13 

 
  

 (a) ANA-LSTM RUL prediction of the self-use dataset 

training progress without noise 

(b) RUL prediction result of the self-use dataset for 

practical training and testing without noise 
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(c) ANA-LSTM RUL prediction of the self-use dataset 

training progress with noise 

(d) RUL prediction result of the self-use dataset for 

practical training and testing with noise 

 
 

(e) ANA-LSTM RUL prediction of B0007 training progress 

with noise 

(f) RUL prediction result of B0007 for practical training 

and testing with noise 

Figure 8. ANA-LSTM RUL prediction training progress and results under the DST working condition 1 

Figure 8 (a), (c), and (e) show the performance of the LSTM RUL prediction training process without noise or with 2 

noise. Also, in subfigures (b), (d), and (f), C is the capacity degradation curve with the true and predicted RUL curves, and 3 

C_N refers to the capacity degradation curve with noise composed of white Gaussian noise and uniform noise. Both noises 4 

are at a 0.01 level. Also, the error values of the RUL prediction are defined in terms of MAE, RMSE, MAPE, and R2. The 5 

true and predicted RUL values are compared using the absolute error in each inspection cycle, and the overall evaluation 6 

indicator is constructed for the prediction results. The error of the prediction result obtained by the ANA-LSTM model is the 7 

least in each inspection cycle, with an RMSE value of 0.60434%, MAE value of 0.39074%, MAPE value of 0.44672%, and 8 

the R2 value of 0.99583. After the noise is added, the RMSE value is 0.68471%, the MAE value is 0.45104%, the MAPE 9 

value is 0.51647%, and the R2 value is 0.98964. In the RUL prediction for B0007, the RMSE value is 0.72054%, the MAE 10 

value is 0.97847%, the MAPE value is 0.87947%, and the R2 value is 0.98136. It shows that this method still retains high 11 

accuracy when dealing with data with obvious noise influence. All the model parameters are updated adaptively by the online 12 

measurement, according to which the capacity degradation uncertainty is captured effectively for complex working 13 
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conditions.  1 

To further prove the accuracy and robustness of the proposed method, the most commonly used recurrent neural 2 

network (RNN), the original LSTM, and the newly proposed improved LSTM algorithm are selected, including the long 3 

short-term memory domain adaptation (LSTM-DA) presented by Han et al. [56] and the differential evolution grey wolf 4 

optimizer long short-term memory (DEGWO-LSTM) model proposed by Ma et al. [57]. The RMSE, MAE, MAPE, R2, 5 

training and testing times, and convergence times of RUL prediction results are compared, and the results are shown in Table 6 

4. 7 

Table 4. Comparison of estimation results for B0007 with noise between the ANA-LSTM and other existing methods 8 

Methods RMSE (%) MAE (%) MAPE (%) R2 (1) 
Training 

time (s) 

Testing 

time (s) 

Convergence 

times (s) 

ANA-LSTM 0.97847 0.72054 0.87947 0.98136 11.56184 7.69392 3.48716 

RNN 2.37468 1.16984 1.93412 0.90367 15.12385 11.64612 9.67456 

LSTM 2.24210 1.07458 1.69748 0.92874 14.21875 10.15784 7.59212 

LSTM-DA 2.03000 - 1.33000 - 13.74000 9.34000 6.12000 

DEGWO-LSTM 1.63610 0.98640 1.14780 0.94264 12.97000 10.93000 5.71000 

As can be seen from Table 4, the RMSE of the ANA-LSTM model is the lowest compared with other models, which 9 

decreases by 51.80% compared to the LSTM-DA model and 40.19% compared to the DEGWA-LSTM model. The MAE 10 

of the ANA-LSTM model decreases by 26.95% compared with the DEGWA-LSTM model, and the MAPE decreases by 11 

33.87% and 23.38%, respectively. The R2 increases by 4.11% compared to the DEGWA-LSTM model. The training times 12 

of the ANA-LSTM model reduce by 15.85% and 10.86%, respectively. The testing times decrease by 17.62% and 29.61%, 13 

respectively, and convergence times reduce by 43.02% and 38.93%, respectively. From the experimental tests, it can be 14 

observed that the ANA-LSTM-based RUL prediction result has the optimal accuracy with the least uncertainty, which 15 

verifies its accuracy and robustness. 16 

4. Conclusion 17 

A novel ANA-LSTM model is proposed to obtain the optimal expression to solve the robust RUL prediction problem. 18 

The model construction and adaptive feedback correction methods are employed for the high-precision RUL prediction, 19 

considering the current rate, ambient temperature, and other influencing factors, combining multiple feature coordination 20 



26 

 

mechanisms. A collaborative multi-parameter optimization is carried out based on the model training and meta-structure 1 

fine-tuning strategies. A new exploration of the RUL prediction method is realized by forming a new theory of battery system 2 

modeling, which optimizes the designing, manufacturing, and operation management of the battery effectively. Compared 3 

with the traditional data-driven methods, the proposed ANA-LSTM model achieves a high-precision RUL prediction effect 4 

with an RMSE value of 0.60434%, MAE value of 0.39074%, MAPE value of 0.44672%, and an R2 value of 0.99583. This 5 

work accelerates the development of life cycle and intelligent management systems, providing theoretical support for the 6 

growth of lithium-ion battery systems. 7 

This paper establishes an effective RUL prediction method based on anti-noise theory and a data-driven model, which 8 

provides a reasonable idea for further effective health management and further application of lithium-ion batteries. The next 9 

research direction mainly includes: Firstly, various factors that may affect the battery decay rate will be further considered, 10 

including internal factors such as charge/discharge ratio and external factors like pressure and air humidity. Secondly, the 11 

changes in internal resistance and capacity during the process of battery decay are comprehensively analyzed to obtain the 12 

response effect of the two to battery aging. Finally, the aging mechanism and RUL prediction of batteries will be further 13 

researched at the system level. 14 
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