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Abstract. The problem of Orbital Manipulation of Passive body is discussed here. Two scenarios including passive object rigidly
attached to robotic servicers and passive body attached to servicers through manipulators are discussed. The Model Predictive
Control (MPC) technique is briefly presented and successfully tested through simulations on two cases of position control of
passive body in the orbit.

INTRODUCTION

The manipulation of passive objects in space has become a key requirement of space missions involving activities
such as On-Orbit Assembly, Active Debris Removal missions, Orbital transfer using Space Tug etc. Different methods
exists for manipulation of objects in space [1]. The first solution consist of a method where robotic servicer is rigidly
attached to the passive body and thrusters of the servicer are directly used to control the motion of the passive object.
In the second case the servicer is attached to the passive body through a manipulator and the motion of the passive
body is controlled through the manipulator and thruster of the servicer. In the first case the motion of the passive body
is directly the motion of the servicer while in the second case the motion of the passive body involves the complex
behaviour of the manipulator dynamics and the interaction between the servicer, manipulator and passive body.

In [2] and [3] the problem of capture of an orbital satellite using a space manipulator was studied. In [4] the
servicer using multiple manipulators to manipulate a passive body is discussed. In [5] the problem of space assembly
was discussed. In [6] a two dimensional problem was discussed where multiple servicers were used to manipulate a
passive object. In [1], [7] and [8] the control of servicers with manipulators is discussed where it is assumed that the
servicers have already captured the passive object. In [1] a simplified one-dimensional problem was studied where
two servicers firmly grasped a passive body. In [1], [7] and [8] the servicers firmly grasped a passive object and a
combination of ON-OFF thrusters and manipulators is used to remove the problem of limit cycles and improve the
control accuracy with fuel efficiency.

In the current research the problem of orbital manipulation of a passive body using two servicers is discussed.
Here only the post-capture phase is studied and for simplicity a one-dimensional problem is solved. The problem
of position control of passive body is handled using Model Predictive Control (MPC). The remainder of the article
is as follows: First the orbital robotics model is discussed which includes the passive model with rigidly attached
thrusters and secondly the combined model of the passive body and two robotic servicers. The applied Mode Predictive
Control is briefly discussed followed by the application of the control and modelling techniques to certain experimental
scenario through simulation studies.



ORBITAL ROBOTICS: MODEL

The modelling aspect of the orbital robotic system is briefly discussed here. The Dynamics of a set of m number of
Orbital systems consisting of Robotic Servicer and passive body can be given by [1]

Hq̈ + C(q, q̇) = Q (1)

where q is the n × 1 vector of generalized coordinates, that includes 3(m + 1) positions and 3(m + 1) Euler angles of
the m robot bases, the passive body and also the joint variables of each robot manipulator. Here Q is the k × 1 vector
of generalized forces, which includes thrusters, torques from reaction wheels of m robots and joint torques of robot
manipulators. H is a n×n mass matrix and C is a n×1 vector that contains the velocity terms. In order to further study
the problem of orbital robotics we will simplify the system into a one-dimensional problem. We will further study the
modelling and control of a passive body directly controlled by thrusters and then analyse the problem of manipulation
of a passive object with two orbital robotic servicers.

Passive Body directly controlled by thrusters
In the current section we will briefly study the simplified one-dimensional model of a passive body directly controlled
by thrusters. This is the case when the robotic servicers are rigidly attached to the passive body. Under such condition
we can assume that the thrusters of the servicer act directly on the passive body. The simplified one-dimensional model
of the passive body directly controlled by thrusters can be seen in Figure-(1). The dynamic equation of a simplified
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FIGURE 1. Passive body directly controlled by thrusters.

one dimensional model is given by

ẋ1 = x2 (2)

ẋ2 =
1
m

(u1 + u2) (3)

Where m is the mass, x1 is the position, x2 is the velocity, u1 and u2 are ON-OFF control forces given by

u1 =

umax : if uopt ≥ ft
0 : if uopt < ft

(4)

u2 =

−umax : if uopt ≤ ft
0 : if uopt > ft

(5)

where uopt is an optimal control input generated by the controller, umax is the force applied by open thruster and ft is
deadband on the controller to avoid chattering.

Cooperative Robots and Passive body
The dynamic model of cooperative orbital robots manipulating a passive body is discussed here. The scenario that is
being considered here is that two space robots transport a passive body attached between them through a manipulator



each from the two space robots. For simplicity only a one-dimensional model is considered as before and further
simplifications are made to the manipulator model. The two manipulators are firmly attached between the passive
body and the robots and have certain degree of flexibility. This is the case when the links are flexible or links are
rigid with flexible joints. The flexible behaviour can be approximated by spring and damper model as can be seen in
Figure-2. The dynamic equation of a simplified one dimensional model can be given by:

u2m1 m2 m3
u1
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FIGURE 2. Cooperative control of passive body.

ẋ1 = x2 (6)

ẋ2 =
1

m1
(u1 + k2(x3 − x1) + c2(x4 − x2)) (7)

ẋ3 = x4 (8)

ẋ4 =
1

m2
(−k2(x3 − x1) − c2(x4 − x2) + k3(x5 − x3) + c3(x6 − x4)) (9)

ẋ5 = x6 (10)

ẋ6 =
1

m3
(u2 − k3(x5 − x3) − c3(x6 − x4)) (11)

Where m1,m2,m3 are the masses of three bodies,x1, x3, x5 is the position vector, x2, x4, x6 is the velocity vector, u1
and u2 are ON-OFF control forces as described earlier. Here {k1, k2} and {c1, c2} are spring and damping constants of
the manipulators.

MODEL PREDICTIVE CONTROL

Here we will briefly discuss the Model Predictive Control (MPC) algorithm used to control the system. The dynamics
of the system can be described by [9]

~̇x(t) = ~f (~x(t), ~u(t), ~p(t)), (12)

where ~x(t) ∈ Rn is the state vector, ~u(t) ∈ Rmu is the input vector and ~p(t) ∈ Rmp is the vector of time dependent
parameters.

The MPC uses an internal model to predict the behaviour of the system over the horizon τ = [t, t + T ] at each
time t. The control input is determined by minimization of the performance index J subject to constraints ~C ∈ Rmc .
To summarize an optimal control problem is solved at each time instant t given by [9]:

min
u

J =ϕ(~xτ(T, t), ~p(T, t)) +

∫ t+T

t
L(~xτ(τ, t), ~uτ(τ, t), ~p(τ, t))dτ (13)

s.t. ~̇xτ(τ, t) = ~f (~xτ(τ, t), ~uτ(τ, t), ~p(τ, t)), (14)
~xτ(0, t) =~x(t) (15)
~0 ≥ ~C(~xτ(τ, t), ~uτ(τ, t), ~p(τ, t)). (16)

where ϕ is the terminal cost, L is the running cost and ~xτ,~uτ are the predicted trajectories indexed by τ in the prediction
horizon. In the above optimal control problem the feedback to close the loop is introduced by (15), where the actual
state x(t) is used as initial state ~xτ(0, t).



In the current MPC implementation the the continuation generalized minimum residual method (CGMRES)[9] is
used. The CGMRES method has been successfully tested in [10], [11], [12], [13] and [14] with the help of open source
code available from [15]. In the CGMRES method an auxiliary variable method is used to implement the inequality
constraint by using slack variables α, where [9]

0 ≥ C(~xτ(τ, t), ~uτ(τ, t), ~p(τ, t)) (17)

is converted to
0 = C(~xτ(τ, t), ~uτ(τ, t), ~p(τ, t)) + α2 (18)

Finally the solution of the CGMRES method is the optimal control input ~uτ, where only the first control input ~u(t) =

~uτ(0, t) is applied to the system.

SIMULATION RESULTS

Here we will briefly discuss the application of Model Predictive Control (MPC) technique to the control of cooperative
orbital robots. First we will briefly discuss the position control of a passive object rigidly attached with two satellites
and then we will discuss the scenario of a passive body controlled by cooperative robots.

Direct Control of Passive Object in Orbit
Here we will briefly describe the scenario of direct control of passive orbital object. This is the case where a massive
passive object is controlled by two servicer satellites rigidly attached and providing thruster forces. To perform the
simulation let us consider a passive mass m1 of 90 kg, actuated using u1 and u2 with umax = (0, 50) and umin = (−50, 0).
The scenario is that the passive mass m1 has to move from 0 to 25 m using thrusters. The trigger variable for the
actuator is defined by ft. The respective running and terminal Cost are given as:

L =
1
2

(
(x − x f )T Q(x − x f ) + u2

1r1 + u2
2r2 + u2

3r3 + u2
4r4 + g1(u3 + u4)

)
(19)

ϕ =
1
2

(x − x f )T S f (x − x f ) (20)

with the constraint function

C(u) = (u − ū)2 − (umax − ū)2 + α2, ū =
umax + umin

2
, α := f (u3, u4) (21)

The time varying parameter p(t) = 0. The other tuning parameters are: Q = Diag[900, 5 × 103], R = Diag[1, 1, 0, 0],
g1 = 1, ϕ = 0 with prediction horizon Th = 3 and sampling rate Ts = 0.01.The simulation results for the current
scenario can be seen in Figure-3,4,5,6. The task here is that the Passive body is moved from initial position of 0 m to
final position of 25 m. In Figure-3 we can see the position control response of the passive body and respectively the
velocity can be seen in Figure-4. In Figure-5 we can see the optimal control solution provided by the Model Predictive
Control while Figure-6 shows the ON-OFF actuation response to perform the control objective. The control forces u1
and u2 are counter acting forces with u1 acting as a positive force to push and u2 acting as a negative force to stop the
displacement of the passive body. The control signals are supplied to the ON-OFF actuator and the response can be
seen in Figure-6.

Cooperative Control of Passive Body
In the current scenario a passive body in the center is displaced by two robotic servicers with thrusters. The schematic
of the problem can be seen in Figure-2. For the simulation purpose the mass of passive body m2 is 400 kg, which
is carried by satellite m1 and m3 of mass 90 kg each. The servicers are actuated using u1 and u2 with umax = (0, 50)
and umin = (−50, 0). The target here is that the passive mass m2 has to move from 0 to 25 m while m1 and m2 should
maintain a distance of 1.5 m from m2. The respective running cost and terminal cost function can be seen as follows:

L =
1
2

((x − x f )T Q(x − x f ) + u2
1r1 + u2

2r2 + u2
3r3 + u2

4r4

+ g1(u3 + u4) + wgap(x1 − x3 − 1.5)2 + wgap(x3 − x5 − 1.5)2)
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FIGURE 3. Position Control: Passive Body controlled directly by thrusters.
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FIGURE 4. Position Control: Velocity of the Passive body.

ϕ =
1
2

(x − x f )T S f (x − x f ) (22)

The constraints that are used here can be given by

C(u) = (u − ū)2 − (umax − ū)2 + α2, ū =
umax + umin

2
, α := f (u3, u4) (23)

and the time varying parameter is p(t) = 0. The other tuning parameters are: Q = Diag[4 × 103, 1 × 105, 4 × 103, 1 ×
105, 4 × 103, 1 × 105, ], R = Diag[1, 1, 0, 0], g1 = 10, ϕ = 0 , wgap = 200, k2 = k3 = 10, c2 = c3 = 1000 with
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FIGURE 5. Position Control: Control Signal.
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FIGURE 6. Position Control: Actuator response.

prediction horizon Th = 3 and sampling rate Ts = 0.01.The simulation results for the current scenario can be seen in
Figure-7,8,9,10.

In Figure-7 we can see the position of the passive body and the two satellites respectively. In Figure-8 we can see
the velocities of three bodies required to achieve the required position control. The controller output generated by the
MPC can be seen in Figure-9 while the ON-OFF actuator response can be seen in Figure-10. The actuator response
in Figure-10 shows heavy chattering , which is due to the fact that the control signals are both positive and negative
at the same time. Such a behaviour of the controller was essential for the position control of the passive body at the
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FIGURE 7. Cooperative Position Control: Position response.

Time (seconds)
0 20 40 60 80 100 120 140 160 180 200

V
el

oc
ity

 (
m

/s
.)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

m
1

m
2

m
3

FIGURE 8. Cooperative Position Control: Velocity response.

same time keeping a safe distance to avoid collision.
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FIGURE 9. Cooperative Position Control: Control Signal.
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FIGURE 10. Cooperative Position Control: Manipulator Position.

CONCLUSION

The problem of manipulation of passive objects in space using space robots is discussed. The dynamic models of
robotic servicers attached to passive body is also introduced. The Model Predictive Control technique was introduced
briefly and successfully applied to two scenarios where a passive body is displaced by two servicers rigidly attached
and then the case where the two servicers are attached to the passive body through a manipulator. In both the cases



the Model Predictive Control Technique proves suitable. The future perspective of the current solution includes the
development of MPC based solution to consider position control with energy efficiency and avoiding chattering in the
ON-OFF actuators.
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