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Abstract—Operational Space Control of an Aerial Manipula-
tion Vehicle is discussed here. The Aerial Manipulation Vehicle
has a highly coupled dynamics due to the interaction between the
Quadrotor and the attached manipulator. The nonlinear coupling
introduces disturbances on the quadrotor which hinders precise
control. A control solution in the operational space is considered
where the End-Effector has to reach a final position starting from
an initial hovering position. A hierarchical control approach is
implemented where the outermost layer consist of Closed Loop
Inverse Kinematics algorithm followed by position and attitude
controlled loop for the quadrotor. The robotic arm and the
quadrotor are controlled by different combinations of PID control
methods. The proposed method is successfully tested through
simulations for position control of the Aerial Manipulator.

I. INTRODUCTION

The developments in the active tasking of UAV has in-
creased their employability by enhanced interaction with the
environment. The active tasking include applications such as
grasping, manipulation, transportation etc. This has also lead
to attention towards the problem of Aerial Manipulation, that
is to actively manipulate an object using an aerial vehicle. The
different applications of Aerial Manipulation have lead to a set
of challenges to be pursued.

Here we will briefly discuss the problems that have been
actively researched in the recent years. An experimental study
and stability analysis was performed on a helicopter with load
disturbances due to gripped object in [1]. A ducted fan was
modelled and controlled in [2] to understand the interaction
with the environment.

The problem of Cartesian Impedence control and redun-
dancy was studied in [3] and [4] using Euler-Lagrange for-
mulation. The Newton-Euler method had been used in [5]
and [6] to model and control a quadrotor attached with
manipulator. Model Reference Adaptive Control was used in
[7] to stabilize a quadrotor with multi degree of freedom
manipulator, where mainly the rigid body dynamics of the
quadrotor were considered.

In [8] a simple gripper was attached to the fuselage of
a helicopter and a vision based sensor was used to control
the manipulator . In [9] experiments were performed on a
quadrotor with a gripper and an IR camera was used as a
sensor to detect and grip an object with LED attached on it.

In [10] the problem of load transportation was studied. Here
dynamic programming was used to generate optimal trajectory
to perform a swing free manoeuvring. Additionally an adaptive
control was used to tackle the changes in center of gravity. In
[11], [12] the problem due to shift in center of mass during
manipulation of objects is handled using adaptive control. Here
an adaptive position control was used while the inner loop
consist of PD roll-pitch control with center of mass estimation.

In [13] the problem of disturbance caused by manipulator
with payload is tackled mainly by adaptation of the outer po-
sition loop. In [14] the development of an Aerial Manipulation
system where the complete non-linearity of the quadrotor is
considered along with 2-link manipulator dynamics based on
Recursive Newton Euler (RNE) formulation.

In [15] a hybrid image and position based visual servoing
based on hierarchical task- composition was considered to
control an aerial vehicle equipped with a six degree of freedom
robotic arm. In [16] a 2 degree of freedom manipulator was
controlled using an adaptive sliding mode control. In [17]
simulation studies were performed to control a quadrotor with
manipulator considering operational space control. Similarly
in [18] adaptive control was discussed to control an Aerial
vehicle with manipulator having six degree of freedom iden-
tical to [17].

In this paper we consider the problem of Aerial Vehicle
equipped with a 2 degree of freedom robotic arm. An oper-
ational space control task has to be achieved using classical
hierarchical control structure. Compared to the previous prob-
lems in [17] and [18] the quadrotor equipped with a 2 DOF
robotic arm used in this paper has relatively lesser degrees of
freedom to attain the required task in operational space .The
paper is structured as follows. First the modelling is briefly
discussed which includes the kinematics and dynamic mod-
elling of the composite system of quadrotor and manipulator
with 2 DOF. This leads us to the control discussion involving
Closed Loop Inverse Kinematics, position and attitude control
of the quadrtor and control of manipulator. Finally simulation
studies are performed to analyse the control method.

II. MODELLING

Here we will briefly discuss the kinematics and dynamics
of the Aerial Manipulation Vehicle. The discussion is based



on [17]. The design of the Aerial Manipulation Vehicle can
be seen in Figure-1 and the 2 degree of freedom manipulator
can be seen in Figure-2.

A. Kinematics

Let us denote the vehicle body-fixed frame as B fixed to the
center of mass of the quadrotor. The position of B with respect
to the world fixed inertial frame I is given by the vector pb =
[x y z]. The orientation of B with respect to I is give by the
rotation matrix Rb(ϕb). Here we define ϕb = [ψ θ φ] as the
Yaw-Pitch-Roll angles. Let us define E as the frame attached
to the end-effector of the manipulator. The position of E with
respect to I is given by [17]

pe = pb +Rbp
b
eb, (1)

where pbeb describes the position of frame E with to frame B.
Similarly the velocity ṗe of E in the frame I is given by [17]

ṗe = ṗb − S(Rbp
b
eb)ωb +Rbṗ

b
eb (2)

where S(·) is a skew symmetric matrix operator.The orienta-
tion of E can be described by the rotation matrix [17]

Re = RbR
b
e, (3)

where Rbe describes the orientation of E with respect to B. Let
q be the joint coordinates of the manipulator. Then pbeb(q) and
Rbe(q) are described by the direct kinematics algorithm of the
classic fixed base manipulator with respect to its base frame.
The generalized velocity of the end-effector with respect to B
can be obtained in-terms of joint velocities q̇ as given below
[17]

vbeb = Jbeb(q)q̇ (4)

where Jbeb is the manipulator Jacobian. The generalized end-
effector velocity in the frame I can be give as [17]

ve = Jb(q,Rb)vb + Jeb(q,Rb)q̇ (5)

where vb =
[
ṗTb ωTb

]
and we have

Jb =

[
I3 −S(Rbp

b
eb)

O3 I3

]
, Jeb =

[
Rb O3

O3 Rb

]
Jbeb, (6)

where I3 and O3 are identity and null matrices respectively.
We can also express ve as follows [17]

ve = Jb(q,Rb)ẋb + Jeb(q,Rb)q̇, (7)

with
xb =

[
pb
ϕb

]
, TA(ϕb) =

[
I3 O3

O3 T (ϕb)

]
(8)

where T (ϕb) can be given by

T (ϕb) =

0 −sψ cψcθ
0 cψ sψcθ
1 0 −sθ

 (9)

The state vector xb can be rewritten as follows

xb =

[
µb
σb

]
, µb =

[
pb
ψ

]
, σb =

[
θ
φ

]
. (10)

The differential kinematics expression ve can be written as
[17]

ve = Jγ(σb, γ)γ̇ + Jσ(σb, γ)σ̇b (11)

where γ =
[
µTb qT

]
is the vector of controlled variables , Jγ

is composed by first 4 columns of JbTA(ϕb), Jσ is composed
by the last 2 columns of JbTA(ϕb), Jσ and Jγ =

[
Jγ Jeb

]
.

Fig. 1: Aerial Manipulation Vehicle.

Fig. 2: Manipulator Design.

B. Dynamics

The dynamic model of the aerial manipulation vehicle can
be given using Euler-Lagrange method as follows [17]

M(χ)χ̈+ C(χ, χ̇)χ̇+ g(χ) = u (12)
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where χ =
[
xTb qT

]
, M is the symmetric and positive

definite inertia matrix, C includes the coriolis and centrifugal
quantities, g is the gravity term and u is the input vector [17]

u =

ufuν
uτ

 =

 Rb(ϕ)f bb
TT (ϕb)R(ϕb)ν

b
b

τ

 (13)

where τ are the torques applied to the manipulator joint, f bb
and νbb are the forces and moments on the quadrotor expressed
in B.

III. CONTROL

The structure of the control scheme can be seen in Figure-3.
The outer layer consist of the Closed Loop Inverse Kinematics
followed by position and attitude control for the quadrotor and
joint control for the manipulator. Here we will briefly discuss
the control schemes involved.

A. Closed Loop Inverse Kinematics

The purpose of the Closed Loop Inverse Kinematics al-
gorithm is to generate references to the position, attitude
and joint control loops for the quadrotor and manipulator
respectively.The closed loop inverse kinematics is given by
[17]

γ̇r =J†γ(σb, γr)TA(ϕe,r)(ẋe,d +Ke)

J†γ(σb, γr)Jσ(σb, γr)σ̇b
(14)

where J†γ is the pseudoinverse of Jγ , K is the symmetric
positive definite gain and e = xe,d − xe,r is the error of the
end effector position and attitude.

B. Closed Loop Control Structure

The basic hierarchical control structure of the quadrotor can
be seen in Figure-3. The quadrotor control has inner attitude
and outer position loops. A simple controller for the roll and
pitch channels could then be

Urp = Kp(εrp −KdΘ̇rp) (15)

where we have εrp = Θ∗rp − Θrp, with Θ∗rp as the pitch and
roll demand, Urp gives us pitch (τy) and roll torque (τx). A
PID control is used for the yaw control loop

Uyaw = Kp(εyaw +
1

s
Kiεyaw −KdΩ̇z) (16)

where εyaw = ψ∗ −ψ is the yaw error with yaw demand ψ∗.
The outer-loop consists of a x, y position control with PID

type structure, the output of which is the pitch and roll demand

Θ∗rp = Kp(εxy +
1

s
Kiεxy −Kdvxy −Kddv̇xy) (17)

where εxy = ξ∗xy−ξxy is the horizontal position error and vxy
is the position rate and v̇xy is the respective acceleration. For
the height control an independent PID control

T = Kp(εz +
1

s
Kiεz −Kdvz −Kddv̇z) (18)

is used where εz = ξ∗z − ξz is the z position error and vz is
the z position rate and v̇z is the respective acceleration.

For the manipulator control problem an independent joint
control method was used preferable with PD configuration
such as

Um = Kp(Kp1q̃ −Kdq̇) (19)

where q̃ is a joint angle error.

IV. SIMULATION

The above discussed algorithms are applied to a nonlinear
simulation model and briefly discussed here. A nonlinear
Dynamic model of Asctec Pelican Quadrotor is considered
here. The Asctec Pelican is a quadrotor with mass 2 Kg and
inertia I = diag(

[
1.24 1.24 2.48

]
. The model parameters

have been obtained from [17]. The quadrotor is equipped with
a 2 degree of freedom robotic arm with a base and 2 links. The
design of the light weight manipulator can be seen in Figure-2.
The total mass of the robotic arm is 110 g. The complete Aerial
Manipulator system was modelled in CAD and imported into
Simulink-Simmechanics environment which finally serves as
a high fidelity nonlinear simulator.
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Fig. 5: Position Control: Attitude error norm .

In order to test the controller the key task here is posi-
tion control in operation space. That is the end-effector has
to reach a final position starting from an initial position.
The Aerial Manipulator starts from a hovering position at
{0 + 0.27587, 0, 2 − 0.1184} with manipulator joint angle
[0, 0] and has to reach {0.5 + 0.27587, 0.5, 1.5 − 0.1184} .
During this simulation a single set of controller parameters
are used. The inner attitude control has the controller gains
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Kp = 5,Kd = 5 for roll and pitch control where as the
yaw control gains are Kp = −3,Ki = 0.001,Kd = 0.01.
Similarly the position control has the following controller
gains:Kp = [10,−10],Ki = [0.1, 0.1],Kd = 7,Kdd = [1, 1]
for horizontal control while for vertical position control the
gains were Kp = 10,Ki = 0.1,Kd = 5,Kdd = 1. The
manipulator controller gains are Kp = 1,Kp1 = 50,Kd = 0.1
and the the inverse kinematics gains are K = [1, 1, 1, 1, 1, 1].
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The End-Effector position error norm and attitude error
norm can be seen in Figure-4 and Figure-5 respectively.
Similarly the position and attitude of the quadrotor can be seen
in Figure-6 and Figure-7 respectively. Considering the manip-
ulator control in Figure-8 and Figure-9 we can see the joint
torques applied to control and the joint angles respectively. In
Figure-10 and Figure-11 we can see the position and attitude
of the manipulator End-Effector. From the above figures we
can see that end-effector position error norm converges to
0 m while the attitude converges to 2 × 10−3 radians. We
can also clearly observe that the position and attitude states of
the quadrotor and manipulator reaches steady states.

V. CONCLUSION

In the current paper we have successfully discussed the
problem of position control of Aerial Manipulation Vehicle
in the operational space. The kinematics and dynamics of
the aerial manipulator was discussed, the hierarchical control
structure was addressed and finally simulation studies were
performed using a nonlinear model. The future perspectives
of this research include detailled stability analysis and control
design to perform more advanced tasks.
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