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Abstract. One of the most critical assignments in fault diagnosis is to decide the 
finest set of features by evaluating the statistical parameters of the time-domain 
signals. However, these parameters are vulnerable under variable speed condi-
tions to capture the dynamic attributes of various health types. Therefore, this 
paper proposes a vibration imagining-based diagnosis approach for bearing under 
variable speed conditions. First, a Discrete Cosine Stockwell Transformation 
(DCST) coefficient-based preprocessing step is proposed to create an identical 
health pattern for variable speed conditions. Then, from that 2D coefficient ma-
trix, a vibration image is created to capture those health patterns into grayscale. 
Finally, a Transfer Learning embedded Convolutional Neural Network (TL-
CNN) is proposed to inspect the comprehensive structure of the 2D vibration 
images for final classification. The experimental results show that the proposed 
method achieved 100% classification accuracy on a publicly available dataset. 

Keywords: Bearing, Condition monitoring, Convolutional Neural Network, 
Stockwell Transformation, Transfer Learning. 

1 Introduction 

Rotating machinery plays an increasingly significant role in many industries [1, 2]. 
To reduce the economic losses and increase safety, fault diagnosis is of main im-
portance [3]. Rolling element bearing is the most vital component of the rotating ma-
chinery. Rolling element bearings operate in harsh working environments, thus, these 
components become the primary reasons for the sudden failures of these machinery [1], 
and create huge economic fatalities [4]. In the past decades, industries focused on robust 
condition monitoring methods [5]. Moreover, to get some meaningful insights from the 
signals for fault diagnosis, throughout these years, researchers have relied upon several 
signal processing techniques, such as Fast Fourier Transformation (FFT) [6], Empirical 
Mode Decomposition [7], Energy Entropy [8], Wavelet Packet Decomposition [9], Em-
pirical Wavelet Transformation [10], Variational Mode Decomposition [11], Continu-
ous Wavelet Transform [12], etc. These approaches provide satisfactory performance 
under static working conditions of rotary machines. However, due to tension, clearance, 
and inconsistent working conditions, the obtained signals from these machines are non-
linear and non-stationary in nature, which creates difficulties to extract and analyze the 
fault feature information [13–15]. Specifically, via the popular feature extraction 
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methods, it becomes very challenging to distinguish the fault characteristics for variable 
working conditions [16–18]. Therefore, it is inescapable to come up with a new and 
effective signal processing technique through which fault signature exploration can be-
come reliable for different speed conditions [19,20]. For the following 2 benefits of the 
Stockwell Transformation (ST), in this study, ST based preprocessing step is consid-
ered to create the health pattern from the vibration signals: (i) it has better immunity to 
ample noise, and (ii) it can obtain good resolutions from the signals both at low and 
high frequencies. Thus, the contributions of this study can be discussed as follows.  

(1) To capture the information of variable speed conditions from the vibration sig-
nals both at low and high frequencies, A 2D coefficient-based DCST is proposed 
as the signal preprocessing step.  

(2) To utilize CNN efficiently, the DCST 2D coefficients are converted into gray-
scale Vibration Images (VI). 

(3) A TL embedded CNN is offered for the diagnosis purpose. The proposed method 
(VI + CNN-TL) is appropriately supported with extensive experimentations, 
which supports the capability of the proposed methodology over existing state-
of-art approaches. 

The rest of the paper is arranged as follows: Section 2 explains the proposed meth-
odology, section 3 describes the details of the considered dataset along with the exper-
imental analysis, and finally, section 4 concludes this study. 

2 Proposed Approach 

 The proposed approach consist of  3 steps: source task, transfer task, and target task. 
In the source task, first, an invariant scenario is created with the help of DCST based 
2D coefficient analysis. With this preprocessing step, we have obtained similar patterns 
for similar health conditions under variable speeds. Then, this 2D coefficient matrix is 
converted into grayscale VI. Finally, these images are fed to the proposed neural net-
work for condition classification. In the source task, we have considered the dataset 
from a certain speed to train the network for attaining transferrable knowledge. Then, 
the transfer task passes that knowledge to the target network. Therefore, in the target 
task, the data obtained from different speed conditions are used to examine the diag-
nostic performance. The overall approach is illustrated in Fig. 1. 
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Fig. 1. The block diagram of proposed approach. 

 
2.1 Data Preprocessing based on Stockwell Transformation 

The vibration signal obtained from the bearing contains fault-related information and 
additive noise from the surrounding [21]. Therefore, it is difficult to extract fault-related 
information from these signals in either time or frequency domain[22]. To handle this 
issue, Discrete Cosine Stockwell Transform (DCST) has been proposed as the prepro-
cessing step in this work. First, the raw signals are segmented into smaller sizes by the 
adjustable overlapping sliding window [17]. Each of these segments contains the data 
points from at least one revolution [23]. After that, on each segmented signal, we have 
applied DCST to obtain the 1D coefficients. 

Stockwell Transformation (ST) acts as a hybrid between Gabor, and Wavelet trans-
formation [24]. By principle, it exhibits the decomposition techniques of a signal based 
on an orthogonal basis [25]. In this study, instead of that orthogonal basis, the Cosine 
Transform basis is considered. It follows the principles of the orthogonal basis, how-
ever, instead of using Discrete Fourier Transform (DFT), it considers Discrete Cosine 
Transform (DCT) [26]. DCT is a linear and invertible function. 

: R RN Nf →  (1) 

Where R signifies to the set of real numbers. In general, the following equation is the 
standard form of DCT, known as type – II DCT. 
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where N  real numbers 0 1,......, Nx x −   are converted into 0 1,......, NX X −  real numbers 
and k  holds the values 0,1,.............., 1N − . The type-II DCT is precisely correspond-
ing to a DFT of 4N  (up to a complete measure aspect of 2) with even symmetry.  To 
satisfy the boundary condition for type-II DCT, Nx is even around 1

2
n = −  and even 

around 1
2

Nn −
= − ;  kx is even around 0k = and odd around k N= . Therefore, DCT 

can preserve concentrated histograms information more than DFT from the input signal. 
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Finally, to simplify the interpretation of the DCST coefficient, it is rearranged into the 
phase space [24]. The rearrangement process is visually described in Fig. 2(b). 

 
Fig. 2. (a) DCST basis construction process, (b) for 2-dimensional imaging, the rear-
rangement process from DCST constructed output. 
 
2.2 Vibration Imaging 

The formulation of Vibration Imaging (VI) is implemented into two steps to discover 
the patterns of different health types, i.e.,  

(1) The time-domain vibration signals are preprocessed by the DCST coeffi-
cient, and thus, 2D time-frequency images are achieved. These 2D images 
preserve the data about the energy distribution across the time-frequency 
planes [27]. 

(2) The resulting time-frequency images are then transformed into gray-scale 
images ( 256 256 1× × )[28]. Thus, it adds computational benefits for neural 
network-based analysis [29]. 

 
2.3 Transfer Learning-based Convolutional Neural Network Architecture 

To implement the knowledge transfer between the source and the target task, we 
have utilized the Le-Net5 [30] based Convolutional Neural Network (CNN) architec-
ture. The proposed architecture of the CNN is highlighted in Fig. 3. For training pur-
poses, Stochastic Gradient Descent (SGD) [31] is used as the optimizer. Additionally, 
0.01 learning rate and SoftMax classifier is used to complete the forward, and backward 
propagation. For the target task, weights till the bottom neck layer of the source network 
are transferred for the final diagnosis purpose. 

 
Fig. 3. The proposed CNN architecture. 



5 

 
2.4 Performance Evaluation 

To evaluate the performance of the proposed approach, F1 score (F1), and Accuracy 
(A) is calculated by the following equations: 

21 100 %
2
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(3) 
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 +
= × 

+ + +  
 

(4) 

Moreover, for the source task, to observe the bias-variance tradeoff, the model is 
trained till 6,000 epochs. Therefore, the performance of the loss function can be ob-
served. Consequently, to eliminate the bias from the data, a 6-Fold Cross-Validation 
(6-CV) [32] is used. 

3 Experimental Result Analysis 

3.1 Dataset Description and Experimental Setup 

To evaluate the performance of the proposed model, a publicly available dataset 
from the Case Western Reserve University (CWRU) Bearing Datacenter [33] is used. 
The experimental setup of the testbed of this dataset is given in Fig. 4.  

 
Fig. 4.  Experimental set up by Case Western Reserve University[33]. 

This dataset is composed of vibration signals of 12,000 Hz from the drive-end bear-
ing. The details of the considered working conditions from this dataset are highlighted 
in Table 1. 

Table 1. Details of the dataset collected from CWRU bearing data center 
Working 
Condition 

(WC) 

Health Type Shaft Speed 
(RPM) 

Load Crack 
Size 

Length 
(inches) 

1 Normal 1797 0 - 
Inner Raceway 0 0.007 
Outer Raceway 0 0.007 
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Ball 0 0.007 
2 Normal 1772 1 - 

Inner Raceway 1 0.007 
Outer Raceway 1 0.007 

Ball 1 0.007 
Before supplying the proposed diagnostic model, we ensured that every health type 

has an equal number of samples, and there is no missing value in it. For the final anal-
ysis, 2 experiments are performed. In experiment 1, Working Condition (WC) 1 is used 
as the source task, and WC 2 is utilized as the target task. In experiment 2, WC 2 is 
considered as the source, and WC 1 is considered as the target task. The details of the 
data division for both experiments are given in Table 2. 

Table 2. Data Division 
Source 
Task 

WC Training (90%) Samples Test  (10%) 
Samples 

Samples/Health 
Type Training (80%) Valida-

tion(20%) 
1 1944 216 240 60 
2 1944 216 240 60 

Target 
Task 

WC Training (90%) Samples Test  (10%) 
Samples 

Samples/Health 
Type Training (80%) Valida-

tion(20%) 
1 324 36 2040 510 
2 324 36 2040 510 

 
3.2 Result Analysis 

After applying the DCST based preprocessing step, and 2D coefficient-based vibra-
tion imaging process, the obtained patterns for each health type of both the working 
conditions are given in Fig. 5. From this Figure, we can observe that, for all the health 
types, there are distinguishable patterns. Moreover, for a similar type of health type, the 
patterns are identical for different speed conditions. For example, for IR, the pattern is 
similar for WC1, and WC2. Similarly, it is true for all other health types. Therefore, 
our proposed preprocessing step can successfully create the invariant scenario for var-
iable working conditions. 

 
Fig. 5.  Vibration images from different health types. 
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Once the patterns are obtained, we have conducted both experiments. For each case, 
we have achieved 100% accuracy. In Table 3, the details of this experimental analysis 
are depicted. 

Table 3. Analytical performance. 
Experiment Source Task Target Task Health Type F1 (%) A(%) 

1 WC 1 WC 2 N 100 100 
IR 100 
OR 100 
B 100 

2 WC 2 WC 1 N 100 100 
IR 100 
OR 100 
B 100 

To demonstrate the details of these experimental analyses, experiment 1 is further 
investigated. From the source task of experiment 1, the graph of the loss function and 
the last layer feature separability of the source acquired by t-SNE [21], are highlighted 
in Fig. 6. 

 
Fig. 6. For experiment 1 – source task (WC 1) (a) loss function, (b) bottom neck 

layer features by t-SNE. 
The TL-based approach learns faster with a smaller amount of data because the 

trained weights of the source task are used to adjust the network parameters for the 
target task. To prove this argument, we have considered the target task of experiment 
1. For this experiment, first, we have trained the proposed CNN architecture with WC 
2 from scratch without the weights from the source task. Therefore, we have observed 
the convergence rate of the loss function. After that, we have used the weights from the 
source task, and train the target task according to Experiment 1. Here also we have 
observed the loss function. From Fig. 7, we can perceive that for this TL-based ap-
proach, our model achieved 100% training accuracy in a very short amount of time (at 
least 6X times faster). 
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Fig. 7. (a) The training accuracy achieved with WC 2: target task for 3,000 epochs with 
no TL, and (b) the training accuracy without TL vs. with TL (proposed). 

Additionally, several comparisons are made to substantiate the dominance of our 
proposed method. In all cases, it outperforms the existing approaches. Details of the 
comparative analysis are given in Table 4. 

Table 4. Comparison Analysis 
Method Experi-

ment 
A (%) Improvement (%) 

FFT + CNN - TL 1 97.2 2.8 
2 96.5 3.5 

RAW + CNN – TL [34] 1 92.1 7.9 
2 92.3 7.7 

4 Conclusions 

This paper proposes a TL-CNN-based approach for condition monitoring of bearing 
with different speed conditions. With the help of DCST, we have created the invariant 
scenario from variable working conditions. Thus, the feature similarity comes into the 
source and target task datasets. Therefore, by utilizing this similarity in patterns, TL 
based approach perfectly utilized the power of the proposed CNN architecture for di-
agnosing the health types of bearing. By outperforming the conventional approaches, it 
stands as state-of-art among all the proposed approaches proposed in this dissertation. 
However, this method has the limitations of explanation ability and interpretability 
from the statistical point of view related to the feature spaces. Therefore, the future 
direction of this work is to explore the possibilities of explanations and interpretations 
for a complete explainable model. 
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