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Abstract. For industrial safety, correct classification of gearbox fault condi-
tions is necessary. One of the most crucial tasks in data-driven fault diagnosis is
determining the best set of features by analyzing the statistical parameters of the
signals. However, under variable speed conditions, these statistical parameters
are incapable of uncovering the dynamic characteristics of different fault con-
ditions of gearboxes. Later, several deep learning algorithms are used to
improve the performance of the feature selection process, but domain knowl-
edge expertise is still necessary. In this paper, a combination domain knowledge
analysis and a deep neural network is proposed. By using the input acoustic
emission (AE) signal, a two-dimensional spectrum energy map (2D AE-SEM) is
created to form an identical fault pattern for various speed conditions of gear-
boxes. Then, a deep convolutional neural network (DCNN) is proposed to
investigate the detailed structure of the 2D input for final fault classification.
This 2D AE-SEM offers a graphical depiction of acoustic emission spectral
characteristics. Our proposed system offers vigorous and dynamic classification
performance through the proposed DCNN with a high diagnostic fault classi-
fication accuracy of 96.37% in all considered scenarios.
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1 Introduction

Gearbox fault diagnosis is a substantial issue regarding the safety and excellence of 
various apparatuses in many industries. Specifically, gearbox fault diagnosis is featured 
in many different mechanical schemes, including wind turbines, cars, gas turbines, and 
helicopters [1–3]. Because they function in tough atmospheres, gearboxes habitually 
encounter gear tooth pitting and root breaking issues [4]. Several of these disasters can 
cause severe damage to the completely automated motorized structure, resulting in 
large economic losses and even the loss of human life. An enhanced cost-effective fault 
identification approach for gearboxes under invariant speed conditions (revolutions per 
minutes (RMPs)) can ensure functioning dependability and lessen protection 
expenditures.



Data driven fault diagnosis is accomplished by accumulating data (i.e., vibration
signals (VS) and acoustic emission signals (AE)), comprising an essential part of
investigations structured over the previous decades [5–8]. Such research confirms that
fault condition diagnosis can decrease preservation costs by improving the consistency
of the machinery [6, 9, 10]. AE signals can secure fundamental information from low-
energy signals [11–14]. This establishes AE signals as an effective method for data-
driven fault diagnosis tactics over vibration analysis (VA). This analysis suggests an
AE-based fault identification methodology for gearboxes. Several studies (i.e., short
term fourier transform [15], wavelet analysis [16]) tried to prove the domain based
solution for fault classification by analyzing the extracted features from signals, but due
to the inappropriate time-window adjustment, and inability to capture the high fre-
quency resolutions at high frequencies; the main purpose is not solved in a robust
manner.
This work mainly addresses two limitations for gearbox fault diagnosis: a) the

necessity of domain level expertise for designing the best feature set for different fault
conditions from statistical parameters under variable speed conditions, and b) the
necessity of a deep dynamic algorithm (DDA) to investigate automated feature
extraction in a reliable way to ensure industrial safety. The main focus of the proposed
approach is to create a bridge between these two limitations using a singular-as-a-
whole standalone algorithm. The proposed two-dimensional acoustic emission spectral
energy map (2D AE-SEM) analyzes the root mean square (RMS) frequency distribu-
tion of individual signals to create an identical fault pattern under variable speed
conditions. The energy density of this pattern increases incrementally with speed [5].
To capture the core fault pattern of the striking energies of this 2D AE-SEM from
different speeds, a five-layer deep convolutional neural network (DCNN) is proposed.
To establish the robustness of the proposed approach, various state-of-the-art algo-
rithms (multiclass support vector machine + neural network using the statistical
parameters [17] and spectral average + k-nearest neighbor algorithm (KNN) [18]) are
considered for final comparisons.
The major contributions of the 2D AE-SEM + DCNN proposed in this work can be

summarized as follows.

(1) We present a unique 2D AE-SEM-based fault pattern visualization for various
speeds for gearboxes to investigate the potential of AE signals.

(2) This 2D AE-SEM is used as an input to the proposed five-layer deep convolu-
tional neural network (DCNN) for fault classification in a speed invariant way.
The proposed DCNN analyzes the input image pattern to discover the true feature
information for final fault classification. Under different RPMs, experiments were
used to validate our method by comparing with several state-of-the-art algorithms.
The main purpose of using DCNN is to automatically distinguish the patterns for
classifying different cracks.



The remaining part of our paper is organized as follows. Section 2 defines the
details of the proposed methodology, including the gearbox data acquisition testbed.
Section 3 describes the experimental result analysis to establish the robustness and
dynamic attitude of the proposed algorithm. Finally, conclusions are drawn in Sect. 4.

2 Methodology

The proposed method consists mainly of three major sections. Data collection from an
experimental testbed, forming a 2D AE Spectral Energy Map (2D AE-SEM), and the
Deep Convolutional Neural Network (DCNN). The raw AE signal is collected from the
AE sensors of the bearing housing end from two channels. Then, the AE signal is used
to form the 2D AE-SEM as an input for the DCNN. The whole process is illustrated in
Fig. 1.

2.1 Data Acquisition

In this experiment, we considered a simple gearbox with a gear ratio of 1.52:1. In the
experimental testbed, two shafts are connected, specifically non-drive-end-shaft
(NDS) and drive-end-shaft (DS). A three-phase induction motor is connected along
with a displacement transducer at three different revolutions per minutes (RPM) (i.e.,
300, 600, and 900 RPM) at the DS. The bearing house is attached to the motor shaft
through the gearbox. At the NDS, a WSa AE [19] sensor is placed over the bearing
house in the shaft [5, 20]. AE signals are collected though the AE sensor at a sampling
rate of 100,000 Hz using a PCI-2 [21] system. The experimental testbed is illustrated in
Fig. 2. The specification of the gears used in this data acquisition system is given in
Table 1.

Fig. 1. The proposed 2D AE SEM + DCNN based gearbox health state classification approach.



To create the different health conditions, an artificial defect is created on the shaft
gear. The specifications of the faulty health conditions of the driven shaft gear are given
in Table 2.

Fig. 2. Schematic of the experimental testbed for gearbox fault identification.

Table 1. Detailed gear specifications.

Gear Specification Number of drive shaft teeth: 25
Number of driven coaxial teeth: 38
Tooth length: 9 mm

Table 2. Specifications of the defective coaxial driven shaft gear.

Health Condi-
tion

Picture Defect 
Length (mm)

10% Crack 
(C10)

0.9

20% Crack 
(C20)

1.8

30% Crack 
(C30)

2.7 



2.2 2D Acoustic Emission Spectral Energy Map (2D AE-SEM)

After collecting the raw AE signal, the unwanted noises are removed through a white-
noise cancellation process. After that, the Fast Fourier transformation (FFT) is calcu-
lated to obtain the positive frequency response from the input signal. The AE spectrum
has 50� 104 positive frequency components, which is not a suitable input to DCNN.
Therefore, the considered positive AE spectrum is divided into several frequency bins.
From each bin, the root mean square (RMS) frequency is calculated. These RMS
frequency values were used to create the 1D AE – Spectral Energy Map (1D AE-
SEM). Finally, the 1D AE-SEM of length 1024 is reformed to create a 2D AE-SEM
with a size of 32 � 32. This 2D AE-SEM creates identical patterns for different health
conditions with regard to invariant speed scenarios. The 2D AE-SEM has reasonable
dimensions to be used as an input to the proposed DCNN for final classification [5].
The total process of forming the 2D AE-SEM is given as a flowchart in Fig. 3.

2.3 Deep Convolutional Neural Network (DCNN) for Fault Classification

A Deep Convolutional Neural Network (DCNN) is one of the most efficient supervised
machine learning approaches [22]. In our work, since we are considering 2D AE-SEM,
we used the DCNN to uncover the details of the 2D input. In DCNN, if the input data is
X ¼ ½x1; x2; . . .. . .xm�, then the total training sample size is m. Furthermore, the output
vector is Y ¼ ½y1; y2; . . .. . .ym�, which is supplementary to X. If P layers represent a

Fig. 3. Overall process of creating a 2D AE-SEM.



CNN, then each layer in the DCNN has Fp elements, which are utilized in convolution
and max pooling [23]. The sigmoid activation function rð:Þ is considered.
The proposed DCNN architecture is illustrated in Fig. 4. The detailed specifications

of the proposed DCNN are listed in Table 3.

3 Result and Discussion

3.1 Dataset Description

For in-depth assessment of the proposed (2D AE-SEM + DCNN) fault classification
approach, the following methods were used. The first method is the 2D AE-SEM-based

Fig. 4. The proposed structure of the DCNN.

Table 3. The dimensions of the Deep Convolutional Neural Network (DCNN)

Layers Parameters Observations Height Width Depth Trainable

Input Preprocessed signals 32 32 3
Conv1 Kernel Filter 6 6 Yes

Padding Zero
Depth Filter number 64

MaxPool1 Kernel Filter 3 3 No
Padding Zero

Conv2 Kernel Filter 3 3 Yes
Padding Zero
Depth Filter number 32

MaxPool2 Kernel Filter 3 3 No
Padding Zero

FC1 Nodes Flatten as 1D 128 Yes
Dropout Output 128 No
FC2 Nodes Flatten as 1D 64
Softmax Nodes Flatten into 1D 3 Classify



invariant gearbox health state visualization. The second is DCNN-based RPM invariant
performance analysis of health state classification and extensive comparisons with
some state of art methods (i.e., multiclass support vector machine + neural network
using the statistical parameters [17], spectral average + k-nearest neighbor algorithm
(KNN) [18]). The standard AE dataset of gearbox crack faults from the experimental
testbed is used throughout the whole experiment. We have used three different RPMs
(300, 600, and 900) and recorded 100 signals of one second for each health type (e.g.,
C10, C20 and C30) at each RPM. The specifics of the collected dataset are presented in
Table 4.

3.2 Analysis of the 2D Acoustic Emission Spectral Energy Map

According to the previous discussion, the main reasons for constructing the 2D AE-
SEM are (a) to create an invariant scenario for different RPMs under different health
conditions, and (b) to deliver the benefits of 2D image structures to the DCNN with a
minimum visibility of similar patterns.
Figure 5 exhibits the 2D AE-SEMs for different health conditions. For each RPM,

the images of different health conditions show some identical information. From Fig. 5
(a), we can observe that for the C10 health condition, the striking energy of the RMS
frequency in the 2D AE-SEM maintains some matching patterns. When the RPM
increased, the energy striking density also increased. Thus, the amount of white strikes
increases. From Fig. 5(b) and (c), we observe a similar situation for health states C20
and C30 respectively. Due to high RPM, the density of the striking energy increases.
Thus, the similarity of these patterns has been carefully uncovered and handled through
the proposed DCNN for the final classification analysis.

Table 4. Measured fault conditions for different datasets

Health type Shaft
speed (rpm)

Sampling
frequency (Hz)

Dataset 1 10% Crack (C10) 300 100,0000
20% Crack (C20) 300
30% Crack (C30) 300

Dataset 2 10% Crack (C10) 600
20% Crack (C20) 600
30% Crack (C30) 600

Dataset 3 10% Crack (C10) 900
20% Crack (C20) 900
30% Crack (C30) 900



3.3 Diagnostic Performance of a Deep Convolutional Neural Network

To validate the proposed approach, we considered three different datasets (described in
Table 4). These datasets contain different speeds with similar health conditions. The rpm
invariance of this method is confirmed by examining three separate scenarios. In the first
scenario, dataset 1 is used for training the DCNN, and datasets 2 and 3 are used for
classification tests. In the second scenario, dataset 2 is used for training, and datasets 1 and
2 are used for testing. Similarly, in scenario 3, dataset 3 is used for trainingwhile the other
two datasets are utilized for testing and classification. For evaluation of the analytical
performance, we considered the F1 score as the basic classification performance matrix
(F1), average classification accuracy (AC), and overall classification accuracy (OC) [5,
24]. The main reason for considering the F1 score for classification accuracy measure-
ment is to balance between the Recall and Precision scores.

F1 ¼ Tpositive
Tpositive þ Fnegetiveþ Fpositive

2

� 100 %ð Þ ð1Þ

Here, Tpositive is the number of correctly classified samples from a particular class
and Fnegative is the number of incorrectly classified sample from a particular class. The
final result is calculated as a percentage. After computing the final F1 score of a
particular health condition, the average classification accuracy (AC) is measured fol-
lowing Eq. (2).

Fig. 5. From all the working conditions given in Table 4, the 2D AE-SEMs for different health
conditions are displayed, i.e., (a) C10 (b) C20, and (c) C30 for different RPMs.



AC ¼
P
F1P
TClasses

ð2Þ

Finally, the overall classification accuracy, based on a particular scenario (OC), is
obtained as Eq. (3).

OC ¼
P
TDACP
TScenario

ð3Þ

Here,
P
TDAC defines the total of the CA test dataset, and

P
TScenario describes the

total number of test datasets existing in a discrete scenario.
Table 5 records the details of the analytical accomplishment of the proposed 2D

AE-SEM + DCNN based approach. In Table 4, we see an interesting trend. From
Figs. 5(a), (b), and (c), we see that the striking energy rises while RPM increases.
Dataset 1 represents the lowest RPM here. Thus, from the 2D AE-SEM, we observe
that rather than dataset 1, the patterns are more densely repeated in datasets 2 and 3. For
scenario 1 in Table 5, when the DCNN is trained with dataset 1, the OC becomes
94.62%. When we move to scenario 2, where the DCNN is trained with dataset 2, the
OC increases to 96.99%. Finally, when the network is trained with dataset 3, the
performance increases to its optimal value, which is 97.5%. This means that while there
is a repetitive pattern, the network learns details much better for classification. The
average classification accuracy is 96.37% at the end.

For this experiment, we used 500 epochs for training and testing. While training the
network for each scenario, we considered 80% of the data for training and 20% for
validation from the training dataset. For performance evaluation, 8–fold cross-
validation is used. While training the network for each scenario, the loss function Adam
performed better than the stochastic gradient decent (sgd). Figure 6 shows the loss
curve performance analysis (sgd vs. Adam) for dataset 1 and dataset 2 while training
the DCNN for scenario 1 and scenario 2, respectively.

Table 5. Analytical implementation of the proposed model for various scenarios

Scenario Training dataset Test dataset F1 (%) CA (%) OC (%)
C10 C20 C30

1 Dataset 1 Dataset 2 95.22 94.39 94.41 94.67 94.62
Dataset 3 94.93 94.17 94.59 94.56

2 Dataset 2 Dataset 3 96.41 95.39 95.37 97.72 96.99
Dataset 1 96.29 96.71 95.74 96.25

3 Dataset 3 Dataset 1 97.83 98.2 97.49 97.84 97.5
Dataset 2 97.72 97.32 96.43 97.16

Average 96.37



3.4 Comparison Analysis

To demonstrate the robustness of the proposed approach, we made several comparisons
with state-of-the-art approaches, i.e., the multiclass support vector machine + neural
network using the statistical parameters [17] and the spectral average + k-nearest
neighbor algorithm (KNN) [18]. The comparison of classification accuracy (F1 score
(%) and the average classification accuracy (AC)) is described in Table 6. From
Table 6, we see that our proposed approach outperformed these state of art approaches
by at least 4.74% accuracy for each scenario. To ensure a fair comparison, similar
settings for the training and testing data as given in Table 4 are used.

Fig. 6. Loss curve performance analysis while training the DCNN (sgd vs. Adam), (a) dataset 1
for scenario 1, and (b) dataset 2 for scenario 2.

Table 6. Comparison analysis of different methods

Scenario Method F1 (%) AC (%) Improved (%)
C10 C20 C30

1 [17] 89.4 88.9 91.4 89.9 4.74
[18] 48.52 47.22 47.9 47.88 46.76
Proposed 95.08 94.28 94.5 94.64 –

2 [17] 89.91 87.2 88.6 88.57 8.42
[18] 49.11 48.73 47.44 48.43 48.56
Proposed 96.35 96.05 95.56 96.99 –

3 [17] 90.2 88.7 90.43 89.78 7.72
[18] 48.37 47.39 48.27 48.01 49.49
Proposed 97.78 97.76 96.96 97.5 –



4 Conclusion

This work proposed a two-dimensional acoustic emission spectral energy map (2D AE-
SEM) with fault diagnosis based on a five-layer deep convolutional neural network
(DCNN) for ensuring the safety and reliability of the gearbox, which is invariant to the
shaft speed. In traditional approaches, consideration of the statistical parameters from
signals and defect frequency analysis have several difficulties regarding premeditated
differences in shaft speed. This study considered an invariant scenario for different fault
conditions with respect to various RPMs by creating a 2D AE-SEM. The proposed
DCNN utilized the 2D AE-SEM input structure for final fault condition analysis. The
proposed method achieved an overall 96.37% classification accuracy. In addition, this
work out-performed two state-of-the-art approaches with an overall improvement of at
least 4.74%, and 46.76%, respectively, in the three considered scenarios.
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