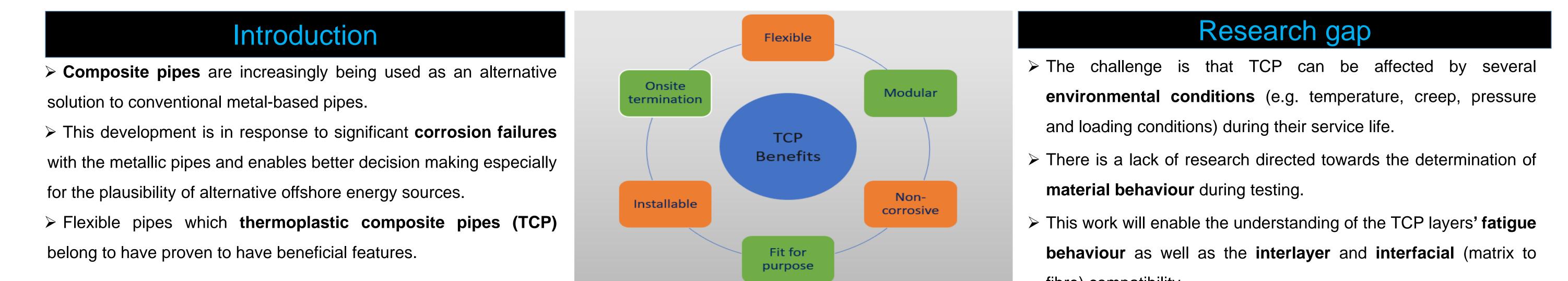
OKOLIE, O., NJUGUNA, J. and FAISAL, N. 2022. An evaluation of the morphological, microstructural and mechanical behaviour of the glass fibre/HDPE thermoplastic composite pipe. Presented at 2022 Scottish Research Partnership in Engineering (SRPe22), 21 November 2022, Edinburgh, UK.

An evaluation of the morphological, microstructural and mechanical behaviour of the glass fibre/HDPE thermoplastic composite pipe.

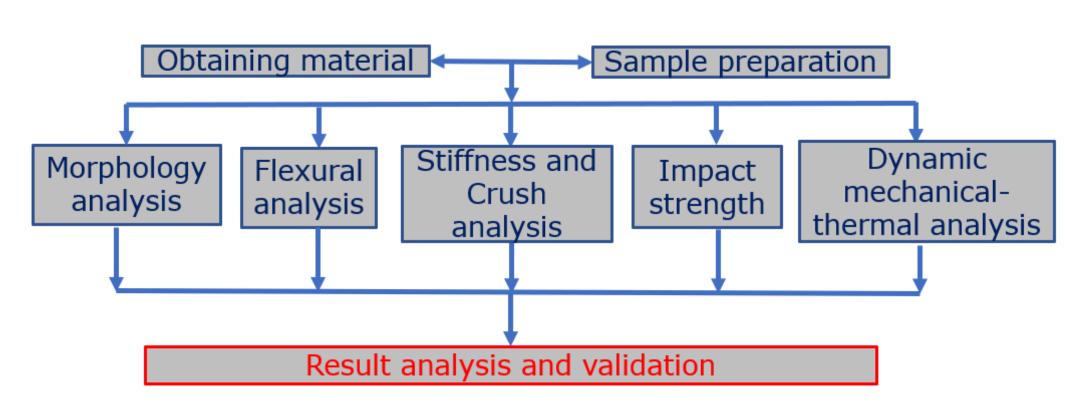
OKOLIE, O., NJUGUNA, J. and FAISAL, N.

2022

This document was downloaded from https://openair.rgu.ac.uk



An evaluation of the morphological, microstructural and mechanical behaviour of the glass fibre/HDPE thermoplastic composite pipe Obinna Okolie/ Strohm, Subsea 7, SP Advanced Engineering Materials PVT LTD/ Prof James Njuguna, Prof Nadimul Faisal (start date: 01/04/2020)


- fibre) compatibility.

Research methodology

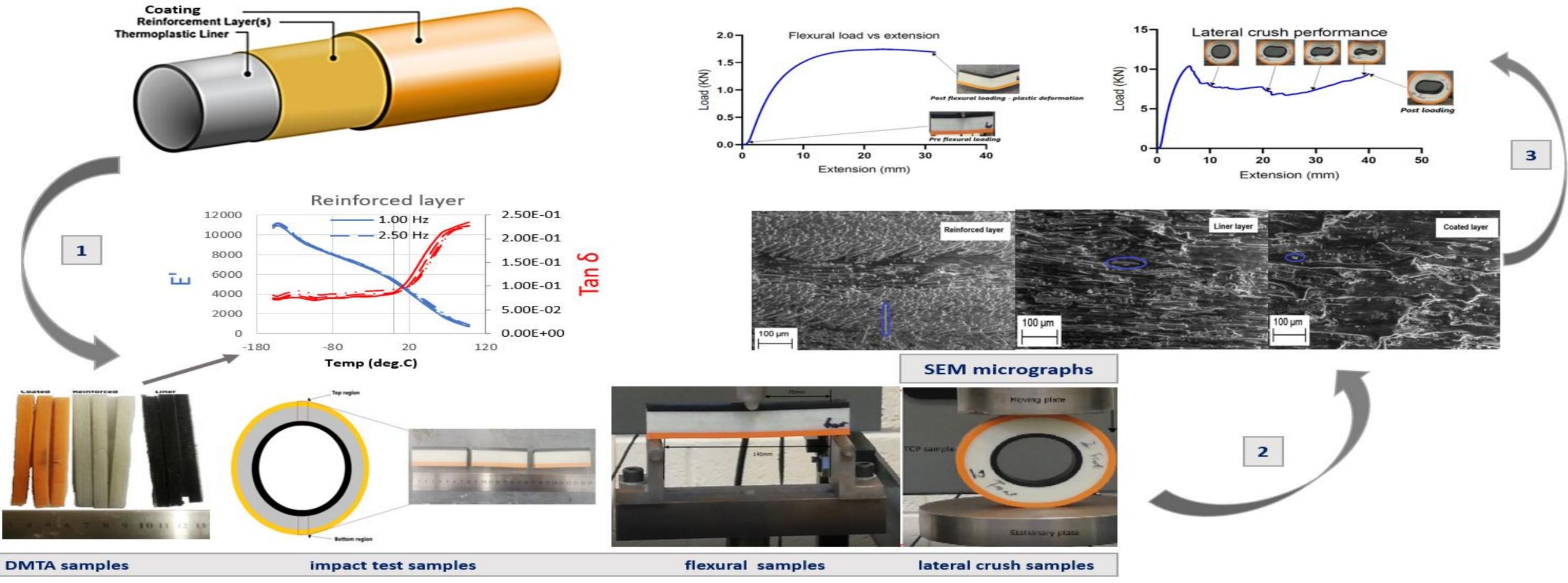
- \succ This research combines the investigation of TCP performance with the properties of the material.
- > The end properties are validated based on obtaining the results from the displayed standardized tests and characterization obtained from a pristine TCP for establishing consistency.

The aim of report

- \succ To experimentally investigate TCP and the layers based on the morphological and mechanical properties.
- \succ To identify and utilize the methods to obtain relatively precise material properties of the TCP which are currently barely known.
- > The end properties are to be validated based on tests and analysis from an available TCP section to establish consistency and serve as a reference.

Morphology analysis

- > SEM of the TCP layers at 200x magnification
- > Confirmation that the reinforced layer has the most fibre followed by the liner layer and coated layer.
- \succ From the matrix of the coated and liner layer, they are steam sterilized.


Result and discussion

Flexural analysis

- > From the flexural plot, a plastic deformation occurred across the midline.
- \succ No other failure was noticed across all the layers and establishes that TCP is a **solid-walled fabrication**.

Crush analysis

- > Failure mode is initiated by matrix cracking in the plies of the reinforced layer which encourages delamination of this layer.
- > Indication that the polymer matrix in the reinforced layer has lower density due to the ease of the matrix cracking.

Impact strength

- > High impact strength performance as the layer order has an effect on the impact strength where the typical (top) order and reverse (bottom) order are 576 and 480 KJ/m² respectively.
- \geq Ductile fracture fibre splitting.

DMTA \succ Tan δ curve displays two relaxation peaks at temperatures of roughly in the γ and α stages for all layers indicating the polyethene group presence across all layers.

 $\succ \gamma$ relaxation correlates to Tg which determines the processability window. This is common with HDPE as it relates to small portions that move in the amorphous state while α relaxation is related to the molecular chain mobility in the crystalline phase.

Key findings and Conclusion

References

> The key failure mode is **matrix cracking** in the reinforced layer plies

that encourages **delamination** which is indicative of the low density of the polymer matrix in this layer due to the ease of the matrix cracking from loading.

> An interface modifier is present for the glass fibre and HDPE matrix interface which has a collaborative influence that results in the improvement in the reinforced matrix and interfacial strength which enhances the storage modulus at the glass state in comparison to the other layer.

> Further investigation for the interlayer **bond strength** and adhesion.

	Further work	R
\rangle	Tensile and interlayer strength tests	Osborne, J., 2013. The solutions for oil and gas pp.33-38. Okolie, O., Latto, J., Fa Njuguna, J., 2022. M composite pipes and the thermoplastic composite <i>composite materials</i> . Ackn This was made possi
	Damage characterization analysis	
>	Thermal behaviour investigation	
	Improvement of TCP manufacturing from derived properties	and Gas Srl. (now Str Engineering Materials Pv

hermoplastic pipes-lighter, more flexible as extraction. Reinforced Plastics, 57(1),

aisal, N., Jamieson, H., Mukherji, A. and Manufacturing defects in thermoplastic heir effect on the in-situ performance of pipes in oil and gas applications. Applied

nowledgement

sible by the support of Airborne Oil Strohm B.V.), Subsea 7, SP-Advanced vt. Ltd. and SRPE.

