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Abstract: In this research, a novel dynamic migration model is proposed, which can better describe the dynamic 

characteristics of the lithium-ion batteries under different aging states by adjusting the battery parameters in real-time. A novel 

chaotic firefly - particle filtering method is proposed, which realizes particle optimization by simulating the behavior of 

fireflies in nature attracting each other through light, and finds a new optimal solution by chaotic mapping a group of particles 

to different solution space, to realize high-precision state-of-charge and state-of-health co-estimation. Compared with the 

traditional particle filtering algorithm, the state-of-charge and state-of-health estimation accuracy of the proposed algorithm 

under the Hybrid Pulse Power Characterization condition is improved by 1.48% and 0.38% respectively, and that under the 

Beijing bus dynamic stress test condition is improved by 0.67% and 0.63% respectively. The proposed novel battery model 

and algorithm are of great significance in improving the condition monitoring quality of the battery management system. 
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1. Introduction 

With the development of high-efficiency energy storage system technology and the improvement of renewable 

energy utilization [1, 2], new energy vehicle technology has gradually become an important way to alleviate the 

oil crisis and environmental pollution caused by the use of fuel vehicles [3-5]. The lithium-ion battery has the 

advantages of long service life [6], low self-discharge rate, and large specific energy [7], which has become the 

main energy source of pure electric vehicles in the driving process. 

To avoid the potential safety hazards caused by lithium-ion batteries during vehicle driving [8, 9], it is necessary 

to efficiently manage and control lithium-ion batteries through the battery management system (BMS) [10]. As a 
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core parameter in the BMS [11], the state-of-charge (SOC) of the battery reflects the current remaining battery 

level [12, 13]. In [14], the author mentioned that the SOC in electric vehicles is equivalent to the odometer of 

traditional fuel vehicles, which can provide accurate remaining mileage for drivers. Its high-precision prediction 

can effectively prevent the potential safety hazards caused by overcharge and over-discharge of the power batteries 

[15, 16]. State-of-health (SOH) is an important parameter to describe the degree of battery aging [17], which 

provides battery life reference for pure electric vehicles and avoids the danger caused by battery abuse during 

vehicle driving. 

SOC is defined as the ratio of the remaining capacity of the battery to the maximum available capacity [18-20]. 

At present, the estimation methods of battery SOC can be divided into the direct measurement method [21], 

model-based method, and data-driven method [22]. Ampere-hour (Ah) method and open-circuit voltage (OCV) 

method are common direct measurement methods [23]. Ah heavily depends on the initial SOC value and the error 

is easy to accumulate [24, 25]. The battery is required to stand for a long time in the OCV method [26], so it is 

not suitable for actual working conditions [27]. The data-driven method requires a large number of test samples 

and time costs [28], while the model-based method is the most commonly used and efficient SOC estimation 

method [29]. The core idea of the model-based estimation method is to use a mathematical model to describe the 

relationship between state parameters and external characteristics of the battery [30-33]. However, the function 

expression between the battery parameters and SOC of the equivalent model is usually fixed, which cannot 

dynamically reflect the parameter changes of the battery under different aging degrees, so the single battery model 

does not have the ability of correction [34], it needs to be combined with filtering algorithms to realize the closed-

loop correction of the battery model [35-37]. In [38], the OCV-SOC model based on fractional order was proposed, 

which can better describe the strong nonlinear relationship between OCV and SOC, but it cannot meet the 

adaptability to different aging degrees of lithium-ion batteries. In [39], the two kinds of cubature Kalman 

filters were combined to solve the problem of inaccurate SOC initial value setting, but the overall SOC estimation 
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accuracy needs to be improved. 

SOH is defined as the ratio of the current actual measured capacity to the nominal rated capacity. The research 

on its estimation methods is mainly based on models and data-driven. In [40], the gaussian process regression 

model which can dynamically describe the degradation characteristics of the battery was proposed. However, it is 

a single state estimation method, which can only estimate SOH effectively. In [41], an independent battery 

degradation modeling method was proposed to estimate SOH. It can better simulate the aging characteristics of 

batteries under different working conditions, but it can not realize dynamic tracking. In [42], the combination of 

parameter filter and state filter was used to form a dual Kalman filter to realize the cooperative estimation of SOC 

and SOH. Although the mutual correction of two parameters was realized, the filter can only realize the estimation 

in a fixed state and cannot be dynamically adjusted with the working conditions. In [43], an adaptive sliding 

observer is developed to estimate the SOC and capacity, an adaptive SOH estimation scheme is proposed to 

mitigate the temperature variation effect on the accuracy of the SOH estimation. The experimental results verify 

the effectiveness of the proposed the adaptive sliding observer on achieving accurate estimation of SOC and 

capacity. The study realized the co-estimation of SOC and SOH, and considered the influence of temperature, but 

not aging. 

In this research, a novel chaotic firefly - particle filtering (CF - PF) method is proposed for the SOC and SOH 

co-estimation of lithium-ion batteries, which effectively solves the defects of particle degradation and particle 

diversity reduction in the traditional particle filtering (PF) algorithm. PF and extended Kalman filtering (EKF) are 

combined to form a dual filter to realize the mutual correction and mutual promotion of SOC and SOH. A novel 

battery migration model is proposed to complete the dynamic adjustment of battery parameters with aging, which 

can greatly improve the modeling accuracy and co-estimation accuracy. 

The main contents of this paper are as follows: In the Chapter 2, mathematical analysis part is introduced. Among 

them, Section 2.1 is about the construction of battery migration model, Section 2.2 is about parameter 
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identification, and Section 2.3 is about the SOC and SOH co-estimation by chaotic firefly - particle filtering 

algorithm. In the Chapter 3, experimental analysis part is introduced. It includes the establishment of the 

experimental platform, the verification of the migration model effect and the verification of the proposed 

algorithm under different working conditions. The Chapter 4 makes the conclusion of this research. 

2. Mathematical analysis 

Firstly, accurate modeling and model parameter identification should be carried out to characterize the dynamic 

characteristics of the battery. Secondly, the proposed filtering algorithm should be combined with the model, and 

the covariance between the observed and predicted values of battery state parameters at the previous time should 

be used to modify the state value at the current time, to obtain the optimal SOC and SOH co-estimation at the 

current time. 

2.1. Dynamic migration battery modeling 

As a highly nonlinear system, lithium-ion battery not only has complex internal electrochemical reaction but 

also is easily affected by ambient temperature and aging in practical application. Although the existing BMS has 

the temperature control function of the battery pack, which can greatly reduce the impact of ambient temperature, 

the impact of battery aging always runs through the normal use of the battery. Therefore, battery aging has become 

an important uncertain factor affecting the normal use of batteries in practical applications.  

The concept of the migration battery model is different from the traditional aging battery modeling. In the 

traditional modeling process, the influence of battery aging is always regarded as the determining factor in the 

model, that is, the parameters of the battery model under different aging states are identified through multiple 

groups of battery experimental data under different aging states. In the battery migration modeling process, the 

impact of battery aging is always regarded as an uncertain factor. By combining the offline initial model part with 

the online migration model part, the establishment of a dynamic migration battery model can be completed by 

using only a small amount of experimental data in the initial state of the battery and online data in the actual use 
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process of the battery. 

To build a lithium-ion battery model that can accurately describe different aging states, in this research, the 

battery equivalent circuit Thevenin model is established as the initial model, and the dynamic migration model is 

formed based on it, as shown in Fig. 1. 
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Fig. 1  Dynamic migration battery modeling 

In Fig. 1, the Thevenin model consists of a voltage source, an internal resistance, and a group of parallel 

resistance-capacitance (RC) rings connected in series. UOC is the open-circuit voltage, and R0 represents the ohmic 

internal resistance inside the battery, which is formed by the resistance of the internal material of the battery itself 

and the contact between materials. Rp is the polarization resistance, Cp is the polarization capacitance, and the 

parallel circuit of Rp and Cp describes the polarization process inside the battery. UL is the closed-circuit voltage 

after the battery is connected with the external circuit, and Up is the voltage at the RpCp terminal. The state space 

equation and observation equation of SOC and SOH co-estimation based on the Thevenin model is obtained, as 

shown in Eq. (1). 

{
 
 
 

 
 
 𝑆𝑂𝐶𝑘+1 = 𝑆𝑂𝐶𝑘 −

𝛥𝑇

𝑄𝑘
𝐼𝑘 +𝑤1,𝑘

𝑈𝑝,𝑘+1 = 𝑒
−
𝛥𝑇
𝜏 𝑈𝑝,𝑘 + 𝑅𝑝 (1 − 𝑒

−
𝛥𝑇
𝜏 ) 𝐼𝑘 +𝑤2,𝑘

𝑄𝑘+1 = 𝑄𝑘 + 𝑟𝑘

𝑈𝐿,𝑘+1 = 𝑈𝑂𝐶,𝑘+1 − 𝑈𝑝,𝑘+1 − 𝐼𝑅0 + 𝑣𝑘

 (1) 

In Eq. (1), [SOC Up]
T is set as the state variable, and ΔT is the sampling time, which is set to 0.1. τ is the time 
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constant, τ = RpCp. w1.k and w2.k represent process noise in SOC estimation and polarization voltage estimation, 

respectively. rk represents process noise in SOH estimation, vk represents observation noise. Qk is the current actual 

capacity of the battery, which should be measured through the capacity calibration experiment. k represents the 

current time point, and k + 1 represents the next time point. The coefficient matrices of the state space equation 

and observation equation are shown in Eq. (2). 

{
 
 
 
 
 

 
 
 
 
 𝐴𝑘

𝑆𝑂𝐶 = [
1 0
0 𝑒−𝛥𝑇/𝜏

]

𝐵𝑘
𝑆𝑂𝐶 = [

−
𝛥𝑡

𝑄𝑘
𝑅𝑝(1 − 𝑒

−𝛥𝑇/𝜏)

]

𝐴𝑘
𝑄 = 1

𝐶𝑘
𝑆𝑂𝐶 = [

𝜕𝑈𝑂𝐶
𝜕𝑆𝑂𝐶

−1]

𝐶𝑘
𝑄
= −

𝑖𝛥𝑇

𝑄𝑘
2

 (2) 

The resistance value of the battery increase with the aging process. To realize the model migration of the initial 

battery model under different aging states, the relationship curve of parameter dynamic change of the initial 

battery model can be migrated online. Since the migrated initial model relationship curve is a functional 

relationship with the battery SOC, and the SOC obtained in the estimation process is inaccurate, it is necessary to 

correct the inaccurate SOC to ensure that the migrated model parameter value is close to the real battery model 

parameter value. Therefore, in the circuit structure diagram of the migration model shown in Fig. 1, the superscript 

M is used to represent the parameters of the migrated battery model. The state expression of the dynamic migration 

model is shown in in Eq. (3). 

{
 
 
 
 

 
 
 
 
𝑋 = [𝑥1, 𝑥2, 𝑥3,⋯ 𝑥10]

𝑆𝑂𝐶𝑘
𝑀 = 𝑥1𝑆𝑂𝐶𝑘 + 𝑥2

𝑈𝑂𝐶,𝑘
𝑀 = 𝑥3𝑓𝑂𝐶𝑉(𝑆𝑂𝐶𝑘

𝑀) + 𝑥7

𝑅0,𝑘
𝑀 = 𝑥4𝑓𝑅0(𝑆𝑂𝐶𝑘

𝑀) + 𝑥8

𝑅𝑃,𝑘
𝑀 = 𝑥5𝑓𝑅𝑃(𝑆𝑂𝐶𝑘

𝑀) + 𝑥9

𝐶𝑃,𝑘
𝑀 = 𝑥6𝑓𝐶𝑃(𝑆𝑂𝐶𝑘

𝑀) + 𝑥10

𝑈𝐿,𝑘
𝑀 = 𝑈𝑂𝐶,𝑘

𝑀 − 𝑈𝑃,𝑘
𝑀 − 𝐼𝑅0,𝑘

𝑀 + 𝑣𝑘

 (3) 

In the migration model expression Eq. (3), X = [x1, x2, x3,…x10] is the migration factor matrix of the model, 
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SOCk
M is the corrected SOC value, UOC

M,k, R0
M,k, Rp

M,k, Cp
M,k are the parameter values after migration obtained 

from the relationship curve between SOC and battery model parameters, UL
M,k is the terminal voltage value 

obtained from the migrated model observation equation. 

2.2. Parameter identification and relation curve extraction of initial model 

It is necessary to obtain the functional relationship between battery parameters and SOC, rather than the 

specific parameter value at each sampling point in a specific working condition. All parameters in the Thevevin 

model can be identified offline through the Hybrid Pulse Power Characterization (HPPC) experiment. The process 

of the HPPC test is shown in Fig. 2. 

Start
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Fig. 2  HPPC experiment step setting 

In the process of data analysis and processing, the effective data segment is extracted from the original 

experimental data, through the analysis of the extracted data segment and the processing method of curve fitting, 

the relationship between the internal parameters and SOC is obtained, and the accurate construction of the 

equivalent model is completed, to realize the accurate description of the working characteristics of lithium-ion 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



battery. Firstly, all voltage data are extracted from the original data to describe the change of battery terminal 

voltage in the whole process of the HPPC test, as shown in Fig. 3 (a). For the initial Thevenin model, the 

parameters to be identified are R0, RP, and CP, which can be identified from the dynamic pulse test stage of the 

HPPC test, so the data segment of the pulse test in each cycle is extracted. The impulse response curve of lithium-

ion battery when SOC is 0.7 is shown in Fig. 3 (b). 
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(b) Impulse response curve when SOC = 0.7 

Fig. 3  Voltage response curve of HPPC test 

 It can be seen from Fig. 3 (a) that after each constant current discharge, the battery is put aside for 1 h, and the 

voltage gradually tends to be stable, which indicates that the internal chemical reaction and thermal effect have 

reached a balance. At this time, the battery voltage is its OCV, so the relationship curve between OCV and SOC 

can be obtained. Fig. 3 (b) reflects the transient and steady-state characteristics of lithium-ion battery. At the 

beginning of pulse discharge, the battery voltage drops instantaneously, and then the voltage decreases slowly 

during discharge. At the end of discharge, the battery voltage rebounds immediately, the voltage gradually rises 

and tends to be stable during shelving. The point-taking calculation method and curve fitting method are used to 

identify the parameters of pulse test data. 

As shown in Fig. 3 (b), the sudden drop of discharge start voltage is the function of R0, and the phenomenon of 

a gradual drop of voltage can be explained by the RC circuit. Therefore, the values of R0 can be obtained from the 
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AB segment and CD segment, and the values of RP and CP can be obtained from the BC segment and DE segment. 

The calculation expression of R0 is shown in Eq. (4). 

𝑅0 =
|𝛥𝑈𝐴𝐵| + |𝛥𝑈𝐶𝐷|

2𝐼
 (4) 

As shown in Fig. 3 (b), the zero state response curve of the BC segment is selected as the fitting curve segment. 

From the KVL relationship of the initial Thevenin model, the circuit expression is shown in Eq. (5). 

𝑈𝐿 = 𝑈𝑂𝐶 − 𝐼𝑅0 − 𝐼𝑅𝑝(1 − 𝑒
−
𝛥𝑇
𝜏 ) (5) 

Eq. (5) is abstracted and its parameterized expression is obtained, as shown in Eq. (6). 

𝑦 = 𝑎 − 𝑏(1 − 𝑒−
𝑥
𝑐) (6) 

In Eq. (6), y represents UL, x represents time t, a, b and c are three parameters corresponding to UOC - IR0, IRP, 

and τ in Eq. (5) respectively. The curve fitting method is used to identify the parameters of each stage with SOC 

from 0.1 to 1. 

2.3. Chaotic firefly - particle filtering for SOC and SOH co-estimation 

The migration factor matrix is an important parameter to correct the initial battery model and SOC in the online 

migration process. The determination of migration factor is a nonlinear and non-Gaussian process, so the nonlinear 

and non-Gaussian PF algorithm is selected to determine it online. Combined with the structural framework and 

expression of the battery dynamic migration model which is shown in Eq. (3), the migration matrix X = [x1, x2, 

x3,…x10] is taken as the system state variable, the battery terminal voltage is taken as the system observed 

measurement, the load current Ik and inaccurate SOCk in the working process of the battery are taken as the input 

of the system. The discrete state equation of the system is established, as shown in Eq. (7). 

{
 
 

 
 
�⃗�𝑘 = [

𝑥1,𝑘−1
𝑥2,𝑘−1
⋯

𝑥10,𝑘−1

] + [

𝜈1
𝜈2
⋯
𝜈10

] ,

𝜈1~𝑁(0, 𝜎1
2)

𝜈2~𝑁(0, 𝜎2
2)

⋯
𝜈10~𝑁(0, 𝜎10

2 )

𝑈𝐿,𝑘 = 𝑈𝑂𝐶,𝑘 − 𝑈𝑃,𝑘 − 𝐼𝑅0 +𝜔,𝜔~𝑁(0, 𝜎𝜔
2)

 (7) 

The initial value of X = [x1, x2,..., x10] and the variance σi
2 of the state value are shown in Tab. 1. 
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Tab. 1  Dynamic migration model parameter configuration 

i 1 2 3 4 5 6 7 8 9 10 ω 

vi,0 1 0 1 1 1 1 0 0 0 0 null 

σi
2 0.00001 0.002 0.0001 0.0001 0.0001 0.0001 0.001 0.001 0.001 0.001 0.001 

To solve the defects of particle degradation and particle diversity reduction in traditional PF, the intelligent 

firefly algorithm is introduced. To effectively improve the dependence on the initial solution, slow convergence 

speed in the later stage, a chaotic algorithm that can map a group of particles to another solution space is added. 

To sum up, a CF - PF method is proposed. The overall process of the CF - PF method is shown in Fig. 4. 
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Fig. 4  Overall process of the CF - PF method 
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In Fig. 4, the complete SOC and SOH co-estimation consists of offline initial modeling and online migration 

model update. The offline part has been described in Chapters 2.1 and 2.2. The online migration part is based on 

the PF algorithm, and the parts highlighted in the red box are the improved migration modeling part, the firefly 

optimization algorithm part, and the chaotic algorithm part, respectively. 

2.3.1. Firefly algorithm 

Fireflies in nature communicate with others through luminous behavior, but the fluorescence of fireflies is only 

visible in a certain range. The idea of the firefly algorithm is to initialize the firefly population randomly in the 

search space. High brightness fireflies attract low brightness fireflies to move towards them, and their positions 

are both updated at the same time. By moving several times, almost all fireflies concentrate around the brightest 

firefly, to realize the optimization process. Therefore, the brightness, attraction, and position are several elements 

of the algorithm. The relative brightness of firefly i to firefly j is shown in Eq. (8). 

𝐼𝑖𝑗 = 𝐼0 × 𝑒
−𝛾×𝑟𝑖𝑗

2

 (8) 

In Eq. (8), I0 is the maximum fluorescence brightness of firefly i. The better the objective function value, the 

higher the brightness of the firefly itself. For the SOC estimation of lithium-ion batteries in the PF algorithm, the 

higher the particle weight, the higher its brightness. γ is the light intensity absorption coefficient, which is set to 

0.98 in this research. rij is the spatial distance between fireflies i and j. When this parameter is used in the PF 

algorithm, it is considered as the estimated value difference between SOC particles. The attraction of firefly i to j 

is shown in Eq. (9). 

𝛽𝑖𝑗 = 𝛽0 × 𝑒
−𝛾×𝑟𝑖𝑗

2
 (9) 

In Eq. (9), β0 is the attraction at the light source (r = 0), which is the maximum attraction of the light source 

firefly. The position update of attracted firefly j and global optimal firefly i is shown in Eq. (10). 

{
𝑥𝑗 = 𝑥𝑗 + 𝛽𝑖𝑗 × (𝑥𝑗 − 𝑥𝑖) + 𝛼 × (𝑟𝑎𝑛𝑑 − 0.5)

𝑥𝑖 = 𝑥𝑖 + 𝛼 × (𝑟𝑎𝑛𝑑 − 0.5)
 (10) 

In Eq. (10), xi and xj represent the spatial position of fireflies i and j, which represent the SOC value of particles 
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i and j in the PF algorithm. Step factor α is a constant on [0,1], with a value of 0.05. rand is a random factor on 

[0,1] and obeys uniform distribution. Since other fireflies cannot attract the brightest firefly, the position update 

equation of the brightest firefly is executed according to the second part in Eq. (10). 

2.3.2. Firefly based on chaotic mapping 

Chaos is a complex nonlinear system dynamic behavior, which uses the characteristics of chaotic motion to 

improve the optimization efficiency of the algorithm. The basic idea is to linearly map the optimization variables 

into the chaotic variables through chaotic mapping, and then optimize the search process according to the 

ergodicity and randomness of chaos. Finally, the obtained solution is linearly transformed into the optimization 

variable space.  

There are many kinds of one-dimensional chaotic mapping functions. At present, the commonly used chaotic 

functions are Logistic mapping function and Tent chaotic mapping function. Logistic mapping function is a 

chaotic system, but the speed of searching the optimal solution is affected by the non-uniformity of its function 

distribution. Tent chaotic mapping function has a higher value taking probability for the Logistic mapping function 

in the interval [0, 0.1] and [0.9, 1]. The distribution of chaotic sequences generated in the interval [0, 1] is more 

uniform and the iteration speed is faster. So the chaotic sequence of Tent mapping is evenly distributed and has 

high optimization efficiency. In this research, Tent mapping is used to generate the chaotic sequence, and its 

mathematical expression is shown in Eq. (11). 

𝑥𝑛+1 = {
2𝑥𝑛, 0 ≤ 𝑥𝑛 < 0.5

2(1 − 𝑥𝑛), 0.5 ≤ 𝑥𝑛 ≤ 1
 (11) 

Firstly, the initial population with uniform distribution is randomly generated by Tent mapping to ensure the 

randomness and diversity of the individuals, which is conducive to improving the convergence speed of the 

algorithm. In the firefly population Xi (x = 1,2,…N) in one iteration, all fireflies are sorted from large to small 

according to the fluorescence brightness (particle weight), the first 5% of individuals are taken, and the minimum 

Xmin and maximum Xmax of them are obtained as the chaotic search space. A firefly is randomly selected from the 
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first 5% of individuals, and its spatial position (SOC value) XA is taken as the basic solution. Eq. (12) is used to 

map XA into the (0,1) interval. 

𝑇𝑒𝑛𝑡(1) =
(𝑥𝐴 − 𝑋𝑚𝑖𝑛)

(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)
 (12) 

Eq. (12) is substituted into the Tent map of Eq. (11), the chaotic variable sequence Tent (m) (m = 1, 2,..., ITERmax) 

is generated iteratively, and ITERmax is the maximum number of iterations of chaotic search, which is set to 200. 

The generated sequence Tent (m) is carried to the original solution space to generate x (m) by Eq. (13). 

𝑥(𝑚) = 𝑥𝐴 +
(𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛)

2
× 2(𝑇𝑒𝑛𝑡(𝑚) − 1) (13) 

The fluorescence brightness (particle weight) of each firefly in the new sequence x (m) is calculated one by one 

to generate a new optimal solution XB, which is compared with the particle weight of XA to retain the best solution 

and make the algorithm jump out of the local optimum. 

2.3.3. SOC and SOH co-estimation based on dual filter 

In this research, the combination of the PF algorithm and EKF algorithm is used to realize the SOC and SOH 

co-estimation of lithium-ion batteries. After the SOC value at the current time is estimated by CF - PF algorithm, 

this value is used as the input of the SOH estimation filter at the current time to correct the a priori capacity Q 

obtained from the state transition equation in Eq. (1). After the Q at the current time is obtained, it is used as the 

input of CF - PF to correct the SOC at the next time by updating the coefficient matrix B in the state transition 

equation. In the separate estimation of SOC, the Q in matrix B is the calibrated capacity value, which does not 

change with the increase in the number of iterations. In the co-estimation, Q is inversely updated and corrected to 

realize the mutual promotion and influence of the two state parameters. The principle of SOC and SOH mutual 

correction through the dual filter is shown in Fig. 5. 
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Output: Q
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State transition equation

X(k+1)=AX(k)+BI(k)

    B1=tr/Q

    B2=-Rp(1,T)*(1-exp(-tr/τ))

    B=[B1;B2]

Input control matrix
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Update SOH
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*(Q_pre(k)-Q_c(k))

Correction

Reverse correction
 

Fig. 5  Mutual correction of SOC and SOH 

3. Experimental analysis 

3.1. Experimental platform construction 

The ternary lithium-ion battery with a rated capacity of 45Ah and a nominal voltage of 3.7 V is used for the 

experimental test. A BTS200-100-104 battery test equipment is used as the test platform, and a software that is 

installed at the PC control terminal is used to control the battery charging and discharging conditions as to match 

with the test equipment. To avoid the influence of temperature inconsistency on the parameters and OCV of the 

battery, all the experiments in this research are carried out at constant temperature of 25 ℃. The experimental 

platform established in this research is shown in Fig. 6. 
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Fig. 6  Experimental platform construction 

3.2. Accuracy verification of dynamic migration model 

In Chapter 2.2, the parameters of each stage from 0.1 to 1 of SOC are identified by curve fitting. The obtained 

offline parameter identification results of R0, RP, and CP are shown in Tab. 2. 

Tab. 2  Offline parameter identification results 

SOC R0/Ω Rp/Ω Cp/μF 

1 0.0028 0.0005752 14361.9611 

0.9 0.0032 0.0006374 11909.3191 

0.8 0.0028 0.0006786 11497.2001 

0.7 0.0024 0.0007104 11392.1734 

0.6 0.0032 0.0006286 11800.8272 

0.5 0.0013 0.0004946 17270.5216 

0.4 0.0022 0.0004876 17518.4578 

0.3 0.0037 0.0005244 17080.4729 

0.2 0.0034 0.000601 15094.8419 

0.1 0.0029 0.0008518 9839.16412 
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The expression of the relationship between the three parameters and the dynamic change of SOC is shown in 

Eq. (14). 

{

𝑅0 = -0.02978𝑥6 + 0.09091𝑥5-0.105𝑥4 + 0.05578𝑥3-0.01196𝑥2 + 0.0001415𝑥 + 0.003219

𝑅𝑝 = 0.06207𝑥
6-0.189𝑥5 + 0.2216𝑥4-0.1317𝑥3 + 0.04575𝑥2-0.009677𝑥 + 0.001471

𝐶𝑝 = -1.165e + 07𝑥6 + 3.262e + 07𝑥5-3.33e + 07𝑥4 + 1.529e + 07𝑥3-3.355e + 06𝑥2 + 4.429e + 05𝑥 + 2617

 (14) 

The obtained OCV-SOC relationship curve and the relational expression between parameters and SOC are used 

for the dynamic migration process in the migration model. To verify the accuracy of the improved migration 

model compared with the ordinary Thevenin model, the two models are verified under HPPC working condition. 

The current I is taken as the input value, and the terminal voltage output by the model and the actual terminal 

voltage data of lithium-ion battery under the same input current are obtained respectively. The experimental 

verification results are shown in Fig. 7. 
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(a) Terminal voltage comparison 
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(b) Terminal voltage error 

Fig. 7  Comparison of output terminal voltage under HPPC working condition 

As can be seen from Fig. 7 (b), the output voltage error of the migration model is significantly smaller than that 

of the Thevenin model during the whole charge and discharge process. The maximum output error of the Thevenin 

model is as high as 0.0675 V, and the output error of the migration model is only 0.0451 V. It proves that the 

migration model can more accurately describe the dynamic characteristics of the battery, which is greatly 

improved compared with the traditional model. The application of the migration model lays a solid foundation for 
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better completing the SOC and SOH co-estimation of lithium-ion batteries. 

3.3. Co-estimation verification under HPPC test 

Based on the application of the battery migration model, the experimental verification of SOC and SOH co-

estimation of the proposed novel CF - PF algorithm under HPPC working condition is carried out. In the SOH 

estimation, the reference value 99.11% is obtained through rigorous capacity calibration experiment. After the 

battery is fully charged and discharged for three times, the average discharge capacity of the three times is the 

actual capacity under the current state, and then the current SOH is obtained. The co-estimation results of the 

traditional PF algorithm, firefly - particle filtering (F - PF) algorithm, and CF - PF algorithm under HPPC working 

condition are shown in Fig. 8. 
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(a) SOC estimation results under HPPC test 
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(b) SOC estimation error under HPPC test 
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(c) SOH estimation results under HPPC test 
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(d) SOH estimation error under HPPC test 

Fig. 8  Comparison of SOC and SOH co-estimation under HPPC test 
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As can be seen from Fig. 8 (b), the SOC estimation error of the traditional PF algorithm fluctuates greatly and 

is very unstable. The divergence in the later stage is serious, and the maximum error is as high as 4.13%. The 

stability of the F - PF algorithm is significantly improved, the error in the later stage is stable and has slight 

divergence, the maximum error is 2.75%, which proves that the added firefly algorithm is effective to improve 

particle optimization ability and greatly improve the overall SOC estimation accuracy. The accuracy of the CF - 

PF algorithm is greatly improved on the whole, and the algorithm has an obvious convergence effect and high 

stability in the later stage. The maximum SOC estimation error is only 2.51%. The added chaotic algorithm 

improves the estimation accuracy again based on the firefly algorithm and improves the defects that the firefly 

algorithm is easy to fall into local optimization, early maturity, and divergence in the later stage. As can be seen 

from Fig. 8 (c) and Fig. 8 (d), both the firefly algorithm and chaotic algorithm show obvious improvement effects. 

The maximum error of the PF algorithm is 3.04%, that of the F - PF algorithm is 1.57%, and that of the CF - PF 

algorithm is 0.97%. CF - PF algorithm shows effective improvement of convergence and accuracy. The three 

algorithms are compared through three evaluation indexes: maximum error, mean absolute error (MAE), and root-

mean-square error (RMSE). The comparison of SOC and SOH co-estimation results under the HPPC test is shown 

in Tab. 3. 

Tab. 3  Comparison of SOC and SOH co-estimation results under HPPC test 

Estimation method PF F - PF CF - PF 

Maximum Error (SOC) 4.13% 2.75% 2.51% 

MAE (SOC) 2.32% 2.22% 1.34% 

RMSE (SOC) 2.48% 2.24% 1.48% 

Maximum Error (SOH) 3.04% 1.57% 0.97% 

MAE (SOH) 0.99% 0.47% 0.28% 

RMSE (SOH) 1.32% 0.63% 0.38% 

3.4. Co-estimation verification under BBDST test 

The working conditions of electric vehicles in actual operation are dynamic, irregular, complex, and changeable. 
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To better simulate the actual operation, the ternary lithium-ion battery is tested by setting the working condition 

experiment concerning the Beijing bus dynamic stress test (BBDST). BBDST is the working condition obtained 

from the real data collection of Beijing buses, including not only the basic working conditions such as starting, 

braking, and stopping, but also the operations such as acceleration, taxiing, and rapid acceleration. The co-

estimation results of the traditional PF algorithm, F - PF algorithm, and CF - PF algorithm under BBDST working 

condition are shown in Fig. 9. 
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(a) SOC estimation results under BBDST test 
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(b) SOC estimation error under BBDST test 
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(c) SOH estimation results under BBDST test 
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(d) SOH estimation error under BBDST test 

Fig. 9  Comparison of SOC and SOH co-estimation under BBDST test 

As can be seen from Fig. 9 (b), the SOC estimation error of the PF algorithm fluctuates greatly and is extremely 

unstable, the maximum error is as high as 5.60%. The F-PF algorithm improves the overall estimation accuracy 

to a certain extent, with a maximum error of 4.16%. With the addition of the chaotic algorithm, the performance 
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of the CF - PF algorithm is greatly improved as a whole. It can maintain high stability even under the complex 

and changeable BBDST working condition. The algorithm can converge in the later stage, fluctuate around 0, and 

the maximum error is only 1.42%. As can be seen from Fig. 9 (c) and Fig. 9 (d), the stability of SOH estimation 

of the traditional PF algorithm is poor. There is a large fluctuation in the medium term, and the maximum error 

can reach 5.25%. There is also an obvious fluctuation in the later stage. The stability and accuracy of the F - PF 

algorithm are both improved obviously, but it is still highly divergent, and the maximum error is only 2.99%. CF 

- PF algorithm has a good performance in the whole BBDST working condition. The stability of the algorithm is 

very strong, the estimation results do not fluctuate greatly, and the maximum error is only 1.25%.  

The above experimental verification are carried out under the battery condition of high health. To verify the 

universality of the algorithm and its ability to correct the battery state estimation under severe aging, BBDST 

experiment is conducted on the battery with a SOH of 91.31% after 278 cycles of charging and discharging. The 

data under this working condition are used for algorithm and model verification, the results are shown in Fig. 10. 
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(a) SOC estimation results under BBDST test and severe aging 
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(b) SOC estimation error under BBDST test and severe aging 
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(c) SOH estimation results under BBDST test and severe aging 
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(d) SOH estimation error under BBDST test and severe aging 

Fig. 10  Comparison of SOC and SOH co-estimation under BBDST test and severe aging 

As can be seen from Fig. 10 (b), although the stability of the three algorithms is high in the early stage, PF is 

seriously divergent at the end of the discharge, and the error increases rapidly, which is not within the acceptable 

range. The estimation error of F - PF and CF - PF have high stability, and the overall accuracy of CF - PF is 

relatively high. The maximum error of F - PF is 3.46%, and that of CF - PF is only 2.31%. As can be seen from 

Fig. 10 (c) and Fig. 10 (d), the traditional PF has a large error in SOH estimation, the estimation results are 

unreliable. F - PF makes some improvements to increase its estimation reliability, but it is still not within the 

acceptable range. The SOH estimation result of CF - PF algorithm has small fluctuation and high accuracy, the 

error can be controlled within 2.21%. Although the overall effect of co-estimation under severe aging is relatively 

poor compared with that under high SOH, the CF - PF algorithm proposed in this research still has a very obvious 

effect on improving the co-estimation accuracy. 

The three algorithms are compared through three evaluation indexes: maximum error, MAE, and RMSE. The 

comparison of SOC and SOH co-estimation results under the BBDST test is shown in Tab. 4. 

Tab. 4  Comparison of SOC and SOH co-estimation results under BBDST test 

Estimation method PF F - PF CF - PF 

Maximum Error (SOC) 5.60% 4.16% 1.42% 

MAE (SOC) 2.48% 1.31% 0.52% 

RMSE (SOC) 2.76% 1.54% 0.67% 
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Maximum Error (SOH) 5.25% 2.99% 1.25% 

MAE (SOH) 1.52% 1.10% 0.52% 

RMSE (SOH) 2.16% 1.40% 0.63% 

Maximum Error (SOC/ severe aging) 21.24% 3.46% 2.31% 

MAE (SOC/ severe aging) 5.76% 3.08% 2.09% 

RMSE (SOC/ severe aging) 6.03% 3.13% 2.18% 

Maximum Error (SOH/ severe aging) 5.65% 5.08% 2.21% 

MAE (SOH/ severe aging) 3.44% 3.32% 1.13% 

RMSE (SOH/ severe aging) 3.82% 3.69% 1.26% 

4. Conclusions 

In this research, to achieve high-precision real-time state-of-charge and state-of-health co-estimation of lithium-

ion batteries, to provide more accurate residual battery power for new energy vehicle drivers that can better predict 

the remaining mileage thereby ensuring safe driving, a novel dynamic migration model and a chaotic firefly-

particle filtering method are proposed. Under complex working condition, the root-mean-square error of state-of-

charge and state-of-health estimation of chaotic firefly - particle filtering method is 0.67% and 0.63% respectively, 

which are improved by 2.09% and 1.53% compared with the traditional particle filtering algorithm. 

In summary, the proposed model and method plays an obvious and effective role in improving the state-of-

charge and state-of-health co-estimation accuracy of lithium-ion batteries. This study provides a theoretical basis 

for the battery condition monitoring, and in the practical application of new energy vehicles, it has an important 

contribution to real-time monitoring of vehicle status in ensuring safe driving for drivers. However, in the actual 

driving process, the temperature is complex and changeable, and the influence of temperature on the battery state 

estimation has not been considered in this study, which is also the research direction in the future. 
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