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Abstract: Because of the common data redundancy phenomenon in the current least-squares parameter 

identification algorithm and the complex offline parameter identification process, this research 

innovatively proposes a Limited Memory Multi-Innovation Least Squares (LM-MILS) ternary lithium-

ion battery (LIB) parameter identification algorithm that uses a limited set of data to estimate model 

parameters and attenuates the effects of old data. To improve the parameter fidelity of the equivalent 

circuit model (ECM) of the LIB, considering that the open-circuit voltage of the lithium-ion battery will 

gradually decrease with the self-discharge when it is not in use, based on a large number of experiments, 

a model considering the self-discharge of the LIB is constructed. The experimental results show that the 

self-discharge effect-2-RC (SDE-2-RC) model can achieve higher accuracy in simulating the working 

state of the battery, and the peak error of the simulated voltage is only 0.04342V, and the accuracy can 

reach more than 98.966%. Using LM-MILS and adaptive Kalman filtering algorithm (AEKF) for the state 

of charge (SOC) estimation, the results show that the algorithm has a fast convergence speed and strong 

tracking performance. The maximum SOC estimation errors in HPPC, DST, and BBDST three operating 

conditions are 0.00929, 0.01273, and 0.01002, respectively. The fluctuation range is small, and the 

maximum estimation error is less than 2%, which verifies that the improved parameter identification 

algorithm has good performance in improving the SOC estimation accuracy of LIB.

Keywords: Lithium-ion battery; LM-MILS algorithm; SDE-2-RC equivalent model; Online parameter 

identification
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1. Introduction

In the past few decades, due to increasing environmental pollution and increasingly serious energy

consumption[1], renewable and clean energy has become the focus of energy research[2]. The 

development of electric vehicles has become a leading industry in the field of new energy, and electric 

drive vehicles such as hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and 

extended-range electric vehicles (E-REV) have emerged[3]. At the same time, the rapid development of 

electric vehicles has greatly promoted the development of energy storage science and technology and the 

battery industry[4]. Lithium batteries have attracted extensive attention due to their long cycle life, strong 

charging capability, wide operating temperature range, and strong endurance[5]. Due to the characteristics 

of single use and group use of lithium batteries, it has brought new challenges to the safety of power 

battery management systems (BMS)[6], and it is still a technical bottleneck for the promotion and 

development of new energy electric vehicles[7-10]. The functional requirements of BMS can be divided 

into four parts: scientific control strategy, accurate performance management, communication 

management, and fault diagnosis, and the performance management part involving LIB state estimation is 

particularly important[11, 12].

At present, LIB equivalent modeling research is a very broad research field, which has spawned a 

variety of modeling techniques[13], such as electrochemical models, artificial intelligence models, 

thermodynamic models, and equivalent circuit models (ECM)[14]. Electrochemical models usually 

involve a large number of equations and characteristic parameters, which are computationally intensive 

and difficult[15]. The artificial intelligence model needs to invest a lot of cost in software and hardware to 

meet the needs of timely updating[16, 17], and it is difficult to be widely used in BMS management. The 

ECM model has been widely used because of its simple structure and reasonable accuracy[18].

In the current field of LIB research, the most commonly used and basic models include the internal 

resistance model, the Thevenin model, the PNGV model, and the second-order RC model[19, 20]. These 

basic models can meet some application scenarios that do not require high model parameter accuracy. For 

example, the internal resistance model circuit is simple and the parameters are easy to determine, but it 

cannot characterize the dynamic working process of the LIB[21]. The Thevenin model has a clear 

physical meaning. It uses resistance and capacitance equivalent to the capacitive impedance in the battery. 

However, the resistance in the model is a fixed value, which has certain drawbacks[22, 23]. The PNGV 

model adds capacitance to the Thevenin model and considers the effect of current on OCV. The second-

order RC model uses two RC loops to represent the electrochemical polarization and concentration 

polarization effects of the battery during charging and discharging, respectively. Compared with other 

models, the second-order RC model has higher accuracy and a wider application range[24, 25]. To realize 

ECM with higher accuracy and richer application scenarios, many researchers have made a lot of efforts.

In order to solve the problems existing in aviation batteries working in a high-complexity 

environment, Wang et al.[26] proposed a spliced equivalent circuit model (S-ECM) through experimental 

research on the working characteristics of LIB packs, which realized the special working conditions and 

accurate mathematical expression of LIB packs. The experimental results show that the parameter 

identification results of the S-ECM model are in good agreement with the performance of aviation LIB, 

and the voltage tracking error is less than 2%. Ji et al.[27] presented a variable resistance-capacitor 

second-order RC equivalent circuit model. To explore the influence of fixed-value resistance and variable 
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capacitance in ECM, the exponential fitting method and the pulse discharge method were used to identify 

the model parameters and constructed the second-order equivalent model of variable resistance and 

capacitance is developed. The results show that the accuracy of the variable RC model they constructed 

can reach 97.1%, which is 3.3% higher than that of the fixed RC second-order model. Since the heat 

generated from the circuit during the operation of the LIB will affect the parameters of the battery model, 

more and more researchers have begun to explore how to effectively solve the impact of the battery 

thermal effect. To solve such problems, Cai et al.[28] identified the thermal characteristic parameters at 

different temperatures by measuring the relevant factors such as the surface temperature of the lithium 

battery and the ambient temperature according to the principle of heat transfer and the calorific value of 

the battery. Based on the model, an ECM considering the thermal characteristics of the LIB is established. 

The results show that the estimated temperature of the electrical model and the actual temperature of the 

battery have good followability, and the maximum relative error is within 5%. In order to break through 

the limitation of computing power and storage space of traditional battery management, Wang et al.[29] 

established a digital twin model of LIB based on networked BMS architecture based on cloud 

collaboration and digital twin technology. The results show that the digital twin model can overcome the 

shortcomings of traditional battery management systems using fixed parameters through online learning, 

and achieve accurate management and ideal performance for the full life cycle of LIB. Mevawalla et 

al.[30] proposed a one-dimensional partial differential model based on physical and chemical diffusion, 

which can quickly and accurately predict the voltage and temperature according to the operating state of 

LIB, which is helpful for the precise thermal design and thermal design of LIB management.

In the application process of ECM, high-precision ECM parameters can ensure the fidelity of its 

model. Many factors affect the accuracy of ECM parameters, such as temperature, state of charge, 

remaining battery life, etc. How to obtain high-precision, high-real-time degree of ECM parameters has 

become the focus of researchers. Wei et al.[31] innovatively proposed a degree of freedom (DOF) 

canceller, and combined it with Frisch format recursion, aiming at the fact that the unexpected perception 

of noise may affect the identification of ECM parameters in practical applications. Estimate noise 

statistics and model parameters. The results show that the method can effectively reduce the parameter 

identification deviation caused by noise, and the anti-interference ability and model accuracy are greatly 

improved. To balance the accuracy and real-time performance of ECM parameter identification. Wu et 

al.[32] proposed a self-adjusting multiple forgetting factor recursive least-squares method (AMFFRLS) 

based on forgetting factor recursive least squares (FFRLS) to update model parameters in real-time. The 

experimental results show that the AMFFRLS algorithm has smaller errors under different working 

conditions, and its performance is better than that of the FFRLS algorithm. In order to ensure high 

modeling accuracy and SOC estimation accuracy, Bian et al.[33] used particle swarm optimization 

algorithm to optimize the online parameters of ECM parameters and the covariance matrix of extended 

Kalman filter (EKF) and the simulated voltage error could be limited to -0.03V to 0.03V range. 

Compared with the ECM offline parameter identification method, the above method has higher real-time 

performance and lower complexity. However, due to the complexity of the recurrence formula of the 

degree of freedom canceller in the literature [31], the particle swarm optimization algorithm in the 

literature [33]  has a large amount of calculation and usually requires high hardware support, so it is 

difficult to apply to the actual BMS parameters. estimate. The maximum and minimum forgetting factors 

in [32] vary with the battery operating conditions and are not suitable for online parameter identification.

To establish an ECM with higher parameter accuracy, this study focuses on solving the self-
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discharge effect of LIB, and innovatively establishes the SDE-2-RC model to characterize the self-

discharge process in detail. It is verified by experiments that the SDE-2-RC model can more accurately 

simulate the LIB working process. To solve the data redundancy phenomenon in the online parameter 

identification algorithm, an innovative LM-MILS algorithm is proposed, which improves the accuracy of 

online parameter identification by limiting the data memory length and expanding the innovation vector, 

and the Hybrid Pulse Power Characterization (HPPC) experiment and the Beijing Bus Dynamic Stress 

Test (BBDST) experiment are used to verify the accuracy of the improved model[34]. The online SOC 

estimation based on the LM-MILS and AEKF algorithms provides the experimental basis and theoretical 

basis for the accurate state estimation and wide application of LIB. 

The rest of this research is organized as follows: Section 2 mainly introduces the SDE-2-RC 

equivalent circuit structure of the LIB and the overall structure of the LM-MILS online parameter 

identification algorithm. Section 3 mainly includes the parameter identification results of the SDE-2-RC 

equivalent model and the verification of the identification accuracy.  Section 4 verifies the improvement 

effect of the LM-MILS algorithm on the SOC estimation accuracy under three different working 

conditions. Finally, a summary is described in Section 5.

2. Theoretical Analysis

2.1 Battery Equivalent Model Establishment

At present, most of the commonly used lithium battery ECMs improve the accuracy of the ECM by 

solving the thermal effect and noise effect of the LIB, or by increasing the order of the RC network[35, 

36]. Most researchers ignore the self-discharge effect of the LIB. In the state of slow discharge, the open-

circuit voltage will also change with the resting time. If this slight change is ignored, the parameter 

accuracy of the ECM will also be affected to a certain extent. After a detailed study of the working 

characteristics of the LIB, to reduce the influence of the parameter accuracy caused by the change of the 

open-circuit voltage, the SDE-2-RC model was constructed in this study. The SDE-2-RC model is shown 

in Fig. 1.

R0

RP1 RP2

CP1 CP2

UOC

I(t)

UL

+

-

Ra
Cb

UP1 UP2

U0

Ub

Fig. 1 SDE-2-RC open-circuit model

Based on the 2-RC model, the SDE-2-RC model uses the self-discharge loop composed of  and  �� ��

to effectively characterize the self-discharge effect. In Fig. 1,  represents the terminal voltage of LIB, �� 	


is the circuit loop current, the two RC loops composed of , , and ,  are used tot) ��
 ��
 ��� ���
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characterize the electrochemical polarization effect and concentration polarization effect of the battery 

respectively,  is the ohmic internal resistance. According to Kirchhoff's voltage law, the voltage �0

relationship in the SDE-2-RC circuit is shown in Equation (1).

0 1 2

1 1 2 2

1 2

1 2

L oc b p p

p p p p

L p p

p p

U U U U U U

dU U dU U
i C C

dt R dt R

� � � � ��
�
� � � � ��
	

(1)

Accurate identification of the characteristic parameters in the self-discharge loop is an essential 

prerequisite for characterizing the self-discharge effect of LIBs. The method of parameter identification 

will be introduced in the following. When the SOC drops to 0.5, the voltage change curve when the 

battery is charged and discharged can be drawn, as shown in Fig. 2.
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U2U
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)

t(s)

U1

Fig. 2 Charge-discharge cycle at SOC=0.5

In the self-discharge loop of the LIB,  can be used to represent the voltage change due to the ��

current accumulation effect. The calculation of  is shown in Equation (2), and the calculation method is ��

to obtain the average value of  from the data of multiple HPPC charge-discharge cycles. In Equation ��

(2),  is the discharge current,  is the instantaneous voltage of discharge, and  is the instantaneous 	 �1 �2

voltage of charging.

1 2

1

b

U U Idt
C

� � 
 (2)

In order to realize the accurate identification of self-discharge resistance , In a constant ��

temperature experimental box, a fully charged LIB was placed and the load was not connected, and the 

change in open circuit voltage was continuously recorded every day for 45 days.  represents the change ��

of LIB open-circuit voltage, and its calculation formula is shown in Equation (3).

0 1 a b

t

R C

b oc ocU U U e
�� �

� 
 � �� �� �
� �

(3)
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In Equation (3),  is the open-circuit voltage after the battery is fully charged,  represents the ���� �

discharge time of the battery in the resting state. After calculating the open-circuit voltage change and the 

corresponding time, the value of  can be calculated by Equation (4).��

0

ln 1

a

oc
b

oc

t
R

U
C

U

�
�

� �

� �� �
� �

(4)

 generally, takes 1, which represents the battery SOC when fully charged, combined with ���0

Equation Error! Reference source not found., the SOC at the current moment can be calculated.

� �
0

0

0

k

k

i t dt
SOC SOC

Q

�
� � 
 (5)

In Equation (6),  is the discharge efficiency of the LIB, usually  at room temperature. � � = 1 0Q

represents the rated capacity of the LIB[37]. Through modern control theory, the ECM can be 

discretized[38], as shown in Equation (6).

0

0

k k

t
SOC SOC i

Q

�

� � (6)

 is the state space variable,  is the input, and  is the output, �� = [����,��
��,�����,��]� �� �� = [����]

then the discrete state-space equation of the ECM is shown in Equation (7).
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�
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� �

� 
� ��� � �
� � �

� �� � �� �� �� � ��� �� �� �� � �� �� �� � � �� �
� �� � �� �
� � �� �� � �� �� � � � �� �� � � � ��

� ��
� �� ��

� � �� � ��� � �� � � �� � ��� � �� �� �	

(7)

In Equation (7),  is the discrete sampling interval; , ;  is the noise  � !1 = ��1��1 !2 = ��2��2 "�

variable; and  is the voltage error of each estimate.#�

2.2 Limited memory multi-innovation least-squares method

After obtaining the characteristic parameters of the self-discharge circuit,  and  are used as �� ��

constants in the subsequent identification, and the remaining parameters in the model can be identified by 

the online parameter identification method. Compared with the offline identification method, the online 

parameter identification method has lower operational complexity and higher efficiency[39]. Calculation 

errors are less prone to occur. The recursive least squares (RLS) method has a fast convergence speed and 
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is simple and efficient for parameter identification. It has been widely used in the field of parameter 

identification. Equation (8) is the expression for RLS.

� � � � � � � �1Ty k k k e k� �� � � (8)

In Equation (8),  is the data vector,  is the observation noise, and  is the $
�� %
�� &� 
� ' 1)

estimated value of the parameter vector. Take the objective function . The purpose of the least-(
&�

squares method is to find . When ,  takes the minimum value. Equation (9) is the calculation & & = & (
&�

formula of the objective function and a parameter estimation value of the RLS system.

( ) [ ( ) ( ) ( )] [ ( ) ( ) ( )]

[ ( ) ( ) ] ( ) ( )

T

T

J y k k k y k k k

k k k y k

� � � � �

� � � �

� � �

�

� � � ��
�
� �	

(9)

To improve the accuracy of parameter identification in the iterative calculation process, it is 

necessary to update the input and output experimental data in real-time when RLS is used for simulation 

calculation. To increase the accuracy of data utilization and introduce innovation  to reduce the #(�)

possibility of large errors, the scalar innovation of the system can be shown in Equation (10).

� � � � � � � �1 T
v k y k k k� �� � � (10)

The innovation is the difference between the system output observation value at the current moment 

and the system parameter identification value at the previous moment, and the innovation can correct the 

parameter identification result at the previous moment in the identification process. However, with the 

increase in the number of iterations, the RLS algorithm will appear "data saturation", which reduces the 

information obtained by the algorithm from the new data, results in a gradual weakening of the correction 

ability, makes the time-varying system unable to track the parameters well, and eventually, the error of 

parameter identification is getting bigger and bigger. To solve the above problems, this research adopts 

the LM-MILS algorithm to identify the parameters of the improved model. The LM-MILS algorithm is 

based on the RLS identification algorithm and estimates the output at time  according to the  � ) +1

groups of data from time  by time  and the input data at time 1. The calculation formula is as � ' ) �  � '

Equation (11).

� �
� � � �

� �
� �
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� � � �

� � � � � � �

� � � � �

�
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�
�
�
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�
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�
�

� �� ��

	

�

� �

(11)

In each iteration, the nearest  groups of data are selected, and the data before  are  ) + 1 ) + 1

discarded. The scalar innovation is extended to vector innovation, the data vector is extended to the 

information matrix, and the expression formula of vector innovation is as follows:

� �

� � � � � �
� � � � � �

� � � � � �

1

1 1 1
,

1 1 1

T

T

T

y k k k

y k k k
V p k

y k p k p k p

� �
� �

� �

� �� �
� �

� � � �� ��
� �
� �

� � � � � � �� �� �

(12)

In Equation (12),  is the innovation length. When  is equal to 1, the MILS algorithm is reduced to � �

the RLS algorithm. Generally speaking, it is reasonable to assume that  is updated at time  &�
� ' 1) � ' 1

close to . The LM-MILS algorithm solution formula can be obtained after deduction:&
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In Equation (13),  represents the expansion of the observation data vector into the $(� ' ))(�, � +1)

observation data matrix of  moments.  represents the gain matrix calculated from the ) +1 +� ' ) + 1, � + 1

data from time  to time .� ' ) +1 � +1

Forgetting factor recursive least squares (FFRLS) uses the forgetting factor  to give a larger weight ,

to the data with a longer running time and a smaller weight to the data of the latest time[7-9], to improve 

the phenomenon of "data saturation" and rationally allocate and utilize data information. It is similar to 

the FFRLS algorithm, the LM-MILS algorithm limits the output of the data, discards the data with a 

longer running time, saves the data at the latest time, and estimates the output at the current time through 

a limited set of data, to ensure the accuracy of obtaining information from the data. Availability and real-

time. From the perspective of innovation correction, the LM-MILS algorithm uses a lot of innovation in 

each recursive calculation. Compared with the RLS and FFRLS algorithms that only use the data 

contained in one innovation point, the accuracy of parameter estimation can be significantly improved, 

and the LM-MILS flowchart is shown in Fig. 3.

Start

Initialize the parameter vector - and the covariance 

matrix P

The RLS estimation result is used as the initial 

value of LM-MILS

Kk-N,k-1�Pk-N,k-1�-k-N,k-1 

Build an innovation matrix V(k) and information

matrix �(k)

Calculate the current moment based on the previous 

N groups of data and the previous moment data

Kk-N,k�Pk-N,k�-k-N,k 

Update parameter estimates after removing a set of 

old data

Kk-N+1,k+1�Pk-N+1,k+1�-k-N+1,k+1

End

output estimation result

Fig. 3 The flow chart of the LM-MILS

The process of the LM-MILS algorithm is mainly divided into four steps: first, the initialization of 

the parameters and the estimated values obtained by the RLS algorithm are used to calculate the 

parameters of the previous moment. Innovation vectors and information matrices and store  sets of ) + 1

data are created. The parameter value at the current moment according to the previous  groups and ) + 1

the data are estimated at the previous moment. Finally, the parameters for the next moment are calculated 

according to the current estimated value.

2.3 SOC estimation algorithm

Accurate SOC estimation of LIB is one of the important prerequisites for the safe operation of BMS, 

and accurate SOC estimation can provide a more scientific battery usage strategy. In the process of SOC 
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estimation, it is often affected by external factors such as noise and equipment operating conditions, 

resulting in a decrease in the accuracy of SOC estimation. The traditional extended Kalman filter 

algorithm is easily affected by the noise covariance of the state equation and the observation equation, 

and the noise covariance is often set manually, so the adaptive extended Kalman filter algorithm can 

effectively solve the problem of noise for SOC estimation. influences. Combining the LM-MILS 

parameter identification algorithm proposed above with the AEKF algorithm can achieve a more accurate 

SOC estimation.

Compared with EKF, the advantage of AEKF is that it can update the noise matrix .� + 1�/� + 1�

 in real-time to achieve the purpose of continuously correcting the SOC. The updated 0� + 1��� + 1

equations for noise are shown in Equations (14) to (17).

� � � �1 1 1
ˆ ˆ1k k k k k k kq d q d G x Ax Bu� � �� � � � � (14)

� � � �1 1 1 1 1 1 1|1 T T T T

k k k k k k k k k k kQ d Q d G L y y L P AP A G� � � � � � �� � � � �%% % (15)

� � � �1 1 1 1|
ˆ1k k k k k k kr d r d y Cx Du d� � � �� � � � � � (16)

� � � �1 1 1 1 1|1 T T

k k k k k k k kR d R d y y CP C� � � � �� � � �% % (17)

In Equations (14) to (17), ,  is the noise driving matrix, ;  is the forgetting 1 = (2�2)� 2 3� =
1 ' �

1 ' �� + 1 �

coefficient, 0 <  < 1. Fig. 4 is a flowchart of SOC estimation using the LM-MILS algorithm and the �

AEKF algorithm.

The innovation expands to 

the innovation vector
V(k)� V(p,k)

Iteratively calculate gain K and 

covariance matrix P at time k

using N+1 sets of data

Parameter estimation

R0�RP1�RP2�CP1�CP2

Calculate the 

innovation at time 

k+1

Calculate the 

Kalman gain at time 

k

Calculate the SOC value at time k

Error covariance matrix at time k

N+1 group data 

update

LM-MILS

Calculate the noise 

covariance matrix at time 

k+1

AEKF

1 1 1 1

T

k k k k

T

kP A P A Q� � � �� �! !

Fig. 4 SOC estimation method based on LM-MILS-AEKF

After the ECM parameter identification is completed using the LM-MILS algorithm, the real-time 

parameters are input into the AEKF for iterative calculation of the SOC. The SOC estimation at each 

moment is the parameter estimation value used at the current moment, which ensures the real-time 

performance of the SOC estimation.

3. Equivalent circuit model validity verification

The ternary LIB is taken as the research object, its rated capacity is 40Ah, and the actual capacity is

39.94Ah measured by the capacity calibration experiment. The experimental platform was built through 

the BTS200-100-104 battery testing equipment and temperature control box provided by Shenzhen 

Yakeyuan Technology Co., Ltd. to obtain relevant experimental data. The LIB experimental instrument is 

shown in Fig. 5.
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Fig. 5 Experimental lithium-ion battery test platform

3.1 Characteristic parameter identification of self-discharge circuit

The battery was placed in an incubator, and the change in open circuit voltage was measured daily 

for 45 days. The change in open circuit voltage is shown in Tab. 1. After 45 days of recording, the initial 

open-circuit voltage  of the LIB is 4.1871V, and the open-circuit voltage  drops to 4.1527V. Take ���� ���

 = 3888000 . According to Equation (2) to Equation (4), the value of  can be calculated, and the average � 4 ��

value of  is 20118.18394 , and  = 35.6596  is calculated on this basis.�� �5 �� 6

Tab. 1 Open circuit voltage change within 45 days

U/V

June.8 4.1871 June.17 4.1739 June.26 4.1662 July.5 4.1601 July.14 4.1561

June.9 4.1866 June.18 4.1731 June.27 4.1656 July.6 4.1594 July.15 4.1557

June.10 4.1860 June.19 4.1724 June.28 4.1650 July.7 4.1591 July.16 4.1552

June.11 4.1832 June.20 4.1720 June.29 4.1644 July.8 4.1588 July.17 4.1550

June.12 4.1821 June.21 4.1711 June.30 4.1632 July.9 4.1582 July.18 4.1546

June.13 4.1802 June.22 4.1702 July.1 4.1627 July.10 4.1579 July.19 4.1541

June.14 4.1791 June.23 4.1689 July.2 4.1621 July.11 4.1577 July.20 4.1533

June.15 4.1777 June.24 4.1683 July.3 4.1615 July.12 4.1573 July.21 4.1531

June.16 4.1756 June.25 4.1674 July.4 4.1609 July.13 4.1566 July.22 4.1527

3.2 Parameter identification verification analysis

OCV refers to estimating the current battery capacity of a battery by measuring the interruption 

voltage of the battery in the open-circuit state. Since the battery is in a static state for a long time, its port 

voltage and SOC have a relatively stable functional relationship, so a relatively real SOC estimation value 

can be obtained through OCV.

The experimental process is: fully charge the battery, then discharge it to a specific SOC value with 

constant current, and wait for the battery to reach a stable state after standing for a certain time. The 

battery is discharged in turn at 10% of the rated capacity each time, and the OCV value corresponding to 

the SOC value is measured after stabilization. Until the SOC is 0, the complete discharge OCV-SOC 

curve is obtained.
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 Fig. 6 Hysteresis characteristic curve of battery OCV

It can be seen from Fig. 6(a) that when the SOC is 0.6, the OCV is 3.7307V. Even if the battery is 

charged and discharged in the same way, due to the hysteresis effect of the battery, the OCV-SOC fitting 

curves of the charge and discharge are not completely consistent, but a band-like hysteresis structure with 

gaps at both ends will be formed.

In the actual use of LIB, the batteries are mostly in the intermittent repetitive charging and 

discharging process. The HPPC experiment includes intermittent charging and discharging, shelving, and 

other processes. It has strong dynamics and can well simulate the actual working process of LIB. 

The HPPC experiment was carried out at room temperature to obtain the experimental data, and the 

model parameters were identified online. The experimental steps of HPPC are as follows.

(1) The LIB is charged with constant current and constant voltage at a voltage of 4.2V and a current

of 1C until fully charged.

(2) Discharge at 1C constant current for 10 seconds, then put the battery on hold for 40 seconds. To

restore the battery to its pre-discharge level, charge it with a constant current of 1C for 10

seconds, and shelve it for 3 minutes after charging.

(3) Discharge the battery at 1C constant current for 6 minutes to reduce the charge by 10%. Repeat

steps (2) and (3) 10 times until the battery level reaches 0.

Based on the experimental data obtained under the HPPC condition at room temperature, the LM-

MILS algorithm is used to verify the accuracy difference between the SDE-2-RC model and the 2-RC 

model. Then, based on the SDE-2-RC model, the online parameter identification is carried out through 

the LM-MILS algorithm, the RLS algorithm, and the FFRLS algorithm, and the simulated voltage is 

compared with the experimental voltage to verify the accuracy of parameter estimation and the validity of 

the algorithm. The initial value of online parameter identification will affect the identification accuracy at 

the initial moment. Even if the initial value of the parameter has a large error, it can be quickly converged 

in subsequent iterations. 

Page 11 of 17

http://mc.manuscriptcentral.com/ijcta

International Journal of Circuit Theory and Application

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



0 5000 10000 15000 20000 25000 30000
3.0

3.5

4.0

4.5

U
(V

)

t(s)

 Experiment

 SD-2-RC

2-RC

(a) Model comparison under HPPC condition

0 5000 10000 15000 20000 25000 30000

-0.10

-0.05

0.00

0.05

0.10

E
rr

o
r(

V
)

t(s)

 Error1

 Error2

0.08552

-0.04342

(b) Model error under HPPC condition

Fig. 7 Model output voltage curve under HPPC condition

Fig. 7 shows the simulated voltage curves of the 2-RC equivalent model and the SDE-2-RC 

equivalent model after online parameter identification based on the LM-MILS algorithm. In Fig. 7 (a), the 

2-RC model has a large fluctuation error during charging and discharging. In contrast, the analog voltage

of the SDE-2-RC model has higher accuracy, and the tracking effect is more stable. In Fig. 7 (b), Error1 

and Error2 represent the voltage error curves corresponding to the 2-RC model and the SDE-2-RC model, 

respectively. It can be seen from Fig. 7 (b) that the voltage error is larger each time the cycle starts in the 

charge and discharge process, this is because the internal chemical reaction of the battery is violent in the 

initial stage of charge and discharge, and the analog voltage follows the speed slowly. The maximum 

voltage error of the 2-RC model reaches 0.08522V, and the simulation accuracy is 97.971%. Compared 

with the 2-RC model, the average voltage error of the SDE-2-RC model is only 0.00758V, and the 

voltage fluctuation ranges from 0.08552V to -0.08669V is reduced to 0.02097V to -0.04342V, and the 

simulation accuracy reaches 98.966%, which proves that the SDE-2-RC model can more accurately 

characterize the complex working characteristics of LIB.
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Fig. 8 Parameter identification results under HPPC working condition

It can be seen from Fig. 8 (a) that in the estimation process, the three algorithms can better track the 

experimental voltage. However, both the RLS algorithm and the FFRLS algorithm are affected by the 

phenomenon of "data saturation" to varying degrees. In Fig. 8 (b), Error1 represents the analog voltage 

error corresponding to the LM-MILS algorithm, Error2 represents the analog voltage error corresponding 

to the FFRLS algorithm, and Error3 represents the analog voltage error corresponding to the RLS 

algorithm. It can be seen that the identification error in the initial stage is relatively large. All algorithms 

can quickly converge to close to the true value, but as the amount of data iteratively increases, the 

phenomenon of "data saturation" in the RLS algorithm becomes more and more obvious, the estimation 

error increases with time, and the maximum error reaches 0.14083V. Although the FFRLS algorithm can 
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better overcome the phenomenon of "data saturation", the estimation error fluctuates greatly at the end of 

the discharge stage, and the absolute value of the maximum error is 0.05589V. The LM-MILS algorithm 

can track the measured voltage very well, overcome the phenomenon of "data saturation" to a large 

extent, and have high estimation accuracy. After the estimation becomes stable, the absolute value of the 

maximum error is reduced to 0.04342V, accounting for the nominal 1.004% of the voltage, which proves 

that the LM-MILS algorithm has high accuracy.

4. Analysis of results

4.1 Experimental analysis of HPPC working conditions

The experimental data under HPPC conditions are used to verify the SOC estimation of different 

algorithms. The comparison is shown in Fig. 9 (a) and Fig. 9  (b).
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Fig. 9 SOC estimation results and errors of HPPC condition

From the enlarged view in Fig. 9 (a), it can be seen that the LM-MILS-AEKF algorithm has the 

fastest convergence speed and can maintain good stability when starting to discharge. In Fig. 9 (b), Error1 

to Error3 correspond to RLS-AEKF, FFRLS-AEKF, and LM-MILS-AEKF estimation errors, 

respectively. It can be seen that although the "data saturation" phenomenon of online parameter 

identification is unavoidable, the estimation errors of the three estimation methods in the middle and later 

stages of the experiment are somewhat different. However, the fluctuation range error of Error3 is smaller 

than that of Error1 and Error2, and the error fluctuation tends to be stable. The maximum error is 0.929%, 

and the estimation accuracy can reach 99.071%. Under the HPPC condition, through the Root-mean-

square Error (RMSE) and Mean Absolute Error (MAE), as shown in Tab. 2, it is proved that the LM-

MILS algorithm has higher accuracy and can better suppress the "data saturation" phenomenon.

Tab. 2 Comparison of different algorithms under HPPC conditions

Contrast method RLS-AEKF FFRLS-AEKF LM-MILS-AEKF

MAE 2.10% 1.71% 0.57%

RMSE 2.91% 1.90% 0.98%

4.2 Experimental analysis of DST working conditions

To verify the validity of the LM-MILS algorithm, the experimental data under the custom DST 

condition is used for verification. The simulation results of SOC estimation using three online 

identification algorithms combined with the AEKF algorithm are shown in the figure below.
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Fig. 10 SOC estimation results under DST operating condition

In Fig. 10 (a), when changing the working state of the battery, the tracking performance of the LM-

MILS-AEKF algorithm is better than that of the RLS-AEKF algorithm and the FFRLS-AEKF algorithm, 

and the estimated results of the RLS-AEKF algorithm deviate more from the true value in the middle of 

the experiment. In Fig. 10 (b), Error1 to Error3 correspond to LM-MILS-AEKF, FFRLS-AEKF, and 

RLS-AEKF estimation errors, respectively. As the battery discharge time goes on, due to the defects of 

the RLS and FFRLS algorithms themselves, the estimation error gradually increased, and during each 

charge-discharge state transition, Error2 and Error3 fluctuated violently, while Error1 fluctuated 

significantly more gently, which could be maintained at in the range of -0.29% to 1.273%, the estimation 

accuracy is 98.727%, which proves that the LM-MILS-AEKF algorithm has better SOC estimation 

results. Table 3 shows the comparison of MAE and RMSE of the three algorithms.

Tab. 3 Comparison of different algorithms under DST conditions

Contrast method RLS-AEKF FFRLS-AEKF LM-MILS-AEKF

MAE 1.719% 0.920% 0.616%

RMSE 2.110% 1.621% 1.202%

4.3 Experimental analysis of BBDST working conditions

The BBDST experiment originates from the real data collection of the Beijing bus dynamic test. 

Through the experimental settings, it can simulate various operating conditions such as bus start, 

acceleration, and stop. The actual use of LIB is complex and changeable, and it is more convincing to use 

BBDST experimental data to evaluate the reliability of the algorithm. The simulation results under the 

BBDST condition are shown in the following figure.
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Fig. 11 SOC estimation results under BBDST operating condition

Due to the complexity and variability of the working state of the battery under BBDST conditions, it 

is also difficult to estimate the SOC. It can be seen from the enlarged view of Fig. 11 (a) that the 
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estimation results of the three algorithms all fluctuate to varying degrees. The fluctuation of RLS-AEKF 

is the most obvious and the tracking effect is the worst. Error1 to Error3 in Fig. 11 (b) represents 

estimation errors corresponding to RLS-AEKF, FFRLS-AEKF, and LM-MILS-AEKF. In the initial stage 

of the experiment, the three error curves have a high degree of coincidence, and the RLS-AEKF 

estimation error fluctuates greatly. The FFRLS-AEKF error accumulation phenomenon has decreased and 

the error fluctuation has become smaller, and the maximum error is 1.299%. On the other hand, the LM-

MILS-AEKF error has the smallest change, fluctuating in the range of -0.611% to 1.002%, and can also 

maintain positive tracking when switching between charge and discharge states, with a maximum error of 

only 1.002%. Under the condition of BBDST, the estimation results of the three algorithms are compared 

by MAE and RMSE, as shown in Tab.4.

Tab. 4 Comparison of different algorithms under BBDST conditions

Contrast method RLS-AEKF FFRLS-AEKF LM-MILS-AEKF

MAE 1.709% 0.812% 0.357%

RMSE 2.452% 1.800% 1.007%

Through the algorithm verification under the above three complex working conditions, it can be seen 

that compared with the RLS and FFRLS algorithms, the LM-MILS algorithm can well suppress the 

phenomenon of "data saturation" and increase the accuracy of online parameter identification to a certain 

extent. Combining the LM-MILS algorithm with the AEKF algorithm for SOC estimation can greatly 

improve the SOC estimation accuracy and algorithm stability, and reduce the error fluctuation range.

5. Conclusion

Accurate estimation of the SOC of LIB is the difficulty and focus of the battery management system.

Establishing a suitable equivalent model and performing accurate parameter identification can effectively 

improve the estimation accuracy. To solve the shortcomings of the online parameter identification 

algorithm and improve the accuracy of model parameter identification. Based on a large number of 

experiments, this research fully explores the polarization effect and self-discharge effect of LIB, and 

innovatively establishes the SDE-2-RC equivalent circuit model. When the LIB is not used, the change of 

the open-circuit voltage is continuously recorded, to complete the identification of the self-discharge 

characteristic parameters. Then the LM-MILS online parameter identification algorithm is innovatively 

proposed, by limiting the memory and expanding the innovation matrix to suppress the "data redundancy" 

phenomenon in the online parameter identification algorithm, so as to achieve the purpose of improving 

the accuracy of parameter identification. 

To verify the validity of the model and algorithm, the verification analysis is carried out in HPPC, 

DST, and BBDST conditions. The verification results manifest that, based on the same parameter 

identification algorithm, the SDE-2-RC model can achieve 98.966% simulation voltage accuracy under 

HPPC conditions, which is 0.995% higher than the traditional second-order RC model; The SOC 

estimation accuracy of the LM-MILS-AEKF algorithm under the three operating conditions is 99.071%, 

98.727%, and 98.998%, respectively. Compared with the traditional algorithm, the estimation 

performance is superior, the error fluctuation range is significantly reduced, and the estimation accuracy 

and stability are had improved significantly. The content of this research has positive significance for the 

accurate parameter identification of the equivalent model and the state detection of LIB, but the accuracy 

of the SDE-2-RC model and the LM-MILS algorithm is not verified under the condition of considering 

the temperature change. Due to the increase in the number of charges and discharges, the remaining 

service life of LIB is reduced, and the parameters of the LIB may change further, which needs to be 
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further studied in practical applications.

Acknowledgments

The work was supported by the National Natural Science Foundation of China (No. 61801407).

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon 

reasonable request.

References

[1] YANG Y, OKONKWO E G, HUANG G, et al. On the sustainability of lithium ion battery industry – A review and

perspective [J]. Energy Storage Materials, 2020, 36.

[2] ZHANG H, LIU X, LI H, et al. Challenges and Strategies for High� nergy Aqueous Electrolyte Rechargeable

Batteries [J]. Angewandte Chemie, 2020, 133(2).

[3] CONG L, LIU W, KONG S, et al. A review on end-of-use management of spent lithium-ion batteries from

sustainability perspective [J]. 2021, 143(10) : 1-35.

[4] FANG R, CHEN K, YIN L, et al. The Regulating Role of Carbon Nanotubes and Graphene in Lithium-Ion and

Lithium-Sulfur Batteries [J]. Advanced Materials, 2019, 31(9).

[5] LIU Z, CHEN S H, WU H F, et al. A Combined State of Charge Estimation Method for Lithium-Ion Batteries Using

Cubature Kalman Filter and Least Square with Gradient Correction [J]. Advanced Theory and Simulations, 2022,

5(3).

[6] ZUO H Y, ZHANG B, HUANG Z H, et al. Effect analysis on SOC values of the power lithium manganate battery

during discharging process and its intelligent estimation [J]. Energy, 2022, 238.

[7] QIN S, QIN D C, WU H X, et al. State of Charge estimation of lithium-ion power battery based on online parameter

identification method and BP neural network [J]. International Journal of Electrochemical Science, 2022, 17(1).

[8] FENG J, WU L, HUANG K, et al. Online SOC estimation of a lithium-ion battery based on FFRLS and AEKF [J].

Energy Storage Science and Technology, 2021, 10(1) : 242-9.

[9] XU Y D, HU M H, FU C Y, et al. State of Charge Estimation for Lithium-Ion Batteries Based on Temperature-

Dependent Second-Order RC Model [J]. Electronics, 2019, 8(9).

[10] WEI Z, ZHAO D, HE H, et al. A noise-tolerant model parameterization method for lithium-ion battery management

system [J]. Applied Energy, 2020, 268.

[11] WANG Q, WANG Z, ZHANG L, et al. A Novel Consistency Evaluation Method for Series-Connected Battery

Systems Based on Real-World Operation Data [J]. Ieee Transactions on Transportation Electrification, 2021, 7(2) :

437-51.

[12] POMERANTSEVA E, BONACCORSO F, FENG X, et al. Energy storage: The future enabled by nanomaterials [J].

Science, 2019, 366(6468).

[13] ZHAO S, GUO Z, YAN K, et al. Towards High-energy-density Lithium-ion Batteries: Strategies for Developing

High-capacity Lithium-rich Cathode Materials [J]. Energy Storage Materials, 2020.

[14] JIANG C, WANG S, WU B, et al. A state-of-charge estimation method of the power lithium-ion battery in complex

conditions based on adaptive square root extended Kalman filter [J]. Energy, 2021, 219.

[15] BI, YALAN. Online State and Parameter Estimation for Lithium-ion Batteries Based on a Reduced-order

Electrochemical Life Model [J]. 2020.

[16] ZHANG L, PENG H, NING Z, et al. Comparative Research on RC Equivalent Circuit Models for Lithium-Ion

Batteries of Electric Vehicles [J]. Applied Sciences-Basel, 2017, 7(10).

[17] HAN K, WANG T, ZHANG N, et al. A film coating assembled by tubular nitrogen-doped carbon fibers as an

Page 16 of 17

http://mc.manuscriptcentral.com/ijcta

International Journal of Circuit Theory and Application

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



efficient membrane spacer to suppress the shuttle effect for long-life lithium–sulfur batteries [J]. Electrochimica Acta, 

2021, 365(15) : 137232.

[18] XIAO J, LI Q, BI Y, et al. Understanding and applying coulombic efficiency in lithium metal batteries [J]. Nature

Energy, 2020, 5(8) : 561-8.

[19] WANG Y J, TIAN J Q, SUN Z D, et al. A comprehensive review of battery modeling and state estimation approaches

for advanced battery management systems [J]. Renewable & Sustainable Energy Reviews, 2020, 131.

[20] SHAO L, JIN S. Resilience assessment of the lithium supply chain in China under impact of new energy vehicles and

supply interruption [J]. Journal of Cleaner Production, 2020, 252.

[21] WANG Y J, CHEN Z H. A framework for state-of-charge and remaining discharge time prediction using unscented

particle filter [J]. Applied Energy, 2020, 260.

[22] CHEN Y, DOU A, ZHANG Y J F I M. A Review of Recycling Status of Decommissioned Lithium Batteries [J].

Frontiers in Materials, 2021, 8: 634667.

[23] DUFFNER F, KRONEMEYER N, TüBKE J, et al. Post-lithium-ion battery cell production and its compatibility with

lithium-ion cell production infrastructure [J]. Nature Energy, 2021, 381

[24] TIAN M, AN Z, CHEN X, et al. SOC estimation of lithium battery based online parameter identification and AEKF

[J]. Energy Storage Science and Technology, 2019, 8(4) : 745-50.

[25] HE L, HU M K, WEI Y J, et al. State of charge estimation by finite difference extended Kalman filter with HPPC

parameters identification [J]. Science China-Technological Sciences, 2020, 63(3) : 410-21.

[26] WANG S, FERNANDEZ C, LIU X, et al. The parameter identification method study of the splice equivalent circuit

model for the aerial lithium-ion battery pack [J]. Measurement & Control, 2018, 51(5-6) : 125-37.

[27] JI Y-J, QIU S-L, LI G. Simulation of second-order RC equivalent circuit model of lithium battery based on variable

resistance and capacitance [J]. Journal of Central South University, 2020, 27(9) : 2606-13.

[28] CAI Y, CHE Y, LI H, et al. Electro-thermal model for lithium-ion battery simulations [J]. Journal of Power

Electronics, 2021, 21(10) : 1530-41.

[29] WANG Y J, XU R L, ZHOU C J, et al. Digital twin and cloud-side-end collaboration for intelligent battery

management system [J]. Journal of Manufacturing Systems, 2022, 62: 124-34.

[30] MEVAWALLA A, PANCHAL S, TRAN M K, et al. One dimensional fast computational partial differential model

for heat transfer in lithium-ion batteries [J]. Journal of Energy Storage, 2021, 37.

[31] WEI Z B, HE H W, POU J, et al. Signal-Disturbance Interfacing Elimination for Unbiased Model Parameter

Identification of Lithium-Ion Battery [J]. Ieee Transactions on Industrial Informatics, 2021, 17(9) : 5887-97.

[32] WU M Y, QIN L L, WU G. State of charge estimation of power lithium-ion battery based on an adaptive time scale

dual extend Kalman filtering [J]. Journal of Energy Storage, 2021, 39.

[33] BIAN X L, WEI Z B, HE J T, et al. A Two-Step Parameter Optimization Method for Low-Order Model-Based State-

of-Charge Estimation [J]. Ieee Transactions on Transportation Electrification, 2021, 7(2) : 399-409.

[34] STEWART S G, SRINIVASAN V, NEWMAN J. Modeling the performance of lithium-ion batteries and capacitors

during hybrid-electric-vehicle operation [J]. Journal of the Electrochemical Society, 2008, 155(9) : A664-A71.

[35] OHZUKU T, BRODD R J. An overview of positive-electrode materials for advanced lithium-ion batteries [J]. Journal

of Power Sources, 2007, 174(2) : 449-56.

[36] YE P F, HAN X S, YANG M, et al. A Novel Thevenin Equivalent Model Considering the Correlation of Source-

Grid-Load in Power Systems [J]. Ieee Access, 2021, 9: 31276-86.

[37] DING Z, DENG T, LI Z, et al. SOC Estimation of Lithium-ion Battery Based on Ampere Hour Integral and

Unscented Kalman Filter [J]. China Mechanical Engineering, 2020, 31(15) : 1823-30.

[38] WANG K, LIU C L, SUN J R, et al. State of Charge Estimation of Composite Energy Storage Systems with

Supercapacitors and Lithium Batteries [J]. Complexity, 2021, 2021.

[39] LAI X, GAO W K, ZHENG Y J, et al. A comparative study of global optimization methods for parameter

identification of different equivalent circuit models for Li-ion batteries [J]. Electrochimica Acta, 2019, 295: 1057-66.

Page 17 of 17

http://mc.manuscriptcentral.com/ijcta

International Journal of Circuit Theory and Application

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


	coversheet_template
	CAO 2022 Research on the state of charge (AAM)
	coversheet_template
	CAO 2022 Research on the state of charge (AAM)




