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Improved Compound Correction-Electrical Equivalent 
Circuit Modeling and Double Transform-Unscented 
Kalman Filtering for the High-Accuracy Closed-Circuit 
voltage and State-of-Charge Co-Estimation of 
Whole-Life-Cycle Lithium-Ion batteries 

Shunli Wang,* Paul Takyi-Aninakwa, Chunmei Yu, Siyu Jin, and Carlos Fernandez 

1. Introduction

As an essential energy storage system, 
lithium-ion batteries are widely used in 
large-scale energy storage conditions with 
low self-discharge and high energy density 
advantages. For various electrical applian- 
ces, lithium-ion batteries are characterized 
by battery models effectively, such as elec- 
trochemical, neural network, composite 
and equivalent circuit modeling (ECM) 
methods, central difference transform, 
and real-time optimal forgetting factor 
correction strategies.[1–3] With the increas- 

ing application scope, the Gaussian process 
regression, data-driven, and Coulomb 
counting strategies are introduced.[4–7] 
In terms of temperature, the application 
conditions are complex and vary. 
Considering the discharge conditions of 
different state-of-charge (SOC) levels, the 

k-nearest neighbor regression is conducted with differential
optimization strategies.[8–10] The lattice stability of battery cells 
is weakened gradually by the high-temperature influencing 
effect.[11] Meanwhile, it is affected by low-temperature condi- 
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tions, which cause the lithium-ion exchange to slow down and
pose a safety hazard due to the decrease in charge transfer. 

The electrochemical–thermal coupling model is constructed 

to effectively improve the intermittent high-speed heating perfor- 
mance and reduce the influencing effect of temperature on the 
overall recyclable lithium-ion concentration of active particles. 
The nonlinear battery capacity degradation trend is obtained 
based on indirect health feature (IHF) and improved Gaussian 
process regression (GPR) modeling, combined with the chang- 
ing trend analysis of current, voltage, and temperature.[12–15] 
Based on the data-driven method, a multi-stress low-temperature 
charging aging model is constructed, which is trained using the 
electrothermal measurement data without considering the 
internal battery mechanism, effectively simulating the battery 
response characteristics.[16–20] The construction of electrochemi- 
cal impedance spectroscopy (EIS) simulates the electrochemical 
process inside the battery precisely, but it has defects such as 
complex structure and difficult parameter identification.[21] 

For complex energy storage conditions, it is necessary to monitor the state-of- 

charge (SOC) and closed-circuit voltage (CCV) status accurately for the reliable 

power supply application of lithium-ion batteries. Herein, an improved com- 

pound correction-electrical equivalent circuit modeling (CC-EECM) method is 

proposed by considering the influencing effects of ambient temperature and 

charge–discharge current rate variations to estimate the CCV. Then, an improved 

adaptive double transform-unscented Kalman filtering (ADT-UKF) method is 

constructed with recursive sampling data correction to estimate the nonlinear 

SOC. A dynamic window function filtering strategy is constructed to obtain the 

new sigma point set for the online weighting coefficient correction. For a tem- 

perature range of 5–45 °C, the CCV for the improved CC-EECM responds well 

with a maximum error of 0.008608 V, and the maximum SOC estimation error is 

6.317%. The proposed ADT-UKF method improves the CCV and SOC estimation 

reliability and adaptability to the time-varying current rate, temperature, and 

aging factors. 
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The aforementioned studies on electrochemical sensitivity 
analysis and electrochemical–thermal coupling can fully charac- 
terize the thermal performance of the charge–discharge process, 
providing a basis for the battery performance evaluation at low 
temperatures. 

The lithium-ion battery requires special handling to avoid 
performance deterioration that results in severe damage or explo- 
sions. The scaling approach is realized for improved SOC esti- 
mation as one of the most significant factors for performance 
optimization.[22–25] The SOC estimation is conducted with non- 
electrical parameters and the uniform fiber Bragg grating (FBG). 
The estimation methods are used to determine the critical battery 
state and polynomial augmented model construction, including 
the immune genetic extended Kalman filtering, particle filtering, 
low-frequency EIS, double adaptive extended Kalman filter, 
adaptive H-infinity filter, and adaptive correction-unscented 
Kalman filter.[26–30] 

The battery pack does not only deliver energy to the driving 
train for operation but also provides the required power under 
different conditions, so the SOC estimation is needed to make 
decisions on the operation accordingly.[8] The battery character- 
istics are modeled to monitor the SOC with several methods. 
The applied methods for the battery state estimation include 
the gray wolf particle filter, high-fidelity unscented particle filter, 
deep recurrent kernel, variable forgetting factor adaptive Kalman 
filter, adaptive Lyapunov super twisting observer, and machine 
learning.[31–33] The high-accuracy monitoring is conducted for 
the available energy and SOC estimation, including the data- 
driven nonparametric model, coupled electrochemical–thermal, 
and external measurable parameter coupling models.[34–36] The 
nonlinear curve fitting relationship is described using the sim- 
plification strategy for the thermal and nonlinear modeling 
processes. 

In terms of data processing, the point-to-point calculation is 
adopted to obtain the curve fitting, where the battery character- 
istics are described effectively by the fractional variable-order 
model.[37–39] Combined with the experimental methods, the 
characteristic examination is conducted by the mathematical 
model based on real-time ECM.[40] The battery parameters are 
transformed into iterative calculations dynamically. The partial 
incremental capacity analysis is conducted with support vector 
regression and second-order extended Kalman filtering 
strategies.[41–44] The temperature and charge–discharge current 
rates are used as the main variables, in which the characteristics 
are initialized as dependent variables. 

Accurate ECMs are constructed, and the expression of the 
mathematical relationship is established by considering the dual 
effect. Due to the effect of complex working condition changes, 
the measured external signals are mixed with noise information. 
Consequently, predictive models of battery degradation are 
conducted, and real-time sensitivity-based predictive control is 
constructed with the comprehensive single-particle-degradation 
model.[45–48] Its application prospects have attracted attention, 
and state estimation has become one of the main topics, which 
is transformed into the problem of obtaining implicit variables 
for the nonlinear time-varying battery system. The model 
parameters are nonlinear quantities and cannot be mea- sured 
directly.[49–51] The main factors and the variation effect are 
introduced into the ECM to build a suitable observer. 

The internal resistance is combined with OCV and current vari- 
ation to simulate the instantaneous power output capacity within 
a certain period. 

High-precision SOC estimation has an obvious influence on 
battery performance optimization. In this article, an improved 
compound correction-electrical equivalent circuit modeling 
(CC-EECM) strategy is constructed to characterize the nonlinear 
behavior of lithium-ion batteries by considering the modeling 
accuracy and complexity of the electrochemical properties. The 
mathematical relationship is established between the calculation 
accuracy and robustness so that the voltage variation effect is 
introduced into the error coefficient correction. Then, an adap- 
tive double transform-unscented Kalman filtering (ADT-UKF) 
method is proposed with recursive sampling data correction as 
well as weighting coefficient optimization. 

The remaining sections of this article are organized as follows: 
Section 2 introduces the mathematical analysis and model 
building process, including both the CC-EECM and ADT-UKF 
strategies; Section 3 describes the experimental analysis, in 
which the experimental test platform is described based on how 
the verification of the model is conducted effectively with the 
temperature and current rate variation effects and state estima- 
tion; Section 4 is the conclusion of the article. 

 

2. Mathematical Analysis

2.1. Composite Modeling and Carrier Transport Collaborative 

Optimization 

 

For the reliable energy supply–demand adaptive to low- 
temperature conditions, the composite modeling is carried out 
with the collaborative carrier transport optimization. It is used 
to solve battery performance optimization problems under com- 
plex working conditions such as time-varying temperature, 
diverse current magnification, working mode switching, and 
sudden output power change. The mathematical modeling, 
simulation, and multiparameter estimation of carrier states are 
combined to carry out the multidimensional coupling and 
collaborative simulation. The influence mechanism of low 
temperature is introduced to clarify the electrochemical electro- 
thermal circuit composite model. The adaptive online parameter 
identification is conducted to adopt the piecewise optimization 
strategy and jointly improve the carrier transport process, realiz- 
ing the composite modeling, rapid performance evaluation, and 
feedback adjustment of the carrier transport cooperative optimi- 
zation. The overall research scheme is designed, as shown in 
Figure 1. 

In Figure 1, based on the mechanism analysis and dynamic 
description of the internal chemical reaction, the collaborative 
optimization strategies of composite modeling, rapid perfor- 
mance evaluation, and carrier transport are explored to meet 
the safe and reliable energy supply needs of low-temperature 
lithium-ion batteries. Adopting a combination of internal work- 
ing mechanism analysis, compound modeling, state evaluation 
method design, and collaborative optimization strategy improve- 
ment is conducted to reveal the carrier transport mechanism of 
the battery. Through multi-feature composite modeling, multi-
scale performance evaluation, and multidimensional 



Figure 1. Composite modeling and carrier transport co-optimization for low-temperature lithium-ion batteries. 

collaborative optimization, the requirements for a safe and 
reliable energy supply of lithium-ion batteries are met in low- 
temperature applications. 

Based on the whole-life-cycle experimental data with a wide 
temperature range and the rapid evaluation results of battery 
performance under dynamic conditions, the output characteristics 
are analyzed to realize the mathematical description of working 
characteristics combined with environmental factors. Then, the 
cooperative carrier transport optimization is conducted, and the 
battery performance is evaluated using the test platform. The low- 
temperature battery performance is optimized by spiral iteration 
for the key links in the research scheme, including coupling mech- 
anism analysis, composite equivalent simulation, rapid perfor- 
mance evaluation, and carrier transport collaborative optimization. 

2.2. Compound Correction-Electrical Equivalent Circuit 

Modeling 

Variables in the battery working process are closely monitored by 
the ECM mathematically. The cross-correlation parameters are 

extracted with a small iterative calculation number. Then, the 
time-varying variables for the temperature and current rate varia- 
tions are obtained by the state-space description. The CC-EECM is 
constructed to mathematically describe the internal resistance 
and other time-varying variables necessary to evaluate the 
dynamic characteristics in terms of temperature changes and 
polarization effects due to the gradual variations of the OCV 
and temperature to minimize other influencing conditions. 

A large capacitor is added to the circuit modeling process to sim- 
ulate the battery capacity and temperature effects. The schematic 
diagram of the improved CC-EECM is constructed, as shown in 
Figure 2. 

In Figure 2, the proposed CC-EECM introduces two series- 
connected resistor–capacitor (RC) circuits. UL is the CCV factor 

of the battery. The loop current is described by IL. The current 

flow direction is positive during discharge and negative during 

charge. Rs is the self-discharge resistance. UOC is the OCV factor, 

and R0 is the ohmic resistance. Cb is the OCV influencing 

capacitor. E is the internal electromotive force. Rp1 and Cp1 are 

electrochemical RC components, respectively, for the mechanical 

(1) Multi parameter coupling mechanism and dynamic description of its functional relationship (2) Composite modeling of extreme low temperature and its state space expression

e- e- 

SEI SEI 
R0 

U0 
C 

UE 

Rp1 

Cp1 

Up1 

Rp2 

Cp2 

Up2 UL 

URC 

Low temperature electrolyte 
LiCoO2 Cathode Graphite negative electrode 

(4) Model feedback modification and carrier transport co optimization (3) Fast evaluation of battery performance based on deep learning theory

Li3BO3 surface coating Li solvation model Nano fossil ink 

Collaborative optimization of carrier transport in positive electrode, electrolyte, 

negative electrode and interface layer 

T 

E 

S 

EEC 

IC 

BST 

HPPC 

DST 

BBDST 

RNN 

LSTM 

DCNN 

CL 

Rint 

SOB 

SOE 

SOP 

SOH 

DOD 

RUL 

Output Analysis Input 



 

R0 IL 
 

4. 2 

4. 1 

4. 0 

3. 9 

3. 8 

3. 7 

3. 6 

3. 5 

3. 4 

 

Figure 2. Schematic diagram of the improved compound correction-electrical equivalent circuit modeling (CC-EECM). 

 

side-effects of isolating barriers. Rp2 and Cp2 are the concentration polarization RC components. 
 
 
 
 
The proposed CC-EECM considers the changes in the various 
characteristic parameters. The battery factors consider the EEC 
modeling process as a function of temperature and SOC. 
Then, the modeling accuracy is further improved to simulate 
the ohmic polarization, electrochemical polarization, concentration 
polarization, and self-discharge characteristics. For the identification, 
the curve fitting method takes the data points into a 
function corresponding to different SOC levels and temperature 
conditions. A functional relationship between temperature and 
model parameters is established using the experimental data 
to minimize the complexity. After full consideration, improvements 
are made to the CC-EECM, considering the time-varying 
current rate, temperature, and aging characteristics of lithiumion 
batteries. 
The mathematical relationship of UOC and SOC is initialed as 
. After fitting every specific data onto the OCV values. 
The UOC and S in the CC-EECM conducts the second-order 
unscented transform. Three constants of K1, K2, and K3 fit the 
data effectively through different test comparisons. The mathematical 
state-space expression of the structural circuit model is obtained, as shown in Equation (1). 
 
In Equation (1), k is the discrete-time point; Uoc is the CCV 
component; R0 is the ohmic resistance; ocv is the flow current; 
Upc is the polarization voltage; Rp is the polarization 
resistance; Cp is the polarization capacitance. Rp and Cp circuit 
reflects the polarization generation, as shown in Equation (2). 
 
In Equation (2), Upc is used as the polarization voltage. T is the 
sampling time. Substituting Equation (2) into Equation (1), the 
calculation process of UpO is obtained, as shown in Equation (3). 
 
In Equation (3), the calculation process of UpC is substituted 
into Equation (1) to obtain the calculation expression of UOC. 
UOC is then replaced by the state-space equation 
 which forms a simplified discrete form, as shown in Equation (4). 
 
In Equation (4), ULC is the closed-circuit voltage at time point k. 
SC is the SOC value at time point k. ILP is the current at time. point k.  
The coefficients of the iterative calculation procedure are 
a1, a2, …, and a6. Then, the parameter values are calculated by the 
least-square identification method, as shown in Equation (5). 
 
In Equation (5), Rp is the polarization resistance; Cp is the polarization. 
Considering the convenience of project realization, T is 
initialized as 1 s. Also, the speed and efficiency of computing 
in the embedded system, as well as the occupation of storage 
space, are considered synchronously. Then, the parameters are 
calculated as shown in Equation (6). 
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In Equation (6), Rcd is obtained using the coefficients that are calculated 
using a1, a2, …, and a6. The discrete form of the model is 
shown in Equation (7). 
 
In Equation (7), Skþ1 and Sk are the SOC values corresponding to 
the time point of k þ 1 and k. U1kþ1 and U1k are the voltage values 
of the first-order RC circuit corresponding to the time point of 
k þ 1 and k. Skþ1 and Sk are the SOC values. U2kþ1 and U2k 

are the voltage values of the second order RC circuit. η is the 
Coulomb efficiency. Δt is the sampling interval. C is the rated 
capacity. ik is the current at time point k. UOCk is the corresponding 
OCV value. wk is the process noise at time point k. The values 
of all contributing variables are obtained as shown in Equation (8). 
 
In Equation (8), the state-space coefficient is Φkþ1, and the control 
coefficient is Γkþ1. The observed CCV value is calculated according 
to the second part of Equation (8) by taking U1k, U2k, Ik, and 
UOCk into consideration. Their mathematical expression is shown 
in Equation (9). 
 

In Equation (9), the state vector Xk is formed by the parameters of Sk, 
Up1,k, and Up2,k. The covariance of the system noise is Q. Wk is the 
observation noise with the covariance of R. The parameters that relate 
to SOC and terminal voltage are characterized by two RC series circuit 

components at the sampling time point k, respectively. 

By carrying out the external characteristic analysis, the input 
and output characteristics are considered under different condi- 
tions based on the randomness and dynamic characteristics of 
the energy supply. The variation laws of core parameters are 
obtained accordingly, including open-circuit voltage (OCV), 
closed-circuit voltage (CCV), current magnification, SOC, aging 
degree, internal resistance, and temperature. Using the 
CC-EECM, the main influencing factors and logical relationships 
of output performance are explored. The static and dynamic 
response functions are established accordingly. The feature 
extraction and behavior description of input and output data 
are conducted at low temperatures under different working 
conditions, as shown in Figure 3. 

In Figure 3, the improved CC-EECM is proposed to simulate 
the carrier transport process. Combined with the relationship 
analysis of the aging effect, performance attenuation, and 
characteristic parameters, the mathematical expression between 
internal parameters and influencing factors of battery perfor- 
mance is carried out. The charge transfer of lithium ions through 
the positive electrode/electrolyte interface, the solvation process 
of lithium ions entering the electrolyte, and the liquid phase 
migration of solvated clusters. 

The lithium-ion de-solvation at the negative electrode– 

electrolyte interface is characterized by the charge transfer 
resistance Rp1 and electric double-layer capacitance Cp1. The 

solid-phase diffusion inside the positive material lattice and the 

lithium-ion solid-phase diffusion through the negative SEI 

layer and the negative material layers are modeled and 

characterized as diffusion resistance Rp2 and diffusion capaci- 

tance Cp2. These factors are used to further describe the input 

and output behavior characteristics accurately under low temper- 

atures and complex current variation conditions. The influencing 

noise of complex working conditions is introduced to improve 

the modeling accuracy. It is used to describe the functional 

relationship between these model parameters and realize the 

state-space description. The mathematical description of the 

working characteristics is obtained and established with dynamic 

adaptability considering the capacity decline and temperature 

influence. 

 
2.3. Influence Correction of the Ambient Temperature and 

Current Magnification 

 

Fully considering the influence of hysteresis voltage and temper- 
ature on lithium-ion batteries, the hysteresis voltage is set as the 
corresponding characteristic description parameter combined 
with dynamic hysteresis analysis. Then, an iterative correction 
mechanism is established by integrating the temperature 
influence. The correction function is constructed based on the 
ambient temperature and current ratio variations. Considering 
the linear relationship between model parameters and current 
magnification, the framework of the model parameter correction 
function is established with its approximate nonlinear relation- 
ship with temperature. Furthermore, the online full parameter 
identification is designed with real-time feedback correction to 
analyze and correct the influence of working condition noise. 
Then, the multi-timescale effective characterization of model 
parameters is realized, as shown in Figure 4. 

In Figure 4, the effective working condition influence is 
considered, and the measurement error is partially separated 
to correct the components of the input interface. Then, the error 
correction effect is evaluated to optimize the observation 
parameters of the composite CC-ECCM. Finally, the decoupling 

 



 

Figure 3. Feature extraction and behavior description at low temperatures under different conditions. 
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Figure 4. Structural design and optimization of characteristic multi-timescale model. 

 
 

analysis of the model parameters is completed, and the online 

full parameter identification is realized. The external characteristics 

of the battery parameters are considered, including voltage, 

current, and temperature variation. The voltage separation error 

is corrected to track the model parameter representation of the 

internal characteristics. Consequently, a reliable characterization 

mechanism for the overall performance is obtained. The 

real-time calibration is carried out based on the correction of 
temperature 

and current magnification. The feedback correction 

structure of the identification process is constructed to realize 

the online identification of all model parameters. Taking CCV 

closely as the output parameters that are related to the observation 

equation, the influence of charge–discharge current ratio 

and temperature variation is evaluated. The state-space description 

method and correction mechanism are optimized by weighting 

both the accuracy and complexity of the calculation process. 

2.4. Improved Adaptive Double Transform-Unscented Kalman 

Filter 

To ensure the co-estimation accuracy of CCV and SOC, the 
mathematical 

state-space description of the CC-EECM is introduced 

into the improved ADT-UKF method with an iterative calculation. 

It is constructed in the iterative calculation process for 

the comparative error analysis. The state-space description is 

obtained as shown in Equation (10). 
In Equation (10), SOC  is the state transition model. 
SOC is the nonlinear control-input model. Xk is the true state 
variable, and Yk is the measurement equation. Uk is the controlinput 
vector. Consequently, the specific process is obtained and the initial 
value of the model parameters is calculated as shown 

in Equation (11). 

 
In Equation (11), the unscented transform is conducted twice to 
minimize error and correct initial state divergence. Therefore, 
the improved ADT-UKF method has a dual unscented transform 

handled accordingly as shown in Equation (12). 
In Equation (12), the initial parameter values are obtained 
through the convolution operation. The point data set divergence 
is calculated from the estimated state value. The weighting coefficient 
ωmi 

and the sigma point estimation values are combined 

for the battery state estimation, as shown in Equation (13). 
In Equation (13), the mathematical model and the dual 
unscented transform of the new sigma points are obtained 
and corrected. Consequently, the sigma data point set is introduced 
into the observation equation. The measurement equation 

is established as shown in Equation (14). In Equation (14), the 
autocorrelation and cross-correlation coefficients 

are calculated accordingly as shown in Equation (15). In Equation 
(15), the calculation process is different from the 

traditional UKF method because the proposed ADT-UKF method 

introduces the weighting correction of the battery characteristics, 

as shown in Equation (16). In Equation (16), the iterative structural 
calculation is established. 

When applied to the wide-temperature-range conditions, 

the whole-life-cycle state estimation is a major challenge, so the 

resolution of these contradictions determines the vitality and 

SOC estimation. Furthermore, the influence of internal balance 

current is also considered for high-precision state monitoring, in 

which the estimation procedure is designed to make the model 

suitable for practical application. Also, the synthesized diagnosis 

is investigated to realize its safety protection. The dynamic 

propagation characteristics are introduced into the multiple 

time-variant input–output channels. The quantitative model 

verification is conducted for the effective battery performance 
characteristics, thereby realizing the wide-temperature-range 
electrothermal 

modeling and online state estimation. The identification 

diagnosis is applied to the energy storage systems, which is 

implemented by accurate mathematical modeling through 
incremental 

capacity analysis combined with gray correlation. 



2.5. Composite characterization of the Low-Temperature 

Aging Process 

Combined with the full parameter online identification, the 
multidimensional 

constraints are described. The correction coefficient 

of temperature and capacity is added to further optimize 

the effect of model parameter identification, forming a key 

parameter identification and calibration mechanism combined 

with temperature correction. The variation law of the key 
parameters 

is extracted by considering different current magnifications 

and temperature influences. Then, the obtained parameters are 

substituted into the constructed composite model. The online 

identification and effect verification process of model parameters 

is designed under multiple constraints. Consequently, multiple 

parameter identification and an iterative calculation framework 

are formed, as shown in Figure 5. 

In Figure 5, multi-feature model parameters and online 

temperature-capacity correction are at the core of the estimation 

method. Combined with the real-time acquisition of SOC value, 

it can provide a reliable correction basis for observation and 
measurement. 

The time scale preset can effectively provide limited 

analysis under duration. The discharge capacity is measured in 

the low-temperature aging process to conduct the varying discharge 

ratio and temperature analysis. The performance test is 

realized under mixed pulse discharge current rates, and the 

 

 

 

 

Figure 5. The multi-feature model parameter identification and iterative calculation framework. 

 



 

variation law of model parameters is obtained with its dynamic 
description. 

 

3. Experimental Verification 

3.1. Testing Platform Design and Implementation 

 
The lithium cobalt oxide (HTCNR18650-2200 mAh-3.6 V) battery 
is used for the experimental tests. Specific experimental proce- 
dures are designed for capacity determination, hybrid power 
pulse characterization (HPPC), OCV-SOC measurement, and 
Beijing bus dynamic stress test (BBDST). The constructed plat- 
form used for the tests in this study is shown in Figure 6. 

The battery OCV test procedure is designed as follows: 1) Full 
charge with CC–CV mode is conducted. After 5 h of rest, the OCV 
measurement is conducted when the SOC value equals 100%; 
2) The rated capacity is discharged by 5% or the minimum cut-off 
voltage. Then, the OCV value is recorded after the batter- ies are 
shelved for 5 h. The whole cycle test procedure is designed, as 
shown in Figure 7. 

In Figure 7, the CC–CV charge procedure is used. Then, it is 
discharged to the minimum cut-off voltage at the 0.3C current 
rate of the CC mode. This step is repeated for three cycles, which 
are also performed in the time-varying situation. In the HPPC 
test procedure, continuous charge-discharge treatment is applied 
to the dynamic time-varying SOC levels. First, the CC–CV charge 
is realized at 0.3C, and the battery is shelved after it attains max- 
imum terminal voltage; 2) Shelving for 5 h is conducted before 
the next test profile; 3) The CC discharge pulse of 1C is applied 
for 5 min followed by 1 h of rest. CC mode is used to ensure that 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. The whole structure of the experimental test. 

 

 
the SOC variation is 5%. Then, the working characteristics are 

obtained for the SOC levels of 100%, 95%,…, and 5%. The testing 
operation in step 3) is repeated until the minimum voltage of 
3.00 V is reached. 

For the complex BBDST and characteristic determination, a 

testing procedure is designed in which the HPPC, OCV, and 
temperature variation for the process are under investigation. 
The procedure for the HPPC and OCV tests is designed and con- 
ducted as well as BBDST. The variation of every single battery is 
obtained by the calculation from the battery packs, as shown in 
Equation (17). 

 

 

Figure 6. Experimental platform for complex condition tests. 
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Pc ¼ 
UcQc Pb ¼ λbPb (17) 
UcQc 

In Equation (17), λb is the equivalent coefficient, b is defined as 
the battery pack, and c is the single battery cell. The testing power 
is enlarged during the BBDST experiment to test for the overload 
capacity, as shown in Equation (18). 

can be designed and implemented accordingly, as shown in 

Figure 8. 
In Figure 8, the single BBDST is conducted with a total of 3.5 h 

of treatment. Considering a dataset, a 3-day test for the dataset is 

suitable, so the cycling number is set as 24x3 ¼ 20.57. A cycle 

number of 20.57 is impossible to set, so it is defined for each 
dataset as 20 for ease of application and calculation purposes. 

P0 ¼ αPc (18) 

In Equation (18), α is the coefficient. The total normal pack 
voltage of an EV is 384 V with a capacity of 360 Ah. The normal 

voltage of a single battery cell is 3.6 V with 2.2 Ah. Since α ¼ 5, 

the power for a single battery cell is calculated, as shown in 
Equation (19). 

3.2. Temperature and Current Rate Variation Effects 

 
The time-varying temperature and current rate effects are con- 
ducted using the temperature test chamber and battery testing 
equipment. With a low-temperature effect, the energy and power 
decrease rapidly as the discharge depth increases. An irreversible 

P0 ¼ α 
UcQc Pb 

c  c 

3.6 x 2.2 

¼ 5 x 
384 x 360 

x Pb
 

¼ 2.8646 x 10-4 x P 
 

b 
 

(19) 

aging process takes place, so the output performance variation of 
the battery is affected by the cyclic current charge–discharge 

pulses. Besides the irreversible variation of the electrode mate- 
rial, physical structure, and lithium-ion transfer rate, the 

In Equation (19), after charging with the CC–CV method, the 
current discharge pulse is applied according to the BBDST exper- 
iment until the minimum cut-off voltage of 3.00 V is reached to 
calculate the power value. With an average current rate of 1C, the 

current value is calculated using the equation I ¼ P=U, in which 

U ¼ 3.60 V. As every single step of the BBDST experiment is con- 
ducted for 300 s, the test lasts for 12 cycles until total discharge, 
which leads to the CC–CV charge. The BBDST procedure 

electrolyte is organic, and its conductivity is reduced under 

low-temperature conditions. This reduction in conductivity 
causes a rapid increase in internal resistance, resulting in perfor- 
mance deterioration. The resistance increase feedback promotes a 
quick temperature rise, which adversely affects the battery char- 
acteristics and performance. A capacity test at a temperature of 
5 °C is conducted by considering the current rate variation for 
effective experimental test results, as shown in Figure 9. 

 
 

 

Figure 8. The experimental Beijing bus dynamic stress test (BBDST) procedure for the lithium-ion battery. 
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Figure 9. Capacity determination considering the current rate variation for 5 °C. a) Current variation, b) voltage variation, c) energy determination, and 

d) capacity determination. 
 

In Figure 9, the nominal capacity is 2.079 Ah for 0.3C, 1.999 Ah 
for 1C, and 2.006 Ah for 2C. A time-varying test is also conducted 
at 45 °C conditions. The test results are shown in Figure 10. 

In Figure 10, the rated capacity is 2.36 Ah for 0.3C, 2.34 Ah for 
1C, and 2.325 Ah for 2C. Consequently, the battery’s capacity 
decreases under high-temperature conditions. The significant 
factor changes are also analyzed to obtain a mutual effect and 
coupling relationship of battery parameters, including OCV, 

CCV, cell voltage, flowing current, resistance, and temperature. 
The characteristics are compared for various SOC levels, and 
the CCV variation towards temperature change is analyzed. The 
main parameter variation is compared to established logical and 
dynamic response functions. Then, the characteristics are 
obtained by the testing schedule design, including CC charge, 
varying current discharge, charge–discharge pulse-current, 
OCV-SOC, and temperature-capacity tests. The influencing 
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Figure 10. Capacity determination considering the current rate variation for 45 °C. a) Current variation, b) voltage variation, c) energy variation, and 

d) capacity variation. 
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effect analysis is conducted toward the CCV variation, and the 
characteristics are analyzed for time-varying ambient conditions. 
For the OCV and HPPC tests, the CCV is measured in real 
time. Meanwhile, the CCV value and CC-EECM parameters 

are obtained for various SOC levels. During the testing process, 
the battery is charged to full capacity until the CCV equals 4.20 V 
for 0.3C with 40 m of rest. The procedure is then turned into the 
following state levels for the cyclic BBDST. The test results are 

expressed with a functional relationship description. The single 
testing procedure is designed and realized: 1) Full capacity 
charge  to  get  the  SOC  equal  to  1;  2)  40 m  of  rest; 
3) Discharge for 5% SOC; 4) 30 m of rest; 5) The cyclic charge–
discharge sequence from 2) to 4) is repeated 11 times until the 
SOC reaches 0. The test results obtained are shown in Figure 

11. 
In Figure 11, the OCV value is measured toward the time- 

varying SOC levels to obtain time-varying model parameters. 

The improved ADT-UKF iterative estimation-correction method 
imposes the OCV-SOC function by introducing the polynomial 
and look-up table. The OCV-SOC functional relationship is also 
established for varying temperature conditions. The real-time 
CCV value is measured for iterative calculation using the 
improved ADT-UKF method with the modeling parameter 
determination. The functional relationship between OCV and 
SOC has a nonlinear positive functional relationship in which 
the OCV value decreases along with the SOC reduction, consid- 
ering both the SOC and temperature variations. 

Based on the experimental analysis, the OCV-SOC functional 
relationship is different, which is a core factor for the model- 
based SOC estimation. The higher the temperature, the lower 
the discharging minimum cut-off voltage, and the discharge 

capacity increases with the variation. The OCV-SOC varying 
relationship shows a downward tendency, so more power cannot 

be used effectively. Subsequently, in the low state interval, OCV- 
SOC functional relationship curves vary with the SOC changing 
process. By comparison, the OCV-SOC has a variable 
relationship for different temperature variations. The mathemat- 
ical analysis of the CC-EECM is realized with real-time current 
rate variation. The current rates are significant in the CCV, OCV, 
capacity, internal resistance, and SOC estimations are conducted 
considering the temperature limitation. The temperature 
ranges from 5 to 45 °C. The available capacity reduces when the 
temperature increases, so the SOC value also varies for the 
same level of CCV. 

 

3.3. Complex working condition estimation analysis 

 
The mathematical voltage-correction functions are constructed 
by comparing the OCV-SOC relationship at time-varying 
temperature conditions. The experimental result shows that the 
expression of the mathematical characteristic is affected by the 
temperature variation to correct the predicted SOC value. The 
OCV-SOC variation is introduced into the SOC estimation 
process by considering the temperature variation effect, in which 
the modeling CC-EECM parameters under the ambient condi- 
tion variation are substituted into the iterative calculation pro- 
cess. The proposed ADT-UKF method is first verified by a 
varying current discharge with an average rate of 3C with the 
combined iterative state-space equation. The combined time- 
varying discharging current rate test is designed under complex 
power supply working conditions. The CC-EECM parameters are 
introduced into the improved ADT-UKF estimation-correction 

process, and the current is changed for the complex working con- 
dition tests. The CCV traction and SOC estimation results are 
obtained, as shown in Figure 12. 
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Figure 11. The open-circuit voltage (OCV) and hybrid power pulse characterization (HPPC) tests at 5 °C. a) Current variation, b) voltage variation, 

c) energy variation, and d) capacity variation. 

 
 

4.4 

4.2 

4.0 

3.8 

3.6 

12000  14000  16000 

E 

 

 

 

 

 

 

    

C 

0.10 

0.05 

0.00 

15000  16500  18000  19500  21000 

I 
(A

) 
E

 (
W

h
) 

C
 (

A
h
) 

U
 (

V
) 



 

(a)  
4 

3 

2 

1 

0 

0 200 400 600 800  1000  1200 
t (s) 

(b) 
 
 

0.010 
 

0.005 
 

0.000 
 

-0.005 
 

-0.010 

 

 
0 200 400 600 800  1000  1200 

t (s) 

 

(c) 

 
 

 
1.0 

0.8 

0.6 

0.4 

0.2 

Time -varying voltage traction curves Time-varying traction error curves 

(d) 
0.04 

0.02 

0.00 

-0.02 

-0.04 

-0.06 

0.0 
0 200 400 600 800 1000  1200 

t (s) 

Time-varying SOC estimation curves 

-0.08 
0 200 400 600 800 1000  1200 

t (s) 

Time-varying estimation error curve 

Figure 12. Closed-circuit voltage (CCV) traction and state-of-charge (SOC) estimation effect analysis. a) Varying current state estimation, b) varying 
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In Figure 12, it can be observed that the CC-EECM tracks the 
CCV traction process for the whole traction process by taking 
advantage of particle re-sampling and continuous training, and 
the improved ADT-UKF method has an optimal experimen- tal 

effect on the SOC estimation. For the CCV traction, the maxi- 
mum error observed is 0.008608 V, and the maximum SOC error 
estimated by the improved ADT-UKF method is 6.317%. The 
iterative estimation and correction are conducted for the adaptive 
high-precision SOC estimation. The estimation curve 
approaches the actual value effectively, revealing a high converg- 
ing tendency. Also, the hierarchical SOC estimation is conducted 
considering the environmental and load-change effects and the 
aging performance with life decay. 

 
 

4. Conclusion 

An improved CC-EECM and ADT-UKF method are constructed 
to realize real-time CCV traction and SOC estimation, respec- 
tively. The more accurate and intricate the modeling of the elec- 
trochemical characteristics, the better the CC-EECM technique is 

at describing the nonlinear behavior of lithium-ion batteries. 
The calculation accuracy and resilience have a mathematical rela- 
tionship established between them so that the voltage variation 
effect can be included in the error coefficient correction. The 
ADT-UKF method is then proposed along with recursive 
sampling data correction and optimization of the weighting 
coefficient. They have the advantages of high accuracy and 
long-term adaptivity, which also characterize the polarization and 
transient effects in the pulse-current charge–discharge process. 
The proposed CC-EECM and ADT-UKF methods reduce the 

nonlinear functional relationship effectively. At a temperature 
range of 5 to 45 °C, the output voltage responds well with a max- 
imum error of 0.008608 V, and the maximum SOC estimation 
error is 6.317%. With high-accuracy CCV and SOC estimation 

results, the calculation complexity is moderate to avoid the 
diverge performance, reducing the linearization errors and pro- 
viding useful references for BMS applications. 
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