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Lithium-ion battery state-of-charge (SOC) serves as an important battery state parameter monitored by 

the battery management system (BMS), real-time and accurate estimation of the SOC is vital for safe, 

reasonable, and efficient use of the battery as well as the development of BMS technology. Taking the 

ternary lithium battery as the research object, based on the second-order RC equivalent circuit model, a 

variable forgetting factor least square method (VFFRLS) is used for parameter identification and a 

combination of the square root of covariance and noise statistics estimation techniques to estimate the 

SOC, to solve the problem of dispersion of the unscented Kalman filter and the error covariance tends 

to infinity with iterative calculation, thus ensuring the accuracy of SOC estimation. The feasibility and 

robustness of the algorithm and the battery state estimation strategy are verified under HPPC and BBDST 

conditions with maximum errors of 1.41% and 1.53%, respectively. The experimental results show that 

the combined algorithm of VFFRLS and SRAUKF has good robustness and stability, and has high 

accuracy in the SOC estimation of Li-ion batteries, which provides a reference for the research of 

lithium-ion batteries. 

 

 

Keywords: variable forgetting factor recursive least-square; lithium-ion battery; square root adaptive 

unscented Kalman filter; state-of-charge 

 

 

1. INTRODUCTION 

 

In recent years, environmental pollution and energy sustainability are of increasing concern, and 

the growth of new energy is already the focus of attention of all countries. [1-3]. Lithium-ion batteries 

are extensively applied in new energy vehicles, special robots, energy storage, and other fields due to 
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their high energy density, long cycle life, small size, and rechargeability. [4]. SOC reflects the remaining 

battery power directly. Improving the estimation accuracy of SOC can effectively prevent the occurrence 

of safety accidents caused by battery overcharge and over-discharge. [5-7].  

Currently, many researchers have studied lithium-ion batteries and proposed many methods for 

estimating SOC [8-13]. Already existing SOC estimation methods are classified into the below 

categories: (1) direct measurement method; (2) data-driven estimation method; (3) model-based 

estimation method [10, 14, 15]. Two common direct measurement methods are the ampere-hour (Ah) 

integration and the open-circuit voltage (OCV) method [16-19]. The Ah integral method takes the time 

integral of the current as an indicator of the battery SOC change. In spite of the ease of implementation 

of this method, since the SOC calculation process is based on an open loop, it leads to the accumulation 

of measurement errors [20, 21]. Commonly used data-driven methods include artificial neural networks 

(ANN) and support vector machines (SVM) [22, 23]. The ANN method requires a large amount o f data, 

the estimation accuracy and convergence speed of SOC depend on the training method and the number 

of samples. The SVM method provides strong genericization ability and superior prediction accuracy 

[24, 25], but it is only suitable for single-input and single-output cases. To obtain more accurate SOC 

estimation, model-based SOC estimation strategies have received much attention [26, 27]. The model-

based method mainly includes particle filtering (PF), an extended Kalman filter (EKF), and an unscented 

Kalman filter (UKF) algorithm [28, 29]. The PF algorithm based on probability distribution theory can 

handle any nonlinear model and arbitrarily distributed noise. However, it suffers several shortages, such 

as high computation burden and particle impoverishment [30, 31]. Among the existing studies, the most 

widely studied model-based SOC estimation method is the EKF algorithm [32, 33]. The EKF algorithm 

is improved, and the SOC is estimated by the online update of the noise covariance, so an adaptive EKF 

algorithm is proposed [34, 35]. However, the use of EKF series algorithms inevitably introduces 

linearization errors, which reduce the battery SOC estimation accuracy. The unscented Kalman filtering, 

using no-trace transformation to obtain statistics on the covariance of process noise [12, 36], shows fast 

convergence, highly accurate, and robust SOC estimation compared to EKF. However, a fixed original 

value of the noise variance cannot be modified to accommodate changes in working conditions, which 

may lead to inaccurate or even divergent SOC estimation [37-39]. Although the adaptive unscented 

Kalman filter (AUKF) algorithm has the same accuracy as UKF and solves the problem of increasing 

estimation error caused by inaccurate model parameters [40-42], the AUKF algorithm cannot determine 

the semi-positive nature of state covariance and reduce the error caused by noise covariance, resulting 

in poor accuracy of the final estimation results. Tian et al. proposed a Fractional Unscented Kalman 

Filtering (FOUKF) algorithm to estimate the SOC estimation performance under different temperature 

and aging conditions, to test the accurate of the model and the validity of the estimation method. [43]. 

However, the algorithm is usually limited to the case of Gaussian distribution. 

The SRAUKF algorithm is proposed to solve the problems of filter divergence caused by 

Cholesky's inability to decompose the state error covariance matrix in the standard UKF algorithm, and 

the problem that the filter error covariance tends to infinity with iterative calculation due to unknown or 

uncertain noise statistics. Combined with the VFFRLS algorithm, the variable forgetting factor 

determined by the prediction error is introduced to accurately identify parameters online, which enhances 

the reliability and accuracy of the results of the estimation. Lastly, the rationality of the proposed 
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algorithm is verified under hybrid pulse power characterization (HPPC) and Beijing bus dynamic stress 

test (BBDST) experiments.  

 

 

 

2. MATHEMATICAL ANALYSIS 

2.1. Second-order RC modeling  

Establishing a reasonable and high-fitting battery model is the key to effectively grasping the 

external characteristics of lithium batteries[26]. In recent years, various battery models have been 

proposed at home and abroad, such as thermal models, equivalent circuit models and electrochemical 

models. Among them, the equivalent circuit model is the most widely used. Frequently used equivalent 

circuit models involve the Rint model, the Thevenin model, the PNGV model, and the second-order RC 

model. A comparative study of these equivalent circuit models for lithium-ion batteries is given in the 

literature [44]. Compared with the second-order RC model, the Rint model is not consider the 

polarization characteristics, so the accuracy of the model is low and can only approximate the ohmic 

resistance of lithium-ion batteries [45], the Thevenin model is a first-order model, and there are some 

errors in the dynamic output voltage curve of the model compared with the actual battery output in 

practice[46, 47], and the PNGV model increases the computation and requires a higher processor for the 

design, so it is less used in engineering practice[48, 49]. Because of the complex polarization 

characteristics of the battery, it is proposed that a model with more parallel RC networks in series should 

have higher accuracy [50].  

Through the analysis and comparison of the above three equivalent circuit models, the accuracy, 

complexity and feasibility of parameter identification are comprehensively considered, this paper selects 

the second-order RC equivalent circuit model, which has high simulation accuracy, and can accurately 

simulate the nonlinear characteristics of the battery system. The second-order RC circuit equivalent 

model can be displayed in Figure 1. 

 

 
 

Figure 1. Second-order RC equivalent circuit model 

 

In this model, Uoc means open-circuit voltage, R0 means ohmic resistance, R1, C1 means 

electrochemical polarization resistance and capacitance, and R2, C2 means concentration difference 



Int. J. Electrochem. Sci., 17 (2022) Article Number: 220915 

  

4 

polarization equivalent resistance and capacitance, respectively. I(t) represents the load current, UL 

represents the closed-circuit voltage when the battery is connected to a load. By analyzing the circuit 

structure of the above equivalent model, the knowledge of circuit analysis is applied to obtain its state 

and observation. From Kirchhoff's voltage law, the mathematical expression of the circuit can be 

obtained as shown in Equation (1).  
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(1), 

where the UOC represents a nonlinear function of the SOC. The definition and discrete expression 

of SOC can be obtained as shown in Equation (2).  
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In Equation (2), SOC(t) represents the current power value at the time t, SOC(t0) is the initial 

battery power value, QN represents the battery’s actual capacity, and is the Cullen efficiency. Combing 

Equations (1) and (2), the equation of the state space of the battery SOC is below: 
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(3) 

where U1 and U2 are the polarized voltages, and UL is the terminal voltage. Δt is sampling time, 

1 represents the time constant of the first RC network, which describes the electrochemical 

polarization process. 2 represents the time constant of the second RC network, representing the 

concentration polarization phenomenon during battery operation, w(k) and v(k) are Gaussian white 

noises with zero mean value, and selecting [SOC, U1, U2]
T as the state variable, UL as the observational 

variable. 

 

2.2. Parameter identification based on VFFRLS 

Recursive least squares (RLS) is a class of fast algorithms for least squares algorithms, recursive 

least squares adaptive filters are optimal filters for a set of known data, which can accurately capture the 

real-time characteristics of the system. It has the characteristics of easy understanding and fast 

convergence and has been widely used in the field of system identification. Its discrete transfer function 

and corresponding difference equation are shown in Equation (4). 
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(4) 

where U(k)and y(k) are the input and output of the system at time point k, respectively. a and b 

are variables to be evaluated. 

The traditional RLS algorithm usually adopts fixed forgetting factor, which does not have 

sufficient robustness when the algorithm is disturbed. To solve this problem, a novel VFFRLS algorithm 

is proposed in this study. The forgetting factor in this proposed method is decided by the prediction error 

and changes adaptably with the handling of the algorithm. The method not only improves the 

convergence speed of parameter identification when the signal fluctuates or changes sharply but also 

ensures high identification accuracy when the signal is stable. The calculation procedure of the VFFRLS 

algorithm is as follows. Equation (5) is the prediction output and estimation error of the model. 
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where (k) represents the parameter vector to be identified, K(k) is the gain,  T(k) represents a 

collection of system samples. 

The update of the covariance matrix P(k), the forgetting factor (k) and the Kalman gain K(k) of 

the battery model after the variable forgetting factor is shown in Equation (6). 
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(6) 

The VFFRLS algorithm for the identification of parameters in the equivalent model of a lithium-

ion battery is used to identify the parameters in the second-order RC equivalent circuit model. The 

battery model is transformed into the mathematical form of least squares as shown in Equation (7). 
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Making the time constant 1=R1C1, 2=R2C2, and a=12 b 1+2 c=R1+R2+R0, 

d=R12+R21+R0(1+2), S=[x(k)-x(k-1)]/T are substituted into Equation (7) for discretization, whereas 

sampling time, which is shown in Equation (8). 
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In Equation (8), 
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T as a direct identification parameter, the circuit model parameters R0, R1, R2, C1, C2 

are then derived from the identification results of these parameters as shown in Equation (9).  
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2.3. Square root adaptive unscented Kalman filtering 

When the statistical characteristics of system noise and observation noise change greatly, the 

SOC estimation accuracy of the UKF algorithm will be greatly reduced. Therefore, the SRAUKF 

algorithm is proposed, to decompose the covariance matrix in the UKF algorithm by the square root to 

ensure its non-negative determinism. The process of SOC estimation by SRAUKF is divided into the 

system prediction and the system update part. The nonlinear system to be disposed of is set up as shown 

in Equation (10). 
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In Equation (10), k reprensents the time, 
n

kx R reprensents the state-space variable, and
n

kz R  

reprensents the observation space variable. wk and vk reprensent the process noise and measurement 

noise, respectively. f(*) reprensents a nonlinear function representing the law of state transition, and h(*) 

reprensents a nonlinear function representing the system state and observation. uk is the system input at 

time point k. The calculation procedure of the SRAUKF algorithm is shown below. 

Step 1. Initialization. The initialization process is shown in Equation (11).  
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To determine the state variable and error covariance P0, and S0 is the Cholesky factorization of 

the covariance P0. 

Step 2. The posterior distribution sampling sigma point set based on the k-1 moment is shown in 

Equation (12). 
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In Equation (12), 1

i

kS   represents column i of the covariance Cholesky factor at the time k-1state 

variable. The corresponding weight values are shown in Equation (13). 
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where, 0,  is an adjustable parameter that determines the sigma point from the x̂ distance, 

generally takes a smaller integer between 1e-4 to 1, and  is a scaling parameter, generally defined as 

 = 2(n+)-n, among  = 3-n. 

Step 3. Time update. The state variable is predicted by step by the equation of state according to 

the values of the input variable at time k-1, Sxk denotes the updated value of the square root of the error 

covariance of the state variable at time k as shown in Equation (14). 
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(14) 

Step 4. Measuring update. The measurement function output prediction, self-covariance, and 

mutual covariance are calculated as shown in Equation (15). 
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(15) 

In Equation (15), Syk is the updated value of the square root of the error covariance at time point 

k. The filter gain Kk update and the posterior estimation expression are shown in Equation (16).  
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(16) 

Step 5. The adaptive characteristics of noise statistics as indicated by the Equation (17). 
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(17) 

In Equation (17), qk and rk are the mean matrix of process noise wk and measurement noise vk 

respectively, Qk and Rk are the variance matrix of process noise and measurement noise respectively. The 

scheme of SOC estimation by the VFFRLS-SRAUKF algorithm is shown in Figure 2.  
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Figure 2. The process of estimation of SOC by the VFFRLS-SRAUKF algorithm 

 

 

Using the VFFRLS algorithm for parameter identification can effectively improve the accuracy 

of model parameter identification, and it lays the basis for improving the accuracy of SOC estimation of 

Lithium batteries.The SRAUKF algorithm uses the square root of the error covariance form update to 

take the place of the original form of error covariance update, to ensure the symmetry of the error 

covariance and nonnegative qualitative, in the meantime, using a maximum posterior estimation 

principle, the output measurement information real-time estimation and correction mean and covariance 

of the noise, thus ensuring algorithm has the ability of adaptive to change in noise statistical properties. 

Based on the algorithm, which enhances the tracking effect and stability of the system. 
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3. EXPERIMENTAL ANALYSIS 

3.1. Test platform construction 

In this study, a novel ternary lithium-ion battery with a rated capacity of 50Ah is chosen as the 

experimental target. For obtaining the relevant experimental data, the BTS200-100-104 battery test 

device and temperature control device provided by Shenzhen Yuyuan Technology Co., Ltd. are used to 

establish an experimental platform, as shown in Figure 3. 

 

 

 
 

Figure 3. Experimental equipment 

 

3.2. Online parameter identification results 

In Refs. [51], a comparative study of multiple models shows that the second-order RC model can 

exhibit the best performance. Based on the second-order RC model, the test is performed under BBDST 

conditions using the VFFRLS algorithm. BBDST working condition is an equivalent simulation of the 

actual working condition of the Beijing bus, mainly including starting, accelerating, coasting, braking, 

constant speed, rapid acceleration, braking, and so on. The parameter identification results are shown in 

Figure 4. 
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(b) Comparison of parameter identification errors of BBDST condition 

 

Figure 4. Parameter identification results of BBDST condition 

 

 

Based on the second-order RC equivalent circuit model, reference [52] uses the recursive least 

square (RLS) method and Kalman filter (KF) on-line identification model parameter algorithm least 

square method to identify the model parameters, and the estimation error is within the range of [-1.16%, 

0.85%]. Reference [53] uses adaptive genetic algorithm (GA) to identify the relevant battery parameters, 

and the average voltage error is 0.78%, Reference [54] proposed parameter identification with hybrid 

pulse power characterization (HPPC), which shows that the parameters of 2RC model can be identified 

in the time domain.  

Figure 4 (a) shows the voltage comparison between the RLS and VFFRLS parameter 

identification results, where U is the actual voltage, U1 represents the analog voltage corresponding to 

the RLS algorithm, U2 represents the analog voltage corresponding to the VFFRLS algorithm, and it's 

closer to the actual voltage. Err1 and Err2 in Figure 4(b) respectively represent voltage error curves 

corresponding to RLS and VFFRLS. It can be seen from Figure 4(b) that the voltage error at the end of 

charge and discharge in each cycle is large, which is caused by the intense chemical reaction inside the 

battery during charge and discharge and the lag of voltage following effect. Through algorithm 

improvement, the fluctuation range of voltage error is significantly reduced, the fluctuation is relatively 

stable, and the estimation error of VFFRLS is controlled within 0.0132V. Compared with the RLS 

algorithm, the VFFRLS algorithm can effectively improve the identification accuracy of the model 

parameters, which lays the grounds for precise estimation of the SOC of the lithium battery. 
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3.3. Complex condition experiment 

To confirm the operating effectiveness of the proposed algorithm on lithium-ion battery SOC 

estimation under complex application conditions, the HPPC working condition is selected to verify the 

algorithm. In the actual application process, the lithium-ion battery is mostly worked in the intermittent 

cycle charge and discharge state. HPPC working condition includes long charging, discharge, and 

shelving, which can better simulate the actual operation condition of the battery. the estimation results 

and errors for the different algorithms are shown in Fig. 5. 
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(b) Estimation errors of SOC under HPPC condition with different algorithms 

 

Figure 5. Estimation results of SOC under HPPC operating condition 

 

 

Fig. 5 (b) shows the error in estimating SOC with three algorithms. With a poor convergence, 

the maximum error of the RLS-UKF algorithm is about 9.82%. The maximum error of the VFFRLS-

UKF algorithm is 0.0513%, and the estimation accuracy is higher than that of RLS-UKF, but the stability 

is not high. The VFFRLS-SRAUKF algorithm has the best performance, with a maximum error of about 

1.41%, which greatly improves the accuracy of the SOC estimation. Combined with Fig. 5 (a) and (b), 

the VFFRLS-SRAUKF algorithm brings the estimated results closer to the reference value, the algorithm 

has good convergence, can track the actual value well, and attain favorable estimation accuracy. The 

maximum (MAX) error, mean absolute error (MAE), and root means square error (RMSE) comparisons 

of SOC estimation using the three algorithms are shown in Table 1.  
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Table 1. Comparison of SOC estimation results of different algorithms under HPPC conditions 

 

Estimation method RLS-UKF VFFRLS-UKF VFFRLS-

SRAUKF 

MAX error 9.82% 5.13% 1.41% 

MAE 2.06% 1.89% 0.42% 

RMSE 2.58% 2.33% 0.55% 

 

It is displayed in Table 1, the MAE of the VFFRLS-SRAUK algorithm is 0.42%, and the MAE 

of VFFRLS-UKF and RLS-UKF is 1.89% and 2.06%, respectively, indicating that the VFFRLS-

SRAUKF algorithm has minimal estimation error and good identification accuracy. The value of RMSE 

for the VFFRLS-SRAUKF algorithm is 0.55%, and it is much smaller than the remaining two 

algorithms, namely, the error volatility range is much smaller than the remaining two algorithms. 

Overall, the algorithm has high-level stability and non-divergence in the SOC estimation procedure, 

which proves that the VFFRLS-SRAUKF algorithm can effectively maintain the stability of the 

estimation. 
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(b) SOC estimation error of BBDST condition by different algorithms 

 

Figure 6. SOC estimation results under BBDST working condition 
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For verifying the estimation effect of the method, an experimental analysis is performed under 

BBDST conditions. The power of each step is reduced to simulate the BBDST condition according to 

the actual situation. The verification results of RLS-UKF, VFFRLS-UKF, and VFFRLS-SRAUKF under 

BBDST working condition are shown in Figure 6.  

As shown in Figure 6 (b), the maximum error of SOC estimation of RLS-UKF, VFFRLS-UKF, 

and VFFRLS-SRAUKF algorithm is 4.88%, 2.19% and 1.53%, respectively. The estimation accuracy 

of the VFFRLS-UKF algorithm is about 2.69%, which is higher than that of the RLS-UKF algorithm, 

indicating that the variable forgetting factor is introduced to eliminate Gaussian noise in the data as much 

as possible, enhancing the system robustness and improving the identification accuracy. The VFFRLS-

SRAUKF algorithm estimates the best accuracy and stability, reflecting the generalization of the square 

root adaptive algorithm in SOC estimation. The large estimation error at the discharge end is caused by 

heavy chemical reactions within the battery. The estimation results of the three algorithms under BBDST 

conditions are compared by maximum error, MAE, and RMSE, as shown in Table 2. Compared with the 

above experiments, it is known that the VFFRLS-SRAUKF algorithm has great accuracy and function.  

 

 

Table 2. SOC estimation results of different algorithms under BBDST operating conditions are 

compared 

 

Estimation method RLS-UKF VFFRLS-UKF VFFRLS-

SRAUKF 

MAX error 4.88% 2.19% 1.53% 

MAE 1.64% 0.81% 0.50% 

RMSE 2.16% 0.97% 0.65% 

 

 

4. CONCLUSION 

The precise estimation of lithium battery SOC is the key and difficult point of the BMS. In this 

study, considering the current change and the noise characteristics of different working conditions, the 

VFFRLS algorithm is recommended for parameter identification, combined with the square root 

adaptive UKF algorithm for the SOC estimation of lithium-ion batteries. This algorithm is validated for 

SOC estimation under the HPPC and BBDST working conditions, respectively. The validation results 

show that when the system is stable, the VFFRLS-SRAUKF algorithm can have a maximum error of 

1.41% and 1.53% under the HPPC and BBDST conditions, respectively, greatly improving the accuracy 

of the SOC estimation. The proposed algorithm has great convergence, avoids the dependence on 

experimental data in practical application, reduces the computational complexity, and can provide a 

reference for BMS. In future studies, multi-state joint estimation of battery packs over a long time and 

wide temperature range should be further explored. 
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