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Abstract 

Incisively estimating the state of charge (SOC) of lithium-ion batteries is essential to ensure the safe 

and stable operation of a battery management system. Neural network methods do not depend on a 

specific lithium-ion battery model and are able to mirror the lithium-ion battery’s nonlinear 

relationships, thus receiving widespread attention; however, traditional neural network methods 

exhibit a long training time and low accuracy in estimating SOC. This paper presents an original 

algorithm of an improved particle swarm optimization (IPSO) extreme learning machine (ELM) neural 

network, improving the particle swarm algorithm using nonlinear inertia weights to enhance the 

global optimization seeking capability of ELM for solving the problem of poor precision of previous 

battery SOC estimation. The lithium-ion battery voltage and current are the input variables of the 

model, while SOC is used as the output variable. The results of the experiments revealed that the root-

mean-square estimation errors of the proposed IPSO-ELM algorithm for SOC are within 0.31, 0.32, and 

0.14% of the root mean square under the hybrid pulse power characteristic (HPPC), the Beijing bus 

dynamic stress test (BBDST), and the dynamic stress test (DST) operating conditions. Compared with 

the prediction results of the PSO-ELM and ELM neural networks, the simulation results prove that the 

SOC optimization method in this paper possesses superior precision and overcomes the shortcomings 

of traditional neural networks. 

1. Introduction

Energy security and the effectiveness of conserving the environment remain fundamental to China’s 

expansion agenda. (1) Throughout all nations, renewable energy sources alternative to conventional 

fossil fuels are already in the spotlight. (2) The strengths of lithium-ion batteries with excellent density 

of energy, huge output capacity, and excellent cost–performance ratio have been broadly 

implemented and disseminated in the field of regenerative energy. (3) Its application permits the 

fabrication of functional electric vehicles and fulfills certain rigorous benchmarks of electric vehicle 

economics when it comes to energy density, endurance, safety, performance, and expense. (4) 

Nevertheless, the likelihood of battery pack flame (5) and ignition has not been not entirely 

eradicated. Consequently, an integrated and supported lithium-ion battery management system (6) 

acts as a key to the safety and optimal operation of lithium-ion batteries. Methodologies for battery 

modeling as well as state-of-charge estimation play an invaluable role in this field. (7) Provided that 

the model particles (8) are optimally defined, it turns out that the equivalent circuit models, which are 

both linear and nonlinear, (9) are found to be capable of forecasting the properties of all types of cells 

with various diameters, properties, capacities, and ingredients with appreciable precision. (10) 

According to the different mechanisms of battery modeling, the equivalent models of lithium-ion 

batteries can be classified into brief electrochemical models, (11) smart mathematical models, (12) 

and equivalent circuit models. (13) Considering that the variation of physical parameters (14) can 

reflect the internal degradation of a battery, instead, a simplified electrochemical model for which the 



parameters are well recognizable is proposed, and the physical parameters of the cell can be obtained 

from its relation as a function of the parameter of the model. (15) 

One of the most vital parameters describing the state of charge of a lithium-ion battery’s residual 

capacity is its lifetime. (16) The charging state of lithium-ion batteries is impacted by their internal 

electrochemical reactions, charging and discharging mechanisms, as well as outside environmental 

circumstances, in terms of charge/discharge ratios, self-discharge, temperature, and extent of aging. 

(17) Currently, approaches toward assessing lithium-ion batteries’ state of charge involve (18−23) the

open-circuit voltage approach, the ampere–time integral approach, the discharge approach, the data-

driven approach, the Kalman filter approach, and the particle filter approach. The approach to on-

voltage is designed to evaluate state of charge (SOC) by exploiting the nearly linear dependence that

exists regarding SOC and on-voltage. (24) The ampere–time integrated method is applied to evaluate

the state of charge of a battery as it accumulates the amount of charging and discharging that occurs

while charging and discharging a battery. (25) The Kalman filter approach is one of the best digital

manipulation algorithms, and its derivatives include (26) the extended Kalman filter, the traceless

Kalman filter, the adaptive Kalman filter, and the particle filter. The exact accuracy of the Kalman

filtering approach (27) lies in an appropriate and valid model of the cells, but accurate cell models are

difficult to obtain. Data-driven methods (28) are approaches for estimating SOC building on machine

learning policies, which include methods of neural network (NN), (29) deep learning (DL) method, (30)

support vector machine, (31) and fuzzy logic method. (32) Of all these, it is the neural network method

that is the widest in use. With this method, no knowledge of the internal construction of a battery is

required (33) and one can modify the battery immediately on the basis of a large quantity of training

data.

Extreme learning machine is a fast single-stack implicit feed-forward neural network, (34) and it is 

advantageous when compared to classical feed-forward neural networks. (35) The extreme learning 

machine (ELM) approach yields the joint weights of the input and hidden layers stochastically, which 

suffers from poor training speed, prone to drop into certain areas of local minimax, and sensitive 

choice of studying ratio. (36) No adjustment of the threshold value of the implicit-layer neurons is 

needed when training, and one can merely tune the number of implicit-layer neurons to yield the 

exclusive optimal outcome. (37) In contrast to classical training approaches, the ELM approach 

possesses quick learning speed and brilliant generalization characteristic. (38) 

In addition, the ELM network characteristics also make the prediction results occasionally deviate 

significantly in the prediction process. The cause is the stochastic generation of parameters at the 

entry side of the network leading to complex covariance with a certain probability, which in turn 

frequently leads to random volatility of the network output, so that the robustness of its forecasting 

results is decreased. In this paper, it is recommended that the input side of the extreme learning 

machine be refined using the superior worldwide search engine capability of the improved particle 

swarm algorithm and also decrease the complexity of the model training. The objective is to further 

enhance the stability of the prediction results while guaranteeing the SOC prediction precision of the 

model, thus ensuring the credibility of the prediction results. 

2. Theoretical Analysis

2.1. Extreme Learning Machine 

The extreme learning machine is employed to forecast the outputs of sophisticated nonlinear systems. 

(39) It has advantages such as a lower training factor, quicker acquisition, and stronger proficiency in

generalization. A three-layer configuration consisting of an import layer, an implicit layer, and an



export layer is adopted by the extreme learning machine, which acts on a stochastic foundation. (40) 

The joint weights are generated stochastically in the operation from the import layer to the implicit 

layer, as well as the thresholds of those neurons in the implicit layer. (41) With the structure illustrated 

in Figure 1, the process goes as follows. 

Figure 1 

Figure 1. ELM network structure. 

It is assumed that there are N diverse sets of samples for training 

(1)

In eq 1, xp ∈ Rn, indicating the size of the n-dimensional input variable; and yp ∈ Rm, indicating the 

adequate destination vector for export. If there exist k quantities of neurons in the ELM implicit 

layer, then when the input specification becomes xp, the relevant true output of the ELM can be 

denoted as 

            (2)

In eq 2, ωj denotes the joint weights of the sheltered layer neurons in relation to each unit in the 

introductory layer, bj (j = 1,2,···,L) indicates the threshold value of the i-th implicit-layer interneuron, 

g() indicates activated by the function, and βj indicates the joint weights of the implicit-layer neurons 

that correspond to the units in the export layer. 

Equation 2 is then simplified to derive 

𝐻𝛽=𝑌′             (3) 

In eq 3, Y′ is the output matrix, β is the matrix of export values of the weights, and H is the export 

matrix of the implicit layer, denoted by eq 4 

            (4) 

            (5)

            (6)

 

With the definition of the Moore–Penrose broad inverse matrix, (42) it can be concluded that 



            (7)

 

There is a generalized reciprocal matrix H of H+ in eq 7. 

2.2. Improved Particle Swarm Optimization Algorithm 

The particle swarm optimization (PSO) algorithm is a calculative technique that is used for evolution. 

(43) Based on the study of bird feeding performance, the underlying ideas of PSO comprise searching 
for the optimal method by sharing data among individuals. The individual birds are the particles used 
in the PSO algorithm. (44) As an efficient parallel optimization algorithm, PSO tackles a vast number 
of nonlinear, nondifferentiable, and multipeaked complex issues. It has developed dramatically due 
to its straightforward implementation and the small number of parameters to be tuned. Different 
types of improved particle swarm optimization algorithms have emerged and have been successfully 
applied in many scientific and engineering areas. In this paper, nonlinear inertia weights are used to 
improve the particle swarm algorithm based on the powerful optimization capability of the particle 
swarm algorithm and its series of excellent performances in neural network weight optimization, 
based on the study of inertia weights of critical parameters of the particle swarm algorithm. (45)

For the particle i, its position in N-dimensional space is denoted with the vector xi = (xi1, xi2,···,xip) 

and the rate of flight is denoted with the vector vi = (vi1,vi2,···,vip). There is a utility value for each 

particle, it is drawn by the goal function as well as knows the optimal location which it found so far 

(pb) and the location xi where it is right now. Additionally, which can be viewed as the experienced 

flight owned by the particle itself. In addition, each particle knows the optimal location (pg) of the 

whole set of particles detected up to now. That is precisely what particles do when they utilize their 

own experience as well as the optimal experience of their peers to decide their future actions. (46) 

It is initially generated by the PSO as a cluster of stochastic particles. (47) Then, the optimal useable 

settlement is found through iterations. The particles upgrade themselves in each iteration by 

tracking the two “extremes” (pb, pg). (48) When the two optimal values are identified, then the 

particle updates its rate and position by applying eqs 8 and 9. 

𝑖qm+1=𝜔𝑣𝑖qm+𝑥1𝜀(𝑝𝑖qm−𝑥𝑖qm)+𝑥2𝜀(𝑝𝑔qm−𝑥𝑖qm)       (8)

            (9) 

In the equation, ω is the inertial constant, viq is the velocity q-dimensional component of particle i at 

the m-th iteration, xiq denotes the position q-dimensional component of particle i at the m-th 

iteration, piq denotes the q-dimensional component of particle i at the best position, pgq denotes the 

q-dimensional component of the best position of all particles, x1 and x2 are weight factors, and ε is a 
stochastic number between [0, 1]. Based on this, this research proposes to replace the fixed weight 
with a variable ω, as shown in eq 10.

            (10)

 

In eq 10, tmax is the maximal number of iterations allowed and ωstart and ωend are the original set of 

inertia weights and the values as it expands to the largest permissible amount of iterations. Through 



several experiments, it is found that the implementation of the IPSO algorithm will have a 

dramatically enhanced performance when ωstart = 0.8 and ωend = 0.3, as the linear weight reduction 

strategy is straightforward and intuitive, which has superior optimization performance. 

Nevertheless, the search process of particle swarm is nonlinear and sophisticated. During the 

sophisticated ω generation process, the linear transformation fails to accurately capture the search 

process. The particle swarm is supposed to have a large ω value at the initiation of the iteration and 

a small ω value at the termination of the iteration. Based on this, this investigation improves the 

decreasing strategy shown in eq 11. 

            (11)

 

The process of the IPSO algorithm is presented in Figure 2. 

(1) A group of particles (the group size is N) is initialized, composed of random positions as well 
as rates.

(2) The adaptability value of each particle is assessed.

(3) A comparison is drawn for each particle between the fitness value and the best fitness pb it   
passes through, and if it is larger, then it is adopted as the current individual extreme pb. Similarly, the 
global extreme pg is updated.

(4) The weights ω are updated on the basis of eq 11.

(5) The rate and position of the particles are adapted in accordance with eqs 8 and 9.

(6) If the maximum number of iterations or the best adaptability is not satisfied, go to (step 2).

(7) End.

Figure 2 

Figure 2. Flowchart of the standard IPSO algorithm. 

2.3. IPSO-ELM Algorithm 

The stochastic character of the ELM priming leads to various issues that inherently arise in the model, 

which decreases the prediction precision. (49) Therefore, in this section, the IPSO algorithm is adopted 

to search for the best parameters of ELM, while the IPSO-ELM model (50) is built to improve the low 

prediction accuracy of SOC. Figure 3 illustrates the flowchart of the IPSO-ELM algorithm, which is in 

accordance with the evaluation of the SOC of lithium-ion batteries. 

Figure 3 

Figure 3. Flowchart of the SOC estimation based on IPSO-ELM. 

The detailed steps are listed as follows. 



(1) The particle population is initialized, as well as the stochastically generated input weights 
and thresholds are fed into the ELM training algorithm.

(2) 

The fitness evaluation is performed for each particle, and the root-mean-square error of the training 

set is taken as the fitness function of the particle 

            (12) 

In eq 12, N is the sample number. 

(3) Update local optimal particles and global optimal particles.

(4) Update the location and rate of particles to acquire new particles during the iteration.

(5) Identify if the ending condition is fulfilled (maximum number of iterations reached). Quit to

recover the optimal individual if it is satisfied; otherwise, jump to (step 2) and continue.

3. Experimental Analysis

3.1. Simulation Results and Analysis under the HPPC Condition 

For this experiment, a lithium-ion battery whose rated capacity is 4.2 V/50 Ah has been chosen as the 

experimental object. The experimental battery hybrid pulse power characteristic (HPPC) charging and 

discharging equipment is the model BTS200-100-104 power battery high-rate charging and 

discharging instrument for power batteries manufactured by Shenzhen Xinwei New Energy 

Technology Co. The apparatus is a triply temperature-independent high- and low-temperature 

chamber that operates at a controlled temperature of 25 °C from Dongguan Bell Experimental 

Equipment Co. The pulse characteristic curve of the cell is shown in Figure 4. 

Figure 4 

Figure 4. HPPC experimental voltage and current curve. 

To prove that the model presented in this paper has a stronger performance, IPSO-ELM (the method 

proposed in this research) and PSO-ELM (the traditional particle swarm optimization-extreme learning 

machine method) were established. A comparison of the optimization results in this paper is plotted 

for a more intuitive observation, as shown in Figure 5. 

Figure 5 

Figure 5. Optimal adaptability curves. 



Figure 5 illustrates that PSO falls into the local optimal solution at about 180 iterations. Nevertheless, 

IPSO remains optimized at 400 iterations when the optimal result is about 73%. Comparing the optimal 

results of IPSO with those of PSO, the difference between the optimal results of IPSO and PSO is about 

10%, which verifies the apparently enhanced optimization capability of IPSO. After training the model 

using the sample data set, test samples of the network are selected to test the trained IPSO-ELM 

model. The first 70% of the sample data were chosen as the training data, through which the model 

was trained, and then, the complete data with SOC of 0–1 were selected as the test data for the error 

analysis. A comparison of the prediction results of the IPSO-ELM algorithm proposed in this paper with 

the PSO-ELM algorithm and the ELM algorithm is carried out empirically, and the results are shown in 

Figure 6. 

Figure 6 

Figure 6. Comparison of SOC estimation results under the HPPC condition. 

It is clear from Figures 6 and 7 that the tendency of the predicted SOC values based on IPSO-ELM is 

quite similar to the actual SOC values of the lithium-ion battery, thus proving the validity of the 

proposed model. In addition, the predicted values of the improved IPSO-ELM are more accurate than 

those of the unmodified PSO-ELM, and the absolute errors of the estimates are all under 1%, which 

fully meets the demands of SOC estimation for lithium-ion batteries. The IPSO-ELM method proposed 

in this paper has performed relatively well in terms of estimation precision and stability, which also 

demonstrates that the lithium-ion battery SOC estimation algorithm based on the optimized ELM of 

the IPSO algorithm proposed in this paper works effectively and feasibly. 

Figure 7 

Figure 7. Error curves of SOC estimation under the HPPC condition. 

Both the mean absolute error (MAE) and the root-mean-square error (RMSE) are brought in 

for evaluation to better assess the prediction performance of respective models. The smaller the 

MAE value, the better the quality of the model and the better the accuracy of the prediction. The 

smaller the value of RMSE, the better the generalization performance of the prediction model. 

Meanwhile, the MAE and RMSE are expressed as follows 

            (13) 

(14) 

Furthermore, it is clearly seen from Table 1 that the RMSE and MAE of the refined IPSO-ELM model 

are 0.31 and 0.26%, respectively, compared with the unmodified PSO-ELM and ELM models. It is 

further demonstrated that the refined IPSO-ELM model has excellent estimation precision, offers a 

better fit, and its prediction speed is rapid. 



Table 1. SOC Estimation Error Results under the HPPC Condition 

MAE (%)algorithm      RMSE (%) running time (s) 

ELM       2.02 2.37 31.23 

PSO-ELM 1.92 2.27 55.91 

IPSO-ELM 0.26 0.31 53.21 

3.2. Simulation Results and Analysis under the BBDST Condition 

The lithium battery employed is the LFP50AH ternary lithium battery, which is tested with reference 

to the operating conditions set by the BBDST. The experimental battery charging and discharging 

equipment BTS750-200-100-4 Battery Test Device was supplied by Shenzhen Yakeyuan Technology 

Co. 

Figure 8a,b illustrates data on experimental currents and voltages under the operating conditions of 

the BBDST. As the BBDST conditions of operation are power discharges, it is observed that as the loop 

count rises, the discharge current grows and the battery end voltage overall shows a declining trend. 

Figure 8 

Figure 8. BBDST experimental voltage and current curve. 

The top 70% of the data were chosen for model training from the data sets that were used for the 

experiments under the BBDST condition, and then, the complete data with SOC of 0–1 were selected 

as the test samples of the network to test the trained model. The prediction results of the ELM model 

and the PSO-ELM model were compared with the IPSO-ELM model proposed in this paper, and the 

results of the experiment are displayed in Figure 9. 

Figure 9 

Figure 9. Comparison of SOC estimation results under BBDST condition. 

The SOC estimation results of different algorithms on the test set under the BBDST condition are 

presented in Figure 9, and the estimation errors are presented in Figure 10. It can be seen from Figures 

9 and 10 that the ELM and PSO-ELM estimation results do not converge properly to the true value, 

especially in the late stage of estimation, which shows a divergence trend and poor stability, and the 

estimation errors of the two algorithms reach 8 and 3%, respectively, which cannot fulfill the actual 

needs. The refined IPSO-ELM model has favorable convergence, and its estimation error is reduced to 

within 1% apart from individual points, which have a higher estimation precision. The IPSO algorithm 

offers a greater global discovery capability than the PSO algorithm, which enables IPSO-ELM to obtain 

the optimal model parameters, and the estimated model thus obtains better generalization 

performance. 

Figure 10 



Figure 10. Error curves of SOC estimation under the BBDST condition. 

The evaluation results of the estimation errors of the three algorithms on the test set are shown in 

Table 2. It can be evidently seen that the error values of IPSO-ELM are outperformed by the PSO-ELM 

and ELM algorithms for both RMSE and MAE. The foregoing shows that optimizing ELM parameters 

with the IPSO algorithm effectively enhances the generalization ability of the ELM model, and SOC 

estimation can be performed with more accurate prediction accuracy and a shorter running time. 

Table 2. SOC Estimation Error Results under the BBDST Condition 

MAE (%)algorithm      RMSE (%)  running time (s) 

ELM    0.46 0.68 21.52 

PSO-ELM 0.23 0.34 61.73 

IPSO-ELM 0.20 0.32 55.64 

3.3. Simulation Results and Analysis under the DST Condition 

DST represents a complex working condition with simplified urban operation conditions in the United 

States. With the purpose of further testing the SOC estimation accuracy of the IPSO-ELM algorithm, 

the DST working condition test was conducted for a ternary lithium battery with a rated capacity of 

70AH at 25 °C, and the BTS200-100-104 battery test equipment provided by Shenzhen Yakeyuan 

Technology Co., Ltd. was selected as the experimental platform. The voltage and current curves are 

shown in Figure 11. 

Figure 11 

Figure 11. DST experimental voltage and current curve. 

Under the condition of DST, the first 70% of the experimental data set was used to select as the model 

training, and then, the full data with SOC of 0–1 were selected as the test sample of the network to 

test the learned model. The prediction results of the ELM model and the PSO-ELM model were 

compared with the IPSO-ELM model proposed in this paper, and the experimental results are shown 

in Figure 12. 

Figure 12 

Figure 12. Comparison of SOC estimation results under the DST condition. 

It is evident from Figures 12 and 13 that the estimation error of the ELM model is larger than 4% at 

the final stage, and the precision of estimation is not good. The IPSO-ELM algorithm with parameter 

optimization has superior convergence and stability to the PSO-ELM and ELM, and its estimated value 



fluctuates slightly around the true value, and the absolute error of the test set is less than 1%, which 

perfectly suits the demand for SOC estimation for lithium-ion batteries. 

Figure 13 

Figure 13. Error curves of SOC estimation under the DST condition. 

For more visual analysis of the prediction results of each model, the prediction results are statistically 

presented as shown in Table 3. 

Table 3. SOC Estimation Error Results under the DST Condition 

MAE (%)algorithm     RMSE (%) running time (s) 

ELM 0.40 0.78 60.78 

PSO-ELM 0.29 0.36 72.17 

IPSO-ELM 0.11 0.14 68.34 

As can be observed from Table 3, the refined IPSO-ELM algorithm has better RMSE and MAE than PSO-

ELM and ELM. The SOC estimation error of the refined IPSO-ELM algorithm drops further compared 

to the PSO-ELM algorithm, with MAE and RMSE dropping to 0.11 and 0.14%, respectively. It shows 

that the suggested model is better than the PSO-ELM and ELM in performing lithium-ion battery SOC 

prediction; the optimization of the initial population by the IPSO algorithm enhances the ability of the 

algorithm to seek the optimal performance and is able to obtain a more precise model parameter in 

ELM. 

4. Conclusions

For the characteristics of energy storage lithium-ion batteries with strong nonlinearity, within 

this paper, an IPSO-ELM neural network algorithm to enhance the performance of SOC 

estimation is proposed. The IPSO-ELM method is extremely valuable when the input data (currents 

and voltages) are used for SOC estimation. Under the operating conditions of HPPC, BBDST, and DST, 

the IPSO-ELM model proposed in this paper generates lower MAE and RMSE compared to 

ELM methods. A comparison with the PSO-ELM model shows that IPSO-ELM generates lower test 

MAE and a sensible training time, and none of the test RMSE of IPSO-ELM exceeded 0.5%; it also 

improved the global optimization seeking capability of ELM and obtained more accurate model 

parameters. Therefore, the SOC values of lithium-ion batteries derived from IPSO-ELM can 

adequately reflect the latest trends in lithium-ion battery charge states. The outcomes show the 

high estimation accuracy and robustness of the IPSO-ELM algorithm for estimating the SOC of 

lithium-ion batteries. The subsequent further plan of the proposed IPSO-ELM model is supposed to 

enhance the computational efficiency and decrease the time expenditure while ensuring prediction 

accuracy. Further, the proposed algorithm is combined with deep learning to optimize and increase 

prediction efficiency. 
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