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Abstract— Distributed interconnected systems are om-
nipresent today. The development of advanced control methods
for such systems are still challenging. Herein, the real-time
applicability, flexibility, portability and ease of implementation
are issues of the existing control solutions, especially for more
advanced methods such as model predictive control. This
paper is addressing these issues by presenting an efficient
modular composition scheme for distributed fast nonlinear
systems. The advantage of this modularization approach is the
capability of changing control objectives, constraints, dynamics
and system topology online while maintaining fast computation.
This work analyzes the functions that have to be provided for a
continuation generalized minimal residual method (CGMRES)
model predictive controller based on the underlying control
problem. The specific structure of these functions allows their
decomposition into suitable fast modules. These modules are
then used to recompose the functions which are required for
the control of distributed systems in a computational efficient
way, while maintaining the flexibility to dynamically exchange
system parts. To validate this computational efficiency, the
computation time of the proposed modular control approach
is compared with a standard nonmodular implementation in a
pursuit scenario of quadrotor unmanned aerial vehicles (UAV ).
Furthermore the real-time applicability is discussed for the
given scenario.

I. INTRODUCTION

The significance of distributed interacting systems is in-
creasing steadily with the recent demand of interconnected
smart devices. This development is present in almost all
fields of technology affecting modern society, e.g. transport,
energy systems, robotics, etc. which makes the control of
such complex systems highly relevant. Distributed systems
consist of single entities named agents. Their interaction
is described by mutual couplings. This type of systems
typically suffers from complexity, but offers advantages such
as flexibility, efficiency and security by redundancy. The
control of a distributed systems is therefore facing two main
issues:

1) Maintaining inherent flexibility of distributed systems:
Refers to the flexibility of changing single elements or
control objectives at runtime, e.g. if a robot is defect,
another robot can overtake its task. If the new robot has
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different physical dynamics, the control of the whole
system has to be readapted to maintain an optimal
result.

2) Computational efficiency for real-time applicability:
As dynamics and couplings of each agent have to
be represented within the control, the computational
burden for large sets of agents e.g. robots is high.

A modern approach to control distributed systems is
model predictive control (MPC), which allows to model
couplings as mathematical constraints and to exploit system
dynamics to achieve an optimal controlled system behavior.
On the other hand MPC is computationally expensive, which
becomes especially critical for real-time control of fast non-
linear systems and large scale problems. Typical examples
of such distributed fast systems are cooperation scenarios in
mobile robotics. In general a cooperation scenario describes
agents that are cooperating to achieve a common goal, e.g. an
unmanned aerial vehicles (UAV) pursuit scenario to reduce
costs and weight for expensive localization equipment. The
basic idea is: one drone has the task to geo-localize the
transport caravan and other drones just follow with the load.
Due to its simplicity, this example is used representatively
as validation scenario within this work.

To address the problem of computational efficiency, a
fast nonlinear model predictive control (NMPC) algorithm
with constraint handling is required. A literature review
on several such NMPC approaches is given in [7]. Some
of these algorithms are implemented in the comprehensive
fast model predictive control framework ACADO [4]. Here
shall be mentioned the multiple shooting Gauß-Newton
approach with approximated Hessian which is interesting
for fast and stable computation. ACADO features nonlinear
constraint handling, various solver interfaces, integrators, a
code-generator and provides benchmark examples for fast
nonlinear model predictive control e.g. a quadrotor UAV .
The reason for not adapting this framework for the presented
work is its complexity. As the adaptation of the framework
requires profound knowledge of the inner structure, it might
be interesting for future developments.

Most fast model predictive control algorithms are based on
the exploitation of the Hamiltonian-Jacobi-Bellmann func-
tions. One example is the NMPC package GRAMPC (acces-
sible via [5]) which is based on a gradient descent method.
The package offers transparent fast code in C and provides
the example of a nonlinear quadrotor model as fast nonlinear
system benchmark example similar to ACADO. One major
draw-back of the gradient descent method is the strong
dependancy of the computation time from the condition of



the controlled system. Futhermore from an implementational
point of view, there was no inequality constraint handling
implemented at the time of access.

A NMPC algorithm directly related to distributed systems,
is proposed by [1]. It presents a finite set predefined feasible
control sequence method for multi UAV systems. Working
with a limited control sequence set, also limits the computa-
tional burden. On the other hand the limited set can decrease
the optimality of the solution and the set size has to be
increased with the nonlinearity of the system.

This leads finally to the continuation generalized minimal
residual (CGMRES) package by Ohtsuka (accessible via
[8]) which offers an NMPC with exceptional low com-
putation time. The basic CGMRES concept is presented
in [8],[12],[13],[14],[15]. It is applicable on fast nonlinear
systems and offers nonlinear inequality constraint handling
with an auxiliary variable method. More detailed informa-
tion on this constraint handling method is given in [11].
Besides these advantages, its compact and transparent code
allows fast adaptations and debugging, which makes it the
choice for this work. To be more specific, the experiments
shown in this paper are using a condensed multiple shoot-
ing (CMSCGMRES) derivative [16],[17],[18] of CGMRES,
which offers higher numerical stability than the standard
CGMRES approach.

To address the flexibility issue of distributed system
NMPC, this paper is presenting a composition scheme that
provides the required function for a CGMRES solver in a
modular way. For this purpose, the required functions for
solving a typical optimal control problem (OCP) are first
presented in II. In section III, these are extended to represent
distributed systems. The resulting functions and their mathe-
matical structure are analyzed in section IV and decomposed
into single elemental functions. This decomposition exploits
the mathematical structure to avoid computationally expen-
sive matrix multiplications. The elemental functions are then
provided in a compiled version. Out of these compiled func-
tions, arbitrary optimal control problems can be recomposed
at runtime. In standard nonmodular approaches, the system
functions are determined fix in compilation time which leads
to an efficient computation. The proposed method achieves
a similar computational efficiency due to the choice of ele-
mental functions, but furthermore allows runtime changes of
system topology, dynamics, couplings and control objectives.
The main contribution therefore allows the application of
model predictive control on dynamically changing distributed
fast nonlinear systems combined with the computational effi-
ciency of compiled fast code. To validate this efficiency, the
proposed method is applied in a quadrotor pursuit scenario in
section V and compared with a nonmodular implementation.
The final conclusion and future work is presented in section
VI.

II. OPTIMAL CONTROL PROBLEM

In terms of control engineering the nx states x of a plant
are controlled by nu controls u, that are each concatenated
to state x ∈ Rnx and control vector u ∈ Rnu . The control

of a plant with a model predictive controller is typically
equivalent to the solving of an optimal control problem
(OCP) like

min
u(·)

J (u) =V
(
x
(
t f
)
, t f
)
+
∫ t f

t0
l (x(τ) ,u(τ) ,τ)dτ (1)

u.c. ẋ = f(x,u,τ) , 0≥ c(x,u,τ)
x(t0) = x0, τ ∈

[
t0, t f

]
,

over a receding horizon. The desired system behavior is
defined via a minimization problem of a cost function J and
can be specified via terminal (V ) and integral (l) cost func-
tions. f is representing the dynamic of the plant expressed
by differential equations. The in-/equality constraints of the
system are defined via the constraint function c. This optimal
control problem can be solved for the interval

[
t0, t f

]
under

use of boundary values e. g. initial states x0.
The fast NPMC algorithm CGMRES [8] is based on

the analysis of the Hamiltonian-Jacobi-Bellmann function
by using information about the OCP optimality conditions.
The CGMRES package [8] comes with inequality constraint
handling via the auxiliary variable transformation [11] which
introduces slack variables α ∈ Rnα to model the inequality:

0≥ c(x,u,τ) → 0 = c(x,u,τ)+α
2, α

2 > 0 ∀α. (2)

Under use of the package inherent constraint handling (2),
the Hamiltonian yields to
H (x,u,λ , t) = l (x,u, t)+λ

>f(x,u, t)+µ
>c(x,u,α, t)−κ

>
α (3)

with the state Lagrange multipliers λ (t) ∈ Rnx and con-
straint Lagrange multipliers µ (t) ∈ Rnc . The slack variable
as well as the constraint Lagrange multipliers are treated as
additional optimization variables. The optimization variables
are concatenated to vector

uc (t) =
[
u> (t) ,α> (t) ,µ> (t)

]>
. (4)

This combined control vector is updated by solving the first
order optimality condition derived from (3)

0 !
= Huc (x,u,λ ,µ,α, t)

=

 ∂H
∂u
∂H
∂α
∂H
∂ µ

=

 ∂ l
∂u +

∂ f
∂u
>

λ + ∂c
∂u
>

µ

∂c
∂α

>
µ−κ

c

∈ Rnu

∈ Rnα

∈ Rnc

(5)

with the CMSCGMRES method. The optimality condition
states that the descent of a smooth and convex function
is zero at its minimum. Besides Huc (x,u,λ ,µ,α, t), the
system dynamics have to be provided via f(x,u, t) to be
able to predict the system behavior by integrating the system
dynamics through time. Finally, also the state derivative of
the Hamiltonian

Hx (x,u,λ ,µ,α, t) =
[

∂ l
∂x +

∂ f
∂x
>

λ + ∂c
∂x
>

µ

]
∈ Rnx (6)

is provided for updating the state Lagrange multipliers λ .
For executing a NMPC based on OCP (1), Hu, Hx, the

initial states x0 and an initial guess uc (0) have to be be
provided to the algorithm. In the following section, we
discuss how to exploit the structure of Hu (5) and Hx (6)
to efficiently solve cooperation control problems.



III. OPTIMAL CONTROL PROBLEM FOR DISTRIBUTED
SYSTEMS

An example of a central control of a distributed system of
three coupled quadrotors is given in Fig. 1. In the presented

Fig. 1. Scheme of UAV cooperation

cooperation scenario every quadrotor represents an agent
with its uncoupled dynamic fi, constraints ci and costs li. To
describe the coupled systems behavior, the single agents are
interconnected with coupling constraints ci j and/or coupling
costs li j. Coupling costs are additional cost function terms
which are often referred to as a ”weakened constraint”. The
couplings in Fig. 1 do not have to be physical couplings, but
can also represent mathematical constraints. The constraints
can act on several quadrotors e.g. ”Coupling 1” or just one
quadrotor. If the arrows in Fig. 1 are considered to represent
the direction of information, for the given example ”Agent
3” reacts on ”Agent 2” but not in reverse.

For a set of agents i∈ V = {ν1, ...,νN}, each coupled with
neighbours j ∈N i = {ν j ⊆ V |{νi 6= ν j}} by couplings E =
{εi j = {νi,ν j}|νi,ν j ∈N i}, the OCP results to (7).

min
u(·)

J (u) =∑
i

V
(
xi
(
t f
)
, t f
)

(7)

+∑
i

∫ t f

t0
[ li (xi (τ) ,ui (τ) ,τ)

+∑
j

li j
(
xi (τ) ,x j (τ) ,ui (τ) ,u j (τ) ,τ

)
]dτ

u.c. ẋi = fi (xi,ui,τ) 0≥ ci (xi,ui,τ)
xi (t0) = xi,0 0≥ ci j

(
xi,ui,x j,u j,τ

)
τ ∈

[
t0, t f

]
,νi ∈ V ,ν j ∈N i.

The cardinality |V |= N represents the amount of elements
within set V . Respectively |E | states the amount of Cou-
plings in the system and

∣∣N i
∣∣ the amount of neighbours of

Agent i. According to (4) the optimization variables for a
distributed system are concatenated to

uc (t) = [u>1 (t) , ...,u>N (t) , (8)

α
>
1 (t) , ...,α>N (t) ,α>N+1 (t) , ...,α

>
N+|E | (t) ,

µ
>
1 (t) , ...,µ>N (t) ,µ>N+1 (t) , ...,µ

>
N+|E | (t) ]

>

The Hamiltonian (3) for a distributed system corresponds for
the given concatenation (8) to

H =
N

∑
i
[ li (xi,ui, t)+λ

>
i fi (xi,ui, t) ... (9)

+ µ
>
i ci (xi,ui,αi, t)−κ

>
i αi

+
|N i|

∑
j
( µ
>
i j ci j ( x1, ...,xN ,u1, ...,uN ,αi j, t )

− κ
>
i j αi j ) ] .

Accordingly the first order optimality condition for the
distributed system yields to

Huc =



∂ l1
∂u1

+ ∂ f1
∂u1

>
λ1 +

∂c1
∂u1

>
µ1...

+∑
|N i|
j

(
∂ l1, j
∂u1

+
∂c1, j
∂u1

>
µ1 j

)
...

∂ lN
∂uN

+ ∂ fN
∂uN

>
λN + ∂cN

∂uN

>
µN ...

+∑
|N N |
j

(
∂ lN, j
∂uN

+
∂cN, j
∂uN

>
µN j

)
∂c1
∂α1

>
µ1−κ1
...

∂cN(N−1)

∂αN(N−1)

>
µN(N−1)−κN(N−1)

c1
...

cN(N−1)



(10)

with the state derivative of the Hamiltonian

Hx =



∂ l1
∂x1

+ ∂ f1
∂x1

>
λ1 +

∂c1
∂x1

>
µ1...

+∑
|N i|
j

(
∂ l1, j
∂x1

+
∂c1, j
∂x1

>
µ1 j

)
...

∂ lN
∂x + ∂ fN

∂xN

>
λN + ∂cN

∂xN

>
µN ...

+∑
|N N |
j

(
∂ l1, j
∂xN

+
∂c1, j
∂xN

>
λN j

)


. (11)

In the following, the structure of (11) and (10) is exploited
for an efficient composition.

IV. COMPOSITION STRATEGY FOR DISTRIBUTED
SYSTEMS

For fast model predictive control, the required equations
are preferably given in a fast programming language e.g.
C. Standard MPC control implementations form the central
optimal control problem (7) in compilation time and then
use the compiled fast functions within runtime. This has the
advantage of fast running code, but with the draw-back, that
for each adjustment of the system topology, control objective,
etc., the functions have to be compiled again. The following
composition idea, tries to combine the flexibility of runtime
adjustments and computational speed of compiled functions.
For this reason, we exploit the OCP structure to decompose
the system functions into its elemental functions. These are
compiled once and can than be recomposed to the desired
OCP at runtime. The composed OCP can than be adapted at
runtime according to the system topology and objectives by
exchanging the corresponding elemental functions.



Recalling this, (11) and (10) are analyzed in respect to
their modularity respective these elemental functions. Both
equations are sums of vector-valued functions (e.g. ∂ l1

∂x1
)

and multiplications of matrix-valued functions with vectors
(e.g. ∂ f1

∂x1

>
λ1). Each summand is just depending on the

corresponding agents data and/or the neighbours data. With
this conclusion the computational expensive multiplications
of the matrix-valued functions with vectors can be expressed
by a vector valued function

e.g.
∂ f1 (x1,u1, t)

∂x1

>
λ1 ≡ s(x1,u1,λ1, t) (12)

In reversal conclusion (11) and (10) can be composed by
adding up the summands given in Table I. As a result, no
matrix multiplication is needed within runtime, as each term
in Table I can be expressed by a vector-valued function
and the multiplication can therefore be executed before the
compilation of the system functions.

TABLE I
COMPOSITION FUNCTIONS

Agent i with li (xi,ui,τ), fi (xi,ui,τ), ci (xi,ui,τ)
∂ li(xi ,ui ,τ)

∂xi
, ∂ li(xi ,ui ,τ)

∂ui
, ∂ fi(xi ,ui ,τ)

∂xi

>
λi,

∂ fi(xi ,ui ,τ)
∂ui

>
λi,

∂ci(xi ,ui,τ)
∂xi

>
µi,

∂ci(xi ,ui ,τ)
∂ui

>
µi,

∂ci(xi ,ui ,τ)
∂αi

>
µi

Coupling ij with li j
(
xi,x j,ui,u j,τ

)
, ci j

(
xi,ui,x j,u j,τ

)
∂ li j(xi ,ui ,x j ,u j ,τ)

∂xi
,

∂ li j(xi ,ui ,x j ,u j ,τ)
∂x j

,
∂ li j(xi,ui ,x j ,u j ,τ)

∂ui
,

∂ li j(xi ,ui ,x j ,u j ,τ)
∂u j

,
∂ci j(xi ,ui,x j ,u j ,τ)

∂xi

>
µi j ,

∂ci j(xi ,ui ,x j ,u j ,τ)
∂x j

>
µi j ,

∂ci j(xi ,ui ,x j ,u j ,τ)
∂ui

>
µi j ,

∂ci j(xi ,ui ,x j ,u j ,τ)
∂u j

>
µi j ,

∂ci j(xi ,ui ,x j ,u j ,τ)
∂αi

>
µi j ,

The idea of the composition is to predefine agents with
its system functions, given in the upper part of Table I and
couplings with the corresponding functions of the lower part
of Table I. Out of these predefined modules the composer is
than able to create the corresponding central optimal control
problem for any arbitrary topology of the system. In this
context also different control objectives can be formulated
via different couplings, as the cost function li j can be adapted
accordingly.

In combination with fast functor/pointer access, the com-
putational overhead can be limited to the functor/pointer
access times. An example for the access scheme is given in
Listing 1. It shows the composition of the system dynamics,
concatenated of the dynamics of all agents given by agentlist.
The index arrays (e.g. input indices) allow fast access to the
variables of Agent i (e.g. u[control indices[i]]) in the con-
catenated vectors of the global states (e.g. t,x,u, timevarpar
in the snippet).

Listing 1. Composition of system dynamics

i n l i n e void f u n c t i o n f ( double∗ out , double t ,
double∗ x , double∗ u , double∗ t i m e v a r p a r ){

f o r ( i n t i =0 ; i<t h i s−>a g e n t l i s t . s i z e ( ) ; i ++){
a g e n t l i s t [ i ]−> f u n c t i o n f (& o u t [ s t a t e i n d i c e s [ i ] ] , t ,

&x [ s t a t e i n d i c e s [ i ] ] ,
&u [ c o n t r o l i n d i c e s [ i ] ] ,
&t i m e v a r p a r [ t i m e v a r p a r i n d i c e s [ i ] ] ) ;}

}

The code snippet in Listing 1 is also pointing out the
modularity of the system. Agent i can be easily exchanged
by referring the pointer to agent i in agentlist to another
agent instance. This is also valid for control objectives, con-
straints, etc. As an example, the modularization is explained
with a change of control objectives. Consider two different
couplings have been predefined:
• follow drone with fix distance
• hover at position

Each of these objectives has a representation by a set of the
functions given in Table I. An array of coupling pointers
is storing the couplings used for the composition of the
central optimal control problem. First the ”hover at position”
coupling is applied on a quadrotor by adding the pointer to
the ”hover at position” coupling to the list of couplings.

Afterwards the ”follow drone with fix distance” objective
shall be applied. Accordingly, the previous pointer to ”hover
at position” is substituted by a pointer to the ”follow drone
with fix distance” element. An advantage of the proposed
modularization is, that without equation simplifications the
composed functions are mathematically identical to the
nonmodular formulation. Therefore the controllability and
stability of the controlled system is not affected and directly
determined by system and solver properties, if the additional
calculation overhead can be neglected. In the following
section the computational efficiency of the modular compo-
sition method is validated by a quadrotor UAV cooperation
scenario.

V. EXPERIMENTAL VALIDATION

For ease of comprehension, the composition efficiency is
validated with a simple persuit scenario of two quadrotors.
The quadrotors are implemented as 3D-models in the simu-
lation environment V-REP. According to (7) the scenario is
described by the OCP

min
u1,u2

J =
∫ t f

t0
(x∗1−x1)

>Q1 (x∗1−x1)+u>1 R1u1 (13)

+
∫ t f

t0
(x∗2−x2)

>Q2 (x∗2−x2)+u>2 R2u2

+ qd

√
(x1− x2)

> (x1− x2)−ddes dτ

u.c. i ∈ [1,2]
ẋi
ẏi
żi
ψ̇i
v̇ f ,i
v̇s,i

 =


v̇ f ,i cos(ψi)− v̇s,i sin(ψi)
v̇ f ,i sin(ψi)+ v̇s,i cos(ψi)

0.8827 ·uz,i
−0.005879 ·ψi +1.265 ·uψ,i
−0.8799 · v f ,i +3.273 ·u f ,i
−0.5092 · vs,i−1.458 ·us,i

 (14)

c : −1 < u < 1 (15)
x1 (0) =

[
0,0,0,0,0,0

]
, x2 (0) =

[
0,1,0,0,0,0

]
(16)

Q1 =
[
1,1,2,1,0,0

]
, Q2 =

[
0,0,2,1,0,0

]
(17)

R1 =
[
10,10,10,10

]
, R2 =

[
10,10,10,10

]
(18)

qd = 10, ddes = 1, µi (0) =
[
1,1,1,1

]
·10−4 (19)

αi (0) =
[
0.9,0.9,0.9,0.9

]
, κi (0) =

[
1,1,1,1

]
·10−4 (20)

ζC = 1, αC = 1, ∆t = 0.1,τ f = 1, (21)

nhor = 10, h = 0.001, ε = 10−8, itmax = 30 (22)



with the position ~x = [x,y,z] the yaw angle ψ and the
linear forward v̇ f , respective sideward velocity v̇s. For ease
of notation the time dependancy of variables and funtions
are not explicitly shown in (13)-(15). The control objectiv
(13) of UAV1 is to track a given target state x∗1 (24) by
penalizing the state error with Q1, whereas Q2 is used for
tracking the z axis of UAV2, to force it to stay in the xy-
plane. The control penalties R1,R2 reduce the control action
ui =

[
v̇ f ,i, v̇s,i,uz,i,uψ,i

]
and damp the system. The actual

cooperation is introduced by the distance penalty term in
(13). As both UAV s try to keep the same distance and UAV1
is additionally tracking a target position, UAV2 tries to follow
UAV1 with the given distance of ddes = 1. Here the advantage
of the modular composition scheme can be seen. According
to the composition algorithm, the only function that has to
be provided for the coupling is

∂ l21

∂x1
=−∂ l21

∂x2
=

(~x1−~x2)qd

2
√
(~x1−~x2)

> (~x1−~x2)−d
. (23)

which can be used for UAV 1 and in reverse for UAV 2.
As most of the desired constraints are either dependant on
controls or states, most composition functions (Table I) are
equal to zero and do not have to be considered. These can
be dynamically excluded from the execution which saves
computation time.

In the scenario both UAV s are constrained by their dynam-
ics (14). Additionally the control limitation (15) is realized
via the auxiliary variable method (2). The corresponding
initialization of the Lagrange multipliers µ , the slack vari-
ables α and the slack penalty κ is given in (19)-(20).
The system is initialized in an optimal state (16), where
ddes = 1 is fulfilled. (17) is showing the state penalty and
(18) respectively the control penalty. qd in (18) is the penalty
of the ”keep fix distance” cost term, whereas ddes is repre-
senting the target distance between the UAV s. CMSCGMRES
related parameters are given in (21)-(22) by continuation
convergence ζC, horizon adaptation factor αC, the simulation
and control update timestep ∆t, the horizon time τ f with the
horizon discretization nhor, the forward difference step h, the
precision ε and the maximal amount of iterations itmax.

To analyze the systems behavior, a step signal is applied
on reference x∗1 of UAV1 at time t ≈ 20s

x∗1 (0) = [0,0,0,0,0,0] , x∗1 (≈ 20) = [1,0,0,0,0,0] . (24)

which is illustrated by Fig. 2. The figure shows the com-
parison of the modular composition technique (left hand
side) with a nonmodular implementation (right hand side).
Nonmodular implementation refers to providing the system
functions for the complete system in a closed, compiled form
directly to the Solver. In the plots, the z-axis is not shown
for ease of visualization, as both UAV s show insignificant
deviation from the tracked z = 0. The XY-Plane inserts show
the system behavior in bird’s eye view, where the UAV s are
drawn as circles and their distance is shown as straight line.
As expected UAV1 is reaching the desired position, marked
with a square. Both UAV s try to keep a constant distance and

therefore UAV2 is following UAV1. The comparison between
the plots of both approaches confirm identical behavior.
This is expected, as the composed system functions and the
nonmodular system functions are mathematically identical.
Small derivations in the figures are caused by the simulator,
the disturbance of the controller computation by other system
tasks and because the trajectory change is applied manually
and therefore not exactly triggered at 20s.

Fig. 2. Data of composed and nonmodular pursuit scenario: UAV1 and
UAV2 keep distance d = 1 and UAV1 tracking target

The slightly delayed reaction of UAV2 in the actuation plots
is caused by the trade-off between energy optimality (control
penalty) and fulfilling the coupling constraint. This can also
be seen by the small deviation in the distance (considering
the scale of the image). To assess the computational effi-
ciency of the proposed modularization, the computation time
plots of Fig. 2 are compared. Both plots show peak values
of ≈ 8ms which are assumed to be produced by external
influences such as interruptions of the simulator or controller
by other system processes, as they appear arbitrarily and
without correlation to the system trajectory. Globally the



computation time does not exceed tcomp = 10ms which vali-
dates the real-time applicability for the given control update
frequency of 1/∆t = 10Hz and shows the potential of the
proposed composition in combination with the chosen solver.
In reverse conclusion this setup would allow the real-time
control of up to 10 similar scenarios, controlled by a single
computer. The mean computation time of the control with
modular composition is t̄comp = 3.551ms, which represents a
computational overhead of 16% to the t̄comp = 3.057ms of the
nonmodular OCP. Here shall be stressed that the advantage
of the composition scheme is, that the composed system
can be adapted without recompilation at runtime, while
the nonmodular system functions have to be recompiled
for any changes in the dynamics, objectives or topology.
Due to the exploitation of the OCP structure (choice of
elemental functions) to avoid matrix multiplications in the
composition, the computational overhead is remarkably low
as 16% for this scenario. For more complex agents this ratio
would further decline as the number of functor/pointer access
stays the same, but the effective time within the functions
would be higher. This low computational overhead confirms
the computational efficiency of the proposed technique in
connection with the CMSCGMRES method.

VI. CONCLUSION AND FUTURE WORK

This work presents a modularization technique that tar-
gets efficient modular real-time control of distributed fast
nonlinear systems. It shows how the required functions for
solving an OCP of distributed systems with CGMRES can
be mathematically decomposed into elemental functions.
To control a distributed system, these elemental functions
(Table I) are defined for each type of system entity (agent)
and interconnection (coupling) and compiled once. Out of
these compiled functions, the OCP for any arbitrary scenario
based on the defined agents and couplings can be composed
at runtime. This procedure in combination with the proposed
composition has two major advantages:

• An NMPC control can by applied that dynamically
adapts to a change in the distributed system topol-
ogy, couplings, dynamics and control objectives under
perpetuation of the low level language C performance
without recompilation.

• The mathematical decomposition demonstrates, how
runtime matrix multiplications in the composition of the
Hamiltonian and its derivatives can be avoided by defin-
ing functions that directly contain these multiplications.
This speeds up the computation to achieve a similar
performance as solving a nonmodular OCP.

The computational efficiency of the composition approach
is validated with the presented cooperation scenario of a
drone pursuit scenario (section V). The comparison with a
direct nonmodular implementation of the OCP shows, that
the full modular composition requires a small computational
overhead of 16%. In combination with the CMSCGMRES
OCP solver, the real-time applicability could be confirmed
for the given scenario.

The presented work represents the first stage of solving
optimal control problems of distributed systems. Future
work will address an adaptation of the composition scheme
to distributed model predictive control algorithms. Further
investigation will also address the system behavior under
runtime switching of control objectives. Implementation of
other solvers e.g. ACADO are also an interesting future field
of studies.
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