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ABSTRACT
The focus of the current article is on Operational Space Con-
trol of a single degree of freedom robotic arm with hysteretic
joint behaviour due to actuation by a single Shape Memory
Alloy (SMA) wire. A Closed Loop Inverse Kinematics Algo-
rithm is used in the outer loop with Adaptive joint control
in the inner loop. A composite stability analysis is used to
analyse the stability of the closed loop system and finally
successfully validated through simulation study.

CCS Concepts
•Computer systems organization→ Robotic control;
•Computing methodologies → Systems theory;

Keywords
Shape Memory Alloy (SMA) Actuator; Robotic Arm; Hys-
teresis; Adaptive Control; Inverse Kinematics; Stability.

1. INTRODUCTION
Shape Memory Alloy (SMA) actuators can be classified

under special class called as Smart Actuators which posses
special advantages compared to conventional actuators such
as electric, pneumatic or hydraulic actuators. Some of the
key advantages of SMA actuators are that they have high
force to mass ratio, noiseless actuation and bio-compatibility
etc. Dependeing on the design, shape and form (sheet, wire,
spring) SMA actuators have found various applications in
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medical domain [15, 14, 16], automobile industry [18], mo-
tors [17], manipulators [7, 12, 13] and other general purpose
actuators [3, 4, 10, 9, 8, 11]. Although SMA actuators have
various advantages, they have limited applications due to
presence of nonlinear hysteresis behaviour.

In literature different solutions exist for modelling and
control of Shape Memory Alloy (SMA) actuators. In [8] we
can find a survey of modelling and control methods applica-
ble for SMA actautors.

In [5, 6] sliding mode control was used to perform Joint
space control and Operational Space control respectively on
a Light weight robotic arm. Here the actuation was per-
formed using two SMA wires.

The contribution of the current article can be summarized
as follows:1) Control of Robotic arm actuated by single SMA
wire. 2) Operational Space control with inner loop Adap-
tive control to handle a nonlinear hysteretic joint. 3)And
finally Composite stability analysis of the closed loop adap-
tive control system. The remainder of the paper is organ-
ised as follows: First the dynamic of the robotic arm with
Shape Memory Alloy (SMA) is briefly presented. Then the
operational space control is discussed which includes Closed
Loop Inverse Kinematics (CLIK) algorithm in the outer loop
and Adaptive Joint Space control in Inner loop. Composite
stability analysis of the two loops is discussed followed by
validation through simulation.

2. ROBOTIC ARM USING SHAPE MEMORY
ALLOY (SMA) WIRE ACTUATOR

Here we will present the mechanical design and Dynamic
model of the Robotic arm which uses Shape Memory Alloy
(SMA) wire as the actuator.

2.1 Mechanical Design
The mechanical design of the SMA actuated robotic arm

can be seen in Figure-1. The main structure of the robotic
arm consists of a base followed by two carbon-fibre links with
length 100 mm and 150 mm respectively. The second link
is a carbon-fibre tube with an end-effector at the end. The
second link is actuated through a rotational joint designed
in [4]. The rotational joint consist of two couplers of radius
7.5 mm named as coupler-1 and coupler-2 with a torsional
spring sandwiched between them. The coupler-1 is attached
to the winding wheel through an SMA wire and the coupler-2
is connected to another winding wheel through a rigid wire.
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Figure 1: CAD model of the Robotic arm with SMA
actuated Joint [5, 6].

When voltage is applied to the SMA wire , the length of
the SMA wire shortens and pulls the coupler-1 resulting in
displacement of the joint measured as θ. The robotic arm
has a maximum displacement angle of 85 degrees in x − z
axis. The total weight of the assembly of the given robotic
arm measures around 45 g.

2.2 System Modeling
The general schematic of the SMA actuated robotic arm

with controller can be seen in Figure-2. The actuator model
can be subdivided into the mathematical model of the SMA
wire, the kinematics and Dynamics of the robotic arm. Fur-
ther the nonlinear model of the SMA wire can be subdi-
vided into Thermal Dynamics, Phase Transformation and
wire Constitutive model. For further details of the nonlin-
ear model of the SMA wire please refer to [5] and [6]. The
input to the closed loop system is cartesian position of the
end-effector, while the Operational Space control which con-
sist of Closed Loop Inverse Kinematic Algorithm generates
the reference trajectory for the Joint Space inner control.
The inner joint space controller generates the required volt-
age to actuate the SMA wire in-turn rotating the joint of
the manipulator. Next we will describe the kinematics and
dynamics of the robotic arm.

2.2.1 Kinematics and Dynamics.
In this section we will briefly describe the kinematics and

dynamics.

Kinematic Model. The kinematics of the SMA actuator
is given by

ε̇ = −φθ̇
l0

(1)

where ε̇ is the strain rate of the SMA wire, φ is the radius
of the coupler, l0 the initial length of the SMA wire and θ̇

Figure 2: Control scheme of SMA actuated robotic
arm
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Figure 3: Open-Loop Hysteresis Behaviour in the
Robotic Arm, with Input reference voltage and Out-
put Rotational Joint displacement in degrees.

is the angular velocity of the coupler-1. Here it should be
noted that only the coupler-1 is rotating and the coupler-2
is rigidly attached to the winding wheel through a rigid wire.

Dynamics. The dynamic model of the robotic arm actu-
ated by SMA wire can be given by

M(θ)θ̈ + Vm(θ, θ̇)θ̇ + g(θ) + Fdθ̇ + Φ(θ, θr) = τw (2)

where θ, θ̇, θ̈ are the position, velocity and acceleration
of the systems, M(θ) is the inertia matrix, Vm(θ, θ̇) is the
centripetal-coriolis matrix, g(θ) is the gravity term, Fd is the
viscous coefficient term, Φ(θ, θr) is the nonlinear hysteretic
term. Here τw is the input torque applied to the manipulator
joint by the SMA wire which can be computed using

τw = Fwφ = Aσφ (3)

where σ is the stress in the SMA wire, φ is the radius of
the coupler, A = 4.9 × 10−8 m2 is the transversal area of
the coupler. The complete dynamic model is simulated in
the Simmechanics environment of Matlab/Simulink. Fur-
ther details of the model can be obtained from [5] and [6].
The nonlinear hysteresis problem present in the joint of the
robotic arm can be seen in the Figure-3.

3. OPERATIONAL SPACE CONTROL
The operational space control is discussed here. The op-

erational space control can be further subdivided into outer
loop Closed Loop Inverse Kinematics and Inner loop Adap-
tive Joint control.



3.1 Closed Loop Inverse Kinematics
The outer loop which consist of Closed Loop Inverse Kine-

matics algorithm is discussed here. The forward kinematics
can be defined by

xe = f(θ) (4)

and the velocity as below

ẋe = J(θ)θ̇ (5)

where f(θ) is the forward kinematics and J(θ) is the jaco-
bian. Let us define the desired end-effector error as follows

eo = xd − xe (6)

where xd is the desired end-effector position and xe is the
true end-effector position. Let us choose the Lyapunov func-
tion

Vo =
1

2
eToKoeo (7)

where Ko is a symmetric positive definite matrix and Vo is
positive definite. Now differentiating Vo with respect to time
we get

V̇o = eToKoẋd − eToKoẋe (8)

Substitute ẋe = Jθ̇ in the above equation and using θ̇ =
JTKoeo [1] we get

V̇o = eToKoẋd − eToKoJJ
TKoeo (9)

= −eToKo

[
JJTKoeo − ẋd

]
(10)

≤ −λ1||eo||
[
λ1λ2||eo|| − ||ẋd||

]
. (11)

The error dynamic system ėo is stable if the following con-
dition (12) is satisfied

||ẋd|| ≤ λ1λ2||eo|| (12)

where we have λ1 = λmax{Ko} and λ2 = λmax{J2} and
λmax is the respective maximum eigen value.

3.2 Adaptive Joint Control
Here we will briefly present the Inner loop Joint con-

trol.We will utilize an adaptive control solution based on [2].
Let us define the joint tracking error e(t) ∈ Rn as follows

e = θd − θ (13)

where θd(t) ∈ Rn is the desired joint angle position. We will
need the filtered tracking error r(t) ∈ Rn given as [2]

r = ė+ αe (14)

where α is a known constant. After extensive computation
[2] the open loop dynamics in terms of r can be written as

M(θ)ṙ = −Vm(θ, θ̇)r + γ − τ (15)

where we have

γ = M(θ)(θ̈d+αė)+Vm(θ, θ̇)(θ̇d+αe)+g(θ)+Fdθ̇+Φ(θ, θr)
(16)

Based on (15) let us choose the following control input

τ = γ̂ +Kr (17)

where K is the control gain and γ̂ is the estimate of γ. The
value of γ̂ is updated using

˙̂γ = Γ−1r (18)

where Γ is a positive definite adaptation gain. Using (15)
and (17) we have the closed loop system for r given as

M(θ)ṙ = −Vm(θ, θ̇)r −Kr + γ̃ (19)

where γ̃ = γ − γ̂. Now let us first choose the Lyapunov
function suitable for our system [2]

Vi =
1

2
rTM(θ)r +

1

2
γ̃T Γγ̃. (20)

Differentiating V with respect to time we get

V̇i =
1

2
rT Ṁ(θ)r + rTM(θ)ṙ +

1

2
γ̃T Γ ˙̃γ (21)

After substitution of closed loop equation (19) we get

V̇i =

[
1

2
rT Ṁ(θ)r − rTVm(θ, θ̇)r

]
− rTKr + γ̃T (r + Γ ˙̃γ

)
,

(22)
using the property [2]

1

2
rT Ṁ(θ)r − rTVm(θ, θ̇)r = 0 (23)

and substituting

˙̃γ = −Γ−1r (24)

since γ is a constant based on our assumption. With further
simplification we get

V̇i = −rTKr ≤ −λ3||r||2 < 0 (25)

where λ3 = λmin{K} is the minimum eigen value of the
matrix. From (25) we can conclude that the closed loop sys-
tem using control law (17) and adaptive law (18) is asymp-
totically stable since the time derivative of the Lyapunov
function is negative.

3.3 Composite Stability
Here we will briefly discuss the stability of the composite

system involving the outer-loop Closed Loop Inverse Kine-
matics and the inner loop joint control. Let us define the
composite Lyapunov function

V = Vo + Vi (26)

where Vo and Vi are given in (7) and (20) respectively. Based
on (11) and (25) the time derivatives can be given by

V̇ = −eTKo

[
JJTKoe− ẋd

]
(27)

+

[
1

2
rT Ṁ(θ)r − rTVm(θ, θ̇)r

]
− rTKr + γ̃T (r + Γ ˙̃γ

)
(28)

≤ −λ1||e||
[
λ1λ2||e|| − ||ẋd||

]
− λ3||r||2 (29)

As stated in the previous subsection-3.1 the stability con-
dition is satisfied as long as ||ẋd|| ≤ λ1λ2||eo||. Hence the
composite system including outer-loop Closed Loop Inverse
Kinematics and the inner-loop Adaptive Joint control is
asymptotically stable since time derivative of the compos-
ite Lyapunov function (V̇ ) is negative.

4. SIMULATION
Simulation study is performed here by applying the above

discussed operational space control to the hysteretic manip-
ulator. For the purpose of simulation the control law in



(17) is used along with the adaptation law (18) for the inner
control loop of the Joint. The reference to the inner loop
is generated by the Closed Loop Inverse Kinematic (CLIK)
algorithm discussed in Section-3.1. The controller parame-
ters used in the simulation are K = 20, α = 2 and Γ = 0.2
for the joint space control and for the CLIK algorithm the
control gain

Ko =

[
300 0
0 300

]
. (30)

The simulation results can be seen in Figure-4, Figure-5,
Figure-6, Figure-7, Figure-8 and Figure-9.
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Figure 4: End-Effector Position response in x-axis.
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Figure 5: End-Effector Position response in z-axis.

The End-effector position response in x-axis can be seen in
Figure-4, while the position response in z-axis can be seen
in Figure-5. The x and z axis position tracking error can
be seen in Figure-6. In Figure-7 the control input to the
actuator can be seen. In the inner control loop the joint
space tracking response can be seen in Figure-8 while the
adaptive control gain in the inner loop can be seen in Figure-
9. The maximum overshoot of 2.9 % in the x-axis tracking
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Figure 6: End-Effector x and z Position Tracking
Error
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Figure 7: Control Input.

can be seen in Figure-4 at around 200 seconds. Similarly the
maximum undershoot of 5.9 % can be seen in z-axis tracking
in Figure-5 at around 300 seconds. In the x-axis tracking
the Mean and RMS (Root Mean Square) tracking error are
1.864 × 10−3 m and 1.991 × 10−2 m respectively. In the
z-axis tracking the Mean and RMS error are 1.972×10−2 m
and 5.692× 10−2 m respectively.

5. CONCLUSION
In the current article the modelling and control of a hys-

teretic robotic arm actuated by Shape Memory Alloy (SMA)
wire was discussed. The target of the control design was
to perform control in operational space. Hence a Closed
Loop Inverse Kinematics algorithm was used in the outer-
loop while an adaptive control algorithm was used in the
inner-loop for joint space control to handle the hysteresis.
Simulation studies were successfully performed for reference
tracking of the end-effector and analysed briefly. The future
perspectives of the current research includes the experimen-
tal implementation of the proposed methods.
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Figure 8: Manipulator Joint Position Response.
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