ALI, D., AKLIL, D., FINNEY, S. and GAZEY, R. 2013. Hybrid hydrogen energy production and storage system model as a tool for real-world systems integrity assessment. Presented at the 10th Hypothesis anniversary conference 2013, 11-12 June 2013, Edinburgh, UK.

Hybrid hydrogen energy production and storage system model as a tool for real-world systems integrity assessment.

ALI, D., AKLIL, D., FINNEY, S. and GAZEY, R.

2013

This document was downloaded from https://openair.rgu.ac.uk

Hybrid Hydrogen Energy Production and Storage System Model as a tool for Real-World Systems Integrity Assessment

R. Gazey, Dr. D. Ali, and Dr.D.Aklil

Overview

- Background
- Modelling
- Case study

energy technology partnership

U

Introduction

ENERGY CENTRE

The Project Team

- People involved in the project:
 - Dr. Dallia Ali
 - Dr. Daniel Aklil
 - Dr. Stephen Finney
 - Ross Gazey

- Supervisory Team

 Acknowledgements to Energy Technology Partnership (ETP), Robert Gordon University IDEAS research centre, Strathclyde University, and the Pure Energy Centre.

Background

Within Scotland ambitious national targets are focused on achieving renewable generation of 100% by 2020

- Existing electrical infrastructure is becoming Increasingly constrained
- Department of Energy & Climate Change also acknowledged:

"In future we need greater electrical <u>energy</u> <u>storage facilities</u> and greater interconnection with our EU neighbours so that excess energy supplies can be sold or bought where required"

ENERGY CENTRE

Elements of h2 energy system

Research Stages

- Economic modelling
- Application
 - Transport
 - 'sector shift' / power2gas
 - Energy storage
 - Industrial use
- System modelling
 - Renewable
 - H2 (electrolyser, storage, fuel cell, transport)

ROBERT GORDON UNIVERSITY-ABERDEEN Main Components of Alkali Electrolyser

PULCENTRE ENERGY CENTRE

- Model incorporates:
 - Temperature dependant Voltage & Current relationship
 - Faraday efficiency
 - Faraday gas production
 - Thermal energy management

ENERGY CENTRE

energy technology partnership

Pressure & storage model

Case Study

Application of Model as a tool for Real-World Systems Integrity Assessment

9

Case Study Pressure Comparison

- • Modelled pressure

 Model revealed a hydrogen gas leak of about 10.89g/hour from the system.

 This loss equated to around 2.3% reduction in the overall system efficiency.

The Leak!

Fitting cracked around top of casting causing H2 leakage. (See white bubble foam)

Conclusion

- Model has been developed in matlab/simulink
- The matlab/simulink model has proved useful in identifying possible gas leaks
- The model has also enabled the quantification of an identified leak.

...Thank you...

