GAZEY, R., ALI, D., AKLIL, D. and FINNEY, S. 2011. Economic assessment of energy storage systems. Presented at the 2011 IET (Institution of Engineering and Technology) Renewable power generation conference (IET RPG 2011), 6-8 September 2011, Edinburgh, UK.

Economic assessment of energy storage systems.

GAZEY, R., ALI, D., AKLIL, D. and FINNEY, S.

2011

This document was downloaded from https://openair.rgu.ac.uk

IET Renewable Power Generation Conference 2011

5-8 September 2011

ECONOMIC ASSESSMENT OF ENERGY STORAGE SYSTEMS

Ross Gazey, BSc(Eng)Hons., MPhil, MIET PhD Research Student, Robert Gordon University

Overview

- Introduction
- Background
- Energy Storage System (ESS) Summary
- Hydrogen ESS
- Modelling
- Results.

Introduction

- Supervisory Team:
 - Dr. Dallia Ali (RGU)
 - Dr. Daniel Aklil (PEC)
 - Dr. Stephen Finney (Strathclyde)
 - Ross Gazey (RGU PhD Research)
- Acknowledgements to Energy Technology Partnership (ETP), Strathclyde University, Pure Energy Centre, and the Robert Gordon University IDEAS research centre

Background

- Within Scotland ambitious national targets are focused on achieving renewable generation of 80% by the year 2020
- Existing electrical infrastructure is becoming increasingly constrained
- Department of Energy & Climate Change announced:

"In future we need greater electrical <u>energy</u> <u>storage facilities</u> and greater interconnection with our EU neighbours so that excess energy supplies can be sold or bought where required"

- ENERGY CENTRE
- Depth of Discharge (DoD)
 How much energy can we take out
- Duration Storage Capacity (kWh)
 How much can we store and for how long
- Charge/Discharge rates
 How fast can we replenish or remove energy
- Turn Around Efficiency How much is lost on the journey through
- How much does it cost
 - Capex
 - Opex

Summary of ESS costs*

N TRE	Technology	€/kWh	€/kW	Life Time (years)	Efficiency (%)
	Pumped Hydro	10-20	500-1500	40-80	65-80
	Fuel Cell	2-15	300-1000	10-20	35-45
	Battery	210-250	125-150	10-15	75-85
	Flywheel	150-200	200-250	20	90
	CAES	3-5	300-600	20-40	80-85

*Values taken from literature:

- A. Marshall, "Electricity Storage Struggles to add up", Ends Report 435, April 2011.
- D. Connolly, "A Review of Energy Storage Technologies For the integration of fluctuating renewable energy", University of Limerick, August 2009
- D.Lumb, "Energy Storage & Renewables, is it an uphill struggle?", Edison Mission Energy.
- J.K Kaldellis etall, "Techno-economic comparison of energy storage systems for islands autonomous electrical networks" Renewable & sustainable energy reviews 13 (2009).

Hydrogen ESS cost

Economic Costs Data*						
Hydrogen ESS Capex						
Electrolyser (€/kW)		€	2,500.00			
Storage (€/kWh)		€	77.00			
Fuel Cell (€/kW)		€	4,000.00			
Annual Hydrogen ESS Opex						
Electrolyser (€/kW)		€	50.00			
Storage (€/kWh)		€	2.00			
Fuel Cell (€/kW)		€	100.00			
Energy cost (€/kWh)		€	0.06			
Energy Costs						
Constrained cost (€/MWh)		€	238.89			
Generation value (€/MWh)		€	61.11			
cost differential (€/MWh)		€	177.78			

*Courtesy of the Pure Energy Centre

P

Hydrogen ESS

University of Strathclyde Glasgow

energy technology partnership

0

What is an Electrolyser?

- An Electrochemical device the converts electrical energy and pure water into hydrogen
- By-products are:
 - Oxygen (O₂)
 - Waste heat (P_{th})
- Typical Efficiency Range 55% to 90%

What is a Fuel Cell?

- An Electrochemical device the converts energy in hydrogen into electricity
- By-products are:
 - Water vapour (H₂O)
 - Waste heat (P_{th})
- Typical Efficiency Range 40% to 60%

Modelling ESS cost

The developed 'Levelised' ESS cost model considered:

- Total cost of ownership
 - ISC_t = Invested Storage Capital in year (t)
 - SOM_t = Storage Operation and Maintenance costs in year (t)
 - EC_t = input energy cost (t)
- Total value of output
 - EO_t = Value of sold energy in year (t)
 - H2_t = Value of sold hydrogen gas year (t)
 - O2_t = Value of sold Oxygen gas in year (t)
- Annual Discount rate of 10% considered (r)
- 20 year operation life considered for $H_2(n)$

energy technology partnership

Modelling ESS cost

Levelised Cost of Storage (LSC) $LSC = \frac{\sum_{t=1}^{n} \frac{ISC_t + SOM_t + EC_t}{(1+r)^t}}{\sum_{t=1}^{n} \frac{EO_t + H2_t + O2_t}{(1+r)^t}}{(1+r)^t}$

 ISC_t = Invested Storage Capital in year (t)

- SOM_t = Storage Operation and Maintenance costs in year (t)
- EC_t = input energy cost (t)
- EO_t = Value of sold energy in year (t)
- $H2_t$ =Value of sold hydrogen gas year (t)
- $O2_t$ =Value of sold Oxygen gas in year (t)
- *r* = Annual Discount rate of 10%
- n =20 year operation life considered for H₂

Modelling ESS cost

Market Data*						
O2 Sale (€/Tonne)	€	3,000.00				
H2 Sale (€/Tonne)	€	5,000.00				
Electricity sale (€/MWh)	€	177.78				
Discount rate (r)		10%				

*Courtesy of the Pure Energy Centre

Considered Scenarios:

- A. No FC (no energy sale), $100\% 0_2 \& H_2$ gas sold
- B. 100% energy sale 3MW FC, 100% O_2 sold, no H_2 sale
- C. 50% O₂ & H₂ gas sold, 50% H₂ sold as energy through a 3MW FC
- D. No FC (no energy sale), no 0_2 sold, 100% H₂ sold
- E. 100% Energy sold (3MW FC), no O_2 nor H_2 sold

Results

Results

energy technology partnership

How does H2 Compare with other technologies

LSC (€/unit output)

Conclusion

Electrolysis as a network deferrable balancing load has the potential to offer a cost effective solution

- H₂ technology is getting close to other electrochemical energy storage technologies where otherwise 'vented' O₂ is utilised.
- When looking at electricity only, cost of H2 technology has to reduce to become as competitive with other ESS.