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health care data to preserve users’ privacy. On the contrary,
Xu et al. [8] designed a GAN-based general-purpose tabular
data synthesis model named CT-GAN (Conditional Tabular
GAN) by introducing mode-specific normalization. The CT-
GAN can perform very well in generating synthetic data
by preserving the underlying data distribution. Though there
is a significant improvement for GAN-based synthetic data
generation models, these models can not properly preserve
the correlation among the features in synthetic data. Few
papers [7] [5] consider correlation preservation with data
anonymization, yet high error exists between original and
synthetic data correlation matrix. Therefore, these models are
suitable where data privacy is the first priority but may fail
where correlation is necessary.

Feature correlation shows significant importance in various
data analysis and modeling tasks like correlation-based feature
weighting is widely applied for soft sensor modeling [9] [10]
where synthetic data is highly required. Moreover, few feature
selection strategies highly depend on correlation coefficient
values, and most importantly, synthetic data should be as
realistic as original data by preserving all the inherent charac-
teristics (feature correlation, manifold, temporal correlation).
Therefore, GAN-based synthetic data generation by preserving
all the original characteristics of the real dataset can further
enhance the synthetic data generation works.

In this paper we particularly investigate the following re-
search question for feature correlation preservation in synthetic
data and presented preliminary results of our experiments.

Research question: Can we preserve pairwise feature
correlation of the synthetic data by making the underlying
topological space of the synthetic data locally homeomorphic
to the underlying topological space of the original data?

In section II, a brief review work is presented. Then in
section III, we discussed the reasoning of our hypothesis with
theoretical analysis. Section IV shows the methodology for
constructing the topological space for original and synthetic
data. In section V we demonstrated the experiments and
discussed the results that support our hypothesis. Finally,
section VI concludes this work in progress paper with future
research plans.

Abstract—Tabular synthetic data generating models based 
on Generative Adversarial Network (GAN) show significant 
contributions to enhancing the performance of deep learning 
models by providing a sufficient a mount o f t raining data. 
However, the existing GAN-based models cannot preserve the 
feature correlations in synthetic data during the data synthesis 
process. Therefore, the synthetic data become unrealistic and 
creates a problem for certain applications like correlation-based 
feature weighting. In this short theoretical paper, we showed a 
promising approach based on the topology of datasets to preserve 
correlation in synthetic data. We formulated our hypothesis 
for preserving correlation in synthetic data and used persistent 
homology to show that the topological spaces of the original and 
synthetic data have dissimilarity in topological features, especially 
in 0th and 1st Homology groups. Finally, we concluded that 
minimizing the difference in topological features can make the 
synthetic data space locally homeomorphic to the original data 
space, and the synthetic data may preserve the feature correlation 
under homeomorphism conditions.

Index Terms—Synthetic Data, Correlation, GAN, Topology, 
Persistent Homology

I. INTRODUCTION

Data-driven algorithms like deep learning models require a
large dataset during training for learning the underlying pattern
and enhancing performance [1]. However, many practical
applications (water treatment plant, smart farming etc.) involve
difficulties a nd t ime c onsumption f or g athering t he required
training data, which creates sampling noise and difficulties
in model training. An alternative solution is the generation
of synthetic data from a small real-world dataset. Synthetic
data provides efficient m odel t raining, e liminates sampling
noise and bias, highly scalable, and reduces time consumption
during data collection [1].

Synthetic data are of various types, including images,
signals, or tabular, while this paper only considers tabular
synthetic data generation. A popular model available in the
literature for generating tabular synthetic data is GAN. For
instance, Jordon et al. [2] proposed a high-quality differentially
private synthetic data generation model based on GAN for
Electronic Health Record (EHR) data. Choi et al [3] also
proposed a GAN-based synthetic EHR data generation model.
GAN is also used for synthesizing tabular data in [4] [5] [6]
[7]. However, these data synthesis methods aim to anonymize



TABLE I: Overview of the most relevant works for tabular data synthesis

Ref Year Model Aim Contribution Comments
[3] 2017 GAN Privacy preservation Minibatch averaging algorithm to overcome

GAN over-fitting.
Quantitative analysis is missing for evaluating
pairwise feature correlation.

[6] 2018 DCGAN Privacy preservation Information loss and classification loss is com-
bined to realize connection between features
and labels.

Correlation between labels and other attributes
are considered but correlation among feature
pairs are not considered.

[7] 2018 GAN General data synthesis Correlation preservation, multimodal data learn-
ing.

High error between original and synthetic pair-
wise feature correlation in synthetic data.

[2] 2019 GAN Privacy preservation Differential privacy based synthetic data gener-
ation with a new evaluation criteria.

Explicit evaluation of feature correlation preser-
vation is missing.

[8] 2019 CTGAN General data synthesis Mode specific normalization for generating
multi modal synthetic data

Fails to retain the pairwise feature correlations.

[5] 2020 CGAN Privacy preservation Convolutional neural network for capturing in-
ter feature correlation.

Quantitative analysis is missing for evaluating
pairwise feature correlation.

[4] 2021 CTGAN Privacy preservation Pearson for numerical correlation measurement. Pearson fails to capture nonlinear relationship
among the features.

Legend:Ref–References, CTGAN– Conditional Tabular GAN, CGAN–Convolutional GAN, DCGAN–Deep Convolutional GAN.
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Fig. 1: Figure (a) illustrates the concept of making the synthetic data space locally homeomorphic to the original data space. To
visualize, here we considered 3 dimensional space with 3 features. Figure (b) represents that the topological space of real data
is a subset of the topological space of the synthetic data and both synthetic and real data space is the subset of the underlying
topological space.

II. LITERATURE REVIEW

GAN was first introduced by Ian Goodfellow [11]. The
GAN model comprises two modules known as generator and
discriminator. The generator generates possible data instances
from noise values, and these data instances become negative
samples for the discriminator. On the contrary, the discrimina-
tor learns to differentiate the synthetic data samples of the
generators from the original data. Also, the generator gets
feedback from the discriminator for generating synthetic data.
Throughout the training process, the output of the generator
becomes realistic, and the discriminator can no longer differen-
tiate between the generated samples and the original samples.
At this stage, the training stops. In recent years, GAN has
been favored for generating synthetic data in various domains
like computer vision. GAN also gets popularity for tabular
data generation to increase the number of data samples. Table
1 depicts an overview of the existing GAN-based synthetic
data generating models. We can see the models aim to pre-
serve privacy or data anonymization, but these models ignore
preserving the original data characteristics. The synthetic data
without the characteristics of the original data becomes unre-
alistic. Therefore, the original data characteristics preservation
in synthetic data is required for various applications, including
correlation-based feature selection, time series data analysis,
and many more.

III. HYPOTHESIS

The pairwise correlation among the features of original
data could be preserved in the synthetic data by making
the underlying topological space of the synthetic data locally
homeomorphic to the underlying topological space of the
original data.

A. Reasoning for the hypothesis

Correlation can be viewed as an intrinsic relationship among
various dimensions (features) of the data points. By nature, a
correlation exists among the features of the data points col-
lected using electronic devices. For instance, the features pH
value, water level and soil moisture of some data points show
a high positive correlation, and this relationship among the
features exist naturally. Therefore, preserving the correlation
in synthetic data could be possible by preserving the shape of
the original data. This last statement is justified below.

Let A represents the original dataset and A be the under-
lying topological space of A. Also, consider B defines the
generated synthetic data, and the underlying topological space
of B is B. If it is possible to make space B homeomorphic
to space A, then the original data samples A and synthetic
data samples B should demonstrate identical characteristics.
Since space B is a continuous deformation of space A under
the homeomorphism condition, the nearness relationship of
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Fig. 2: Left matrix shows pairwise feature correlation of the original WQ dataset, while the right matrix shows pairwise
correlation of the synthetic WQ dataset.

the data points is preserved in both spaces. Mathematically,
we can think the real dataset A is the subset of the synthetic
dataset B and both A and B are the subsets of the underlying
spaces A or B, i.e A ⊂ B ⊂ A/B. This idea is illustrated
in figure 1. Moreover, correlation between pair of features is
related to the nearness relationships of the data points in the
space. Hence, preserving the shape (topological space) will
preserve the nearness among data points which should further
retain the correlation behavior.

B. Correlation and nearness
Lets consider a dataset with two features X and Y . Then,

the correlation between X and Y with n samples can be
represented as, r(X,Y ) =

1
n

∑
i xiyi−µxµy

σxσy
where, µx and µy

denotes the mean of X and Y , σx and σy denotes standard
deviations. If the dataset of features X and Y is standardized
meaning µ = 0 and σ = 1 then the correlation becomes,
r(X∗, Y ∗) = 1

n

∑
i xiyi.

The nearness between n data points of features X and Y
can be defined using a distance metric. Euclidean metric is
considered here for showing the relationship between correla-
tion and nearness as follows [12]-

d(X,Y ) =

√√√√ n∑
i

(xi − yi)2

=

√√√√ n∑
i

x2
i +

n∑
i

y2i − 2

n∑
i

xiyi

If the data is standardized then
∑n

i x
2
i =

∑n
i y

2
i = n

d(X∗, Y ∗) =

√√√√n+ n− 2

n∑
i

xiyi

= 2n(1− 1

n

n∑
i

xiyi)

= 2n(1− r(X∗, Y ∗))

r(X∗, Y ∗) = 1− d2(X∗, Y ∗)

2n

From the above analysis, we can see that correlation between
pair of features is inversely proportional to the distances
among the data points. Hence, neighbor data points show
similar correlation value for the features.

C. Homeomorphism

Under homeomorphism conditions, two spaces are topolog-
ically equivalent and it can be defined as follows [13]-

Definition A homeomorphism between topological spaces
A and B is a bijective map f : A → B such that f and it’s
inverse f−1 are both continuous.

In other words, for all open sets U ∈ A, f(U) must be open
in B. Similarly, for all open sets V ∈ B, f−1(V ) must be open
in A. Since the open set U is neighbor of each of its points
say x ∈ A, U must contain an open set P such that x ∈ P ⊂
U . Moreover, f is continuous therefore f(P ) must be open in
B. From this we can conclude that f(U) is a neighbor of f(x)
in B, since f(x) ∈ f(P ) ⊂ f(U). In a similar way, we can
show that f−1(V ) is a neighborhood of x in A. Therefore,
under homeomorphism condition, both spaces preserved the
neighborhood property of the data points.

IV. METHODOLOGY

A. Vietoris-Rips Complex

The tabular dataset is discrete, while the topological space
is continuous. Therefore, a simplicial complex is used to build
topological spaces from the discrete data points (point clouds).
Simplicial complex can be constructed using the combination
of different simplices.

1) Simplex, Simplices and Simplicial Complex: A k-
simplex σ can be defined as a k-dimensional polytope which
is a convex hull of its k + 1 vertices, say v0, v1, .., vk ∈
ℜd[14]. The dimension of σk is dimσ = k. Simplices is just
the plural form of a simplex. Simplices can be of different
types, starting from 0−simplex (vertex), 1−simplex (edge),
2 − simplex (triangle), 3 − simplex (tetrahedron), and so
on. On the contrary, a simplicial complex that represents a
topological space can be constructed using multiple simplices.
A simplicial complex κ can be defined as a set of simplices
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Fig. 3: This figure illustrates the scatter plot (first row) and PD (second row) of the citric acid-fixed acidity feature pair of WQ
dataset for both real and synthetic data samples. A high positive correlation can be observed in figure (a) for real data samples
but the correlation has been broken in the synthetic counterpart of the feature pair (figure (b)). Figure (c) and (d) depicts the
topological features (0th, 1st, and 2nd homology groups) of point clouds of figure (a) and (b) respectively.

that obeys two conditions- (1) Every face of σ ∈ κ is also in
κ and (2) if σi, σj ∈ κ, then σi ∩ σj is a face of both σi and
σj , where a face of a simplex σk is the convex hull of any
non-empty subset of points (v0, v1, .., vk) [14].

A Vietoris-Rips Complex (V R) is a type of an abstract
simplicial complex which is widely used in topological data
analysis for constructing topological spaces from the point
clouds. In this paper, we used the V R to construct the
underlying topological space of the data points (both for
original and synthetic data points). Let’s say X represents
the data points, then the V R of X denoted as V Rd(X)
contains the set of all simplices of X where the elements of X ,
(x1, x2, ..xk) satisfy the metric relation of dist(xi, xj) < d for
all i, j. Also, V R satisfy the nested relation of subcomplexes
and it is possible to track the changes in topological features
(connected components, loops and voids) as the metric d
changes, through persistent diagram. Therefore, as an abstract
simplicial complex, VR complex can be used to generate
topological spaces from the discrete data points [15] [16].

B. Persistent Homology
Persistent homology [15] is the mathematical tool for un-

derstanding the topological features of a topological space
constructed using simplicial complexes. It is an extension of
the homology to the filtered chain complex settings [15]. The

simplicial homology assigns homology groups to the simpli-
cial complex for extracting topological features. For instance,
the 0th homology groups denote the topological features of
connected components. Similarly, the 1st and 2nd homology
groups represent the loops and voids topological features of the
topological spaces respectively. Persistent homology reflects
the homology groups through the Persistent diagrams (PD) of
the simplicial complexes. Therefore, topological features are
the heart of understanding topological space and PD is the
tool used for visualizing the topological features. Moreover,
we can use Wasserstein distance to compute the dissimilarity
between two PD. Persistent homology has well established
mathematical foundations and getting popular for data analysis
by inspecting topological features. The essence of persistent
homology is described here for understanding our hypothesis.
A deep mathematical analysis of persistent homology and
related topological data analysis concepts are presented in [15]
[16].

V. PRELIMINARY EXPERIMENTS AND RESULTS

To support our hypothesis and understand the topological
dissimilarity of the original and synthetic topological spaces
of tabular data, we used python Giotto-TDA library and the
following dataset.
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Fig. 4: This figure illustrates the scatter plot (first row) and PD (second row) of the fixed acidity-pH feature pair of WQ dataset
for both real and synthetic data samples. A high negative correlation can be observed in figure (a) for real data samples but
the correlation has been broken in the synthetic counterpart of the feature pair (figure (b)). Figure (c) and (d) depicts the
topological features (0th, 1st, and 2nd homology groups) of point clouds of figure (a) and (b) respectively.

TABLE II: Dissimilarity in topological features captured by the persistent diagrams of real and synthetic dataset

Dataset Feature pairs 0th Homology 1th Homology 2nd Homology

WQ
Citric acid- fixed acidity 1.96521339 0.76831807 0.01224039

Citric acid- total sulfur dioxide 0.61243486 0.18172829 0.00710125
fixed acidity-pH 2.01292377 1.03884327 0.03319647

Anomaly
Butane-Carbon Monoxide 4.84583870 1.52988194 0.00119914808

Humidity-Butane 5.12984892 1.54729505 0.01191398
Temperature- Humidity 2.04251361 0.483071038 0.00181607064

SRU
Gas flow- Air flow 3.83539682 1.41767874 0.01166989

Secondary air flow- SWS air flow 1.74629258 0.442073456 0.000455793879
Gas flow- secondary air flow 4.03835353 1.05204137 0.01010775

A. Dataset

For evaluating our hypothesis, we considered three in-
dustrial process dataset such as Wine Quality (WQ) [17],
Anomaly [18], and Sulfur Recovery Unit (SRU) [19]. We
chose three feature pairs from each dataset to illustrate the
topological dissimilarity. Table II shows the dataset with the
chosen feature pairs.

B. Synthetic Data Generation

First, we imported the CT-GAN model from the Github
repository and generated synthetic data for each of the dataset.
Then we examined the correlation matrix for each of the
dataset and its synthetic counterparts. For example, figure
2 shows the correlation matrix for WQ dataset (both for

real and synthetic). It is evident from this figure that the
pairwise correlations among the features are not preserved in
the synthetic data generated by the CT-GAN model. Moreover,
the first rows of figure 3 and 4 show the scatter plots of the
two feature pairs (citric acid-fixed acidity, fixed acidity-pH) of
the WQ dataset and their synthetic counterparts. It is obvious
from these figures that the neighborhood relationship among
the data points is broken in the synthetic data, for instance,
figure 3(a) shows a high positive correlation (increasing trends
for both features) among the citric acid-fixed acidity feature
pair, but this behavior is broken in the synthetic space (figure
3(b)). Similarly, figure 4(a) shows a high negative correlation
(decreasing trends for both features) among the fixed acidity-
pH feature pair, but this behavior is not preserved in the



synthetic space (figure 4(b)).

C. Persistent Diagram Computation

We first transformed the original and synthetic data into
point clouds to construct corresponding VR complexes. Then
the VR function is called from the Giotto-TDA library to gen-
erate the underlying topological spaces. The function returns
two arrays- one array for the original dataset and the other one
for the synthetic dataset. These arrays contain the birth-death
value pairs for each topological feature generated throughout
the VR complex construction process. After that, we used the
PD plotting function for visualizing the topological features.
The second rows of figure 3 and 4 illustrate the PD of the
feature pairs of the first rows (both for real and synthetic data).
From these PDs, we can see the 0th Homology groups (con-
nected components) and few components of the 1st Homology
groups (loops) are the significant topological features of the
underlying topological spaces of the real and synthetic data.
However, some components of 1th and all the components of
2nd Homology groups are generated along the diagonal and
can be considered as noise. Finally, the Wasserstein distance is
used to compute the difference between real and synthetic PD
pairs for the corresponding feature pairs of the datasets. Table
II shows the dissimilarity in topological features (Homology
groups) for the feature pairs considered from each dataset.

VI. DISCUSSION AND CONCLUSION

Our hypothesis claims that making the underlying topo-
logical spaces of the original and the synthetic data locally
homeomorphic may preserve pairwise feature correlation in
synthetic space. In other words, there will be dissimilarity in
the topological features between original and synthetic data
generated by CT-GAN, since the CT-GAN can not preserve
feature correlation. From our primary experiments, we found a
significant difference in 0th Homology groups and a small dif-
ference in 1st Homology groups. However, the 2nd Homology
group can be discarded as the difference is negligible (table
II). Therefore, minimizing the difference in the Homology
groups may preserve the topological space of both original
and synthetic data. Strictly speaking, minimizing topological
differences will preserve the shape of the original data in
synthetic space and under homeomorphism conditions, the
synthetic space will preserve the nearness relationships among
the data points. Since correlation is related to the neighborhood
property of data points, synthetic data locally homeomorphic
to the original data should preserve the correlation among the
features.

In conclusion, preserving topological space can be a promis-
ing way to preserve the feature correlations in synthetic data.
In our future work, we will create a topological loss function
and use this loss function to fine-tune the CT-GAN model so
that the GAN minimizes the difference in homology groups
and learns the shape of the data. We are expecting that the
training of CT-GAN through topological loss function will
generate synthetic data with the same feature correlation as
the original data. We will also analyze the complexity of the

CTGAN model for generating tabular synthetic data under
topological loss term.
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