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Abstract. Linked decision-making in service management systems has
attracted strong adoption of optimisation algorithms. However, most of
these algorithms do not incorporate the complexity associated with inter-
acting decision-making systems. This paper, therefore, investigates the
linkages between two classical problems: job assignment problem and
travelling salesman problem (JAPTSP) of a service chain system where
service personnel perform tasks at different locations. We formulate a
novel mathematical model from a linked optimisation perspective with
objectives to minimise job cost and total travel distance simultaneously.
We present three algorithmic approaches to tackling the JAPTSP: Non-
dominated Sorting Genetic Algorithm for Linked Problem (NSGALP),
Multi-Criteria Ranking Genetic Algorithm for Linked Problem (MCR-
GALP), and Sequential approach. We evaluate the performance of the
three algorithmic approaches on a combination of JAP and TSP bench-
mark instances. Results show that selecting an appropriate algorithmic
approach is highly driven by specific considerations, including multi-
objective base performance metrics, computation time, problem corre-
lation and qualitative analysis from a service chain perspective.

Keywords: Service Chain Optimisation · Linked Optimisation Problem
· Multi-Criteria Decision Making · Multi-Objective Optimisation

1 Introduction

The concept of linked decision-making arises in several different research com-
munities involving two or more optimisation problems whose solutions interact.
Optimisation algorithms are increasingly adopted to support such decision prob-
lems. But, most of these algorithms do not incorporate the complexity associated
with the interacting decision-making process in the joint systems [1]. A linked
optimisation problem explains the joint optimisation task involving n (i.e. n ≥ 2)
⋆ Supported by BT and The DataLab



interdependent problems where a decision made for one problem causes a ripple
effect on other dependent problems. Real-world problems, like service chains, are
systems characterised by such interdependency, where some features of the sub-
components of the problem are linked [2]. In such linkages, an optimal solution
for individual operational components might not guarantee an optimal solution
for the overall problem [3]. An example is the integration between job assign-
ment (JAP) and travelling salesman problem (TSP) of a service chain system
where service personnel perform tasks at different locations. Thus, integrating
the two problems results in multiple travelling salesman problems (MTSP).

JAP and TSP are two distinct classical optimisation problems whose inte-
gration applies to hospital resource planning, field service management [4], and
supply chains. The recent global shocks (COVID-19, climate change, blockage
of the Suez canal) have demonstrated the importance of interdependencies and
the need to create service chains that are more resilient and have significantly
reduced impact on the environment. For instance, during the first COVID-19
wave in England, three of five mandated health visiting services were paused to
redeploy health visitors to respond to caseloads across several communities [5].
It was recommended that a clear plan for health visiting service is required to
ensure sufficient capacity and manage missed appointments backlog [5]. JAP and
TSP can be applied to the health visiting problem to provide sufficient capacity
and allow spare capacity redeployment to respond to COVID caseloads.

We investigate the integration of JAP and TSP to minimise the total job as-
signment cost and travelling cost of visiting the job locations by the agents. To
study JAPTSP, we use 114 combined problem instances of existing benchmarks
in JAP and TSP. We exploit three algorithmic approaches to these combined
problem instances. These algorithms include; Nondominated Sorting Genetic
Algorithm for Linked Problem (NSGALP), Multi-Criteria Ranking Genetic Al-
gorithm for Linked Problem (MCRGALP), and Sequential approach.

The paper is organised as follows. Section 2 gives a brief review of related
work of JAPTSP. We define the JAPTSP in Section 3, Section 4 describes our
approach and Section 5 provides our experimental setup and discuss results.
Lastly, Section 6 concludes and presents future works.

2 Problem Background

JAPTSP refers to a class of optimisation problems where service personnel/agents
are assigned to perform tasks in different cities. JAPTSP is an extension of the
multiple travelling salesman problems (MTSP) and workforce scheduling and
routing problems studied in the literature. So far, different variations of JAPTSP
have been explored in the literature [6]. Castillo-Salazar et al. undertake a survey
study in workforce scheduling [6]. They refer to scenarios where personnel carry
out tasks at different locations as Workforce Scheduling and Routing Problem
(WSRP). In the study of WSRP, [4] describes an iterated local search ILS al-
gorithm. The paper evaluated ILS against a mixed integer programming (MIP)
model and an adaptive larger neighbourhood search (ALNS) algorithm. Simi-
larly, [7] proposed a greedy heuristic algorithmic design for five time-dependent



constraints for WSRP. Another variation of JAPTSP is seen in [8] involving the
investigation of a Travelling Maintainer Problem (TMP) based on a generalised
formulation of TSP. Their proposed problem seeks to find the best route for
maintainers that minimises the travel, maintenance, and expected failure cost
for all cities. The authors present a genetic algorithm and particle swarm optimi-
sation solutions for comparison in the TMP study. Similarly, [9] adopts a genetic
algorithm for a team scheduling problem. Also, [10] presents a mixed integer
programming for multi-depot multiple travelling salesman problems (MmTSP)
where an individual salesman travels from a particular location to a set of loca-
tions to complete tasks and return to the original location.

In JAPTSP, determining the optimal job assignment and obtaining the best
multiple permutations of tours are the two decisions that must be taken simulta-
neously. In tackling the JAPTSP, we need to identify how the two problems (JAP
and TSP) are connected. There are several ways of connecting them depending
on how they interdepend. The integration of JAP & TSP causes complexity in
designing appropriate algorithms for solving the problem.

3 Problem Formulation

3.1 Linked Problem Perspective

A linked optimisation problem P of n connected problems is;

P = {p1, p2, · · · , pn, (D)} : pι ∈ P and ι = 1, · · · , n (1)

pι =
{
xι

{x1
∗,··· ,xn

∗}\xι
∗
, f ι

{x1
∗,··· ,xn

∗}\xι
∗
, cι{x1
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∗}\xι

∗

}
(2)

In Eq. 2, xι
∗ denotes candidate solution in xι.

{
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∗
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connects the problems in Eq.

3.

DX
ιj/D

F
ιj/D

C
ιj =

{
1, if xι

∗ changes xj/f j/cj

0, Otherwise
(3)

3.2 Job Assignment Problem JAP

From [16], let I = {1, 2, · · · ,m} be a set of agents, and let J = {1, 2, · · · ,n} be
a set of jobs, where i ∈ I, j ∈ J respectively. Let cij be the cost of assigning
job j to agent i, rij be the resource required by agent i per job j, and bi be the
capacity of agent i. yij represents a 0 − 1 variable, where 1 denotes that agent
i performs job j and 0 otherwise. JAP seeks to find the assignment of jobs to
agents x

JAP
that minimises:

minf1(xJAP ) =

m∑
i=1

n∑
j=1

cijyij (4)



Subject to:
m∑
i=1

yij = 1 ∀j ∈ J (5)

n∑
j=1

rijyij ≤ bi ∀i ∈ I (6)

yij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J (7)

Constraints 5 ensures that each job is assigned to exactly one agent, Con-
straints 6 ensures that the resource requirement of jobs assigned to an agent does
not exceed the agent’s capacity and Constraints 7 defines the decision variables.

3.3 Travelling Salesman Problem TSP

The travelling salesman problem (TSP) is one of the famous classical optimiza-
tion problems that involves determining a tour that minimises the total distance
traveled by a salesman [17]. TSP is defined by n× n distance matrix of n cities
where the salesman is required to visit each city once. The distance between two
cities j and k is defined by djk and the objective function is given by:

minf2(xTSP ) =

n∑
j=2

dj−1,j + dn,1 xTSP = (x1 ,x2 , · · · ,xn) (8)

where f2(x
TSP

) denotes the total traveling distance minimisation as the op-
timisation criterion of TSP and x

TSP
represents a permutation of n cities.

3.4 JAPTSP

JAPTSP seeks to minimise the cost of job assignments and total traveling
distance of visiting the assigned job locations by the agents. It is defined by
n cities with given distance matrix {djk}, and n jobs to be assigned to m
agents/personnel with given availability/skill capacity/requirements. Here, the
number of jobs for JAP corresponds to the number of locations in TSP. Each
job in the JAP has a location in TSP. We define JAPTSP in Eq. 9{

minf1(xJAP ) =
∑m

i=1

∑n
j=1 cijyij

minf2
x
JAP

(xTSP ) =
∑m

i=1 f
2(xTSPi

)
(9)

JAPTSP is constrained by Constraints 5 - Constraints 7.

4 Proposed Approach

We propose Sequential approach, NSGALP and MCRGALP. Approaches are
described in sections 4.1-4.4.

4.1 Genetic Components

The sequential algorithmic approach uses two genetic algorithms for each sub-
problem. The sub-problems have two different solution representations that
uniquely differentiate the two algorithms in terms of encoding and genetic op-
erators used by each algorithm. In NSGALP and MCRGALP, we embed the
different encodings and the genetic operators in a single algorithmic process.



Encoding The encoding of JAPTSP uses two mechanisms; integer-based encod-
ing for JAP and permutation-based encoding for TSP. The Integer-based solu-
tion representation addresses the assignment of jobs to agents. The permutation-
based mechanism addresses a sequence of travel by agents.
Initialisation An initialisation is done by randomly generating a population
of size N . In the sequential approach, each algorithm in Algorithm 1 generates
its population separately and applies it to the genetic search process. It is quite
different in NSGALP and MCRGALP. In Algorithms 2 and 3, each randomly
generated solution of JAP instantiates the TSP and then generates a random
solution for the modified TSP and pairs with the solution of the JAP.
Non-Dominated Sort Fast sort algorithm [18] is adopted in NSGALP to sort
initial population. In the sorting process, we create a set S that contains all the
dominated solution pairs. Individuals left out form the first front. Next, the ones
that dominate others in set S are placed in the next. The process continues until
we find the subset of S where no individual dominates each other.
Crowding Distance Crowding distance is assigned front-wise and allows com-
parison within each front [19]. Calculation of crowding distance is defined in
Eq. 10. Each front is considered individually and then sorted in non-decreasing
order so that the first and last solution pairs are assigned infinite values.

distα,β

(JAP,TSP )
=

n∑
ι=1

f ι
α,β+1

− f ι
α,β−1

f ι
α,max

− f ι
α,min

∀α (10)

TOPSIS We adapted TOPSIS method as a selection operator in MCRGALP.
TOPSIS is one of multiple criteria decision making methods that was first intro-
duced by Yoon and Hwang [20]. TOPSIS decision-making technique is classified
into five main steps [22]. Step 1 normalises decision matrix in Eq. 11.

riι =
f ι
i∑|popt|

i=1 (f ι
i
)2

(11)

Step 2 determines normalized weighted value v
iι

with weight wι = (w1, · · · , wn)
in Eq. 12.

viι = riι ∗ wι (12)

Step 3 identifies the ideal best solutions v+ι and ideal worst solutions v−ι in Eq.
13 and Eq. 14.

v+ι =
{
(max viι |ι ∈ I), (min viι |ι ∈ I ′), i = 1, · · · , |popt|

}
=

{
v+1 , · · · , v+n

}
(13)

v−ι =
{
(min viι |ι ∈ I), (max viι |ι ∈ I ′), i = 1, · · · , |popt|

}
=

{
v−1 , · · · , v−n

}
(14)

Step 4 calculates Euclidean distance from v+ι and v−ι , where i = 1, 2, · · · , |popt|.

S+
i =

√√√√ n∑
ι=1

(viι − v+ι )2 (15)

S−
i =

√√√√ n∑
ι=1

(viι − v−ι )2 (16)



Step 5 calculates performance score and ranks the solution pairs.

Pi =
S−
i

S+
i + S−

i

where 0 ≤ Pi ≤ 1 (17)

Genetic Operators A genetic method uses crossover and mutation operators
to update solutions during a search process[23]. Here, we use the same pair of
crossover and mutation in the individual approach for the respective solution
types. We use Integer SBX crossover operator for the JAP solutions and par-
tially mapped crossover PMX for TSP solutions. Regarding mutation operators,
we use Integer Polynomial mutation for updating the JAP solutions and permu-
tation swap mutation for the TSP solutions, respectively. The genetic method-
ological framework uses the same crossover and mutation operators for all three
approaches. In Algorithm 1, we adopt an integer-coded genetic algorithm A

JAP

which uses integer SBX crossover and integer polynomial mutation operators
to generate offspring for the JAP. In terms of the TSP, we use a permutation-
coded genetic algorithm A

TSP
in the sequential approach. A

TSP
uses PMX and

permutation swap mutation to update solutions. We employed tournament se-
lection in algorithms A

JAP
and A

TSP
. The procedure for offspring generation

is the same for Algorithms 2 and 3. The procedure is outlined as follows; Gen-
erate n offspring of JAP solutions from mating pool Rt

JAP
using integer SBX

crossover and integer polynomial mutation operators. Then, use each offspring
to instantiate problem TSP and randomly generate N TSP solutions. Next, per-
form crossover and mutation operations on N solutions of TSP and generate n
offspring. Then, evaluate the offspring and sort them in descending order. Last,
select best offspring from n offspring of TSP and pair with each offspring of JAP.

4.2 Sequential Approach

The sequential algorithmic approach solves JAPTSP in sequence and is com-
monly known for solving problems in a hierarchical structure, usually between
two decision-makers [25] [26]. Algorithm 1 shows a sequential approach for solv-
ing JAPTSP. First, algorithm A

JAP
solves problem p

JAP
, selects the best solution

x∗
JAP

then, uses best solutions x∗
JAP

to instantiate TSP p
TSP

based on their link-
age structure. Next, the instantiated p

TSP
is solved using algorithm A

TSP
and

then select best solution x∗
TSP

.

Algorithm 1: SEQUENTIAL

x∗
JAP
← AJAP |pJAP ;

x∗
TSP
← ATSP |(pTSP , x

∗
JAP

) ;
Result: (x∗

JAP
,x∗

TSP
)

4.3 NSGALP Approach

Here, we consider the solutions of JAP and TSP as a joint solution and adapt
the fast nondominated sorting procedure, a fast crowded distance estimation
procedure, and a simple crowded comparison operator based on [18] framework.
Details about the framework is in [18]. Algorithm 2 shows a multi-objective
framework we adopted in tackling JAPTSP.



Algorithm 2: NSGALP

pop0
(JAP,TSP )

← initialise ;
Evaluate pop0

(JAP,TSP )
;

Assign non-dominated sort to
pop0

(JAP,TSP )
;

Apply crowding-distance to
pop0

(JAP,TSP )
;

t← 0 ;
while Stopping criterion not met
do
Rt

(JAP,TSP )
← Select from

popt
(JAP,TSP )

;
Qt

(JAP,TSP )
← Generate

offspring from Rt
(JAP,TSP )

;
Evaluate Qt

(JAP,TSP )
;

popt

(JAP,TSP )
← popt

(JAP,TSP )

∪ Qt
(JAP,TSP )

;
Assign fast non-dominated
sort to popt

(JAP,TSP )
;

Apply crowding-distance
assignment to popt

(JAP,TSP )
;

popt+1
(JAP,TSP )

← Select
survivor from popt

(JAP,TSP )
;

t ← t+ 1 ;
end
Result: F1

(JAP,TSP )

Algorithm 3: MCRGALP

pop0
(FLP,PFSP )

← Randomly
initialise population ;

Fitness evaluation on
pop0

(JAP,TSP )
;

t← 0 ;
while Stopping criterion not met
do

Assign score to each solution
pair in popt

(JAP,TSP )
;

pop∗
(JAP,TSP )

← Get best n

pairs of popt
(JAP,TSP )

;
Qt

(JAP,TSP )
← Generate

offspring from pop∗
(JAP,TSP )

;
Fitness evaluation on
Q

(JAP,TSP )
;

Assign score to each solution
pair in Q

(JAP,TSP )
;

popt
(JAP,TSP )

← popt
(JAP,TSP )

∪ Qt
(JAP,TSP )

;
popt+1

(JAP,TSP )
← Get top N

solution pairs with best score
from popt

(JAP,TSP )
;

t ← t+ 1 ;
end
Result: (x∗

JAP
,x∗

TSP
)

4.4 MCRGALP Approach

MCRGALP uses a similar approach in Section 4.3 but with differences in the
output returned and the comparison operators used in the tournament selection.
Unlike NSGALP, MCRGALP uses a multi-criteria performance metric known
as Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS),
which assigns a performance score to each joint solution. TOPSIS is widely used
in multi-objective evolutionary algorithms. For example, [29] used TOPSIS as an
evaluation approach to prioritise candidate solutions in their algorithmic frame-
work. MCRGALP uses TOPSIS as a comparison operator in the tournament
selection process to guide the selection of n joint solutions at different phases of
the algorithm process. See performance score computation in Section 4.1.

5 Experiments

We performed series of computational experiments to evaluate the proposed al-
gorithmic approaches. The experiments are conducted on the same computer



environment with Intel Core i9, 2.4GHz, 32GB RAM, and Windows 10 Enter-
prise OS. The three algorithmic approaches are implemented in Java.

5.1 Benchmark Problems

We evaluate the proposed algorithmic approaches on two sets of instances for
both problems in JAPTSP. The first set is JAP instances using Beasley [30]
benchmark. The second set contains TSP instances of Gerhard’s [31] benchmark.
We combined each instance in JAP benchmark with each TSP instance based on
their problem size. We assume that a job in JAP corresponds to a location/city
in TSP. So, we obtained 114 combined instances in total. See Table 1.

Table 1. Linked Problem Instances

Problem No. of No. of
Size Agents Instances
100 5 30
100 10 30
100 20 24
200 5 10
200 10 10
200 20 10
Total 114

5.2 Exploratory Analysis of Problem Linkages

In the data exploration analysis, we generate randomly and evaluate 10000 solu-
tions for JAP (p1). For each solution generated on the JAP, we instantiate TSP
(p2) based on our linked optimisation framework. We then, generate randomly
and evaluate 1000 solutions for the instantiated TSP and compute its mean
value. Next, for each JAPTSP instance, we determine the relationship between
the sub-problems using Spearman’s correlation coefficient.

5.3 Performance Metric

We use four performance metrics. This includes; Hypervolume (HV) [32], Rela-
tive Hypervolume (RHV), Inverted Generational Distance (IGD)[33] and Multi-
plicative Epsilon [34]. For each problem instance, we obtained a reference point
r and a reference front Z as input parameters for metric computations.
Relative Hypervolume RHV The relative hypervolume measures the pro-
portion of hypervolume achieved by individual approach. This is computed by
dividing the hypervolume of approximations by individual approach by the hy-
pervolume of the true Pareto front. A higher RHV indicates that approximations
are closer to the true Pareto front.

RHV (Z, A) =
HV (A, r)

HV (Z, r)
(18)

where 0 ≤ RHV (Z, A) ≤ 1

Hypervolume HV HV considers the volume of the objective space dominated
by an approximation set [35] bounded by a given reference point r ∈ R2. Higher
HV values indicate a better performance of the corresponding approaches.



Inverted Generational Distance IGD IGD assesses the quality of approxi-
mations achieved by multi-objective algorithm to the Pareto front[33]. The met-
ric measures how the approximations convergence towards the true Pareto front.
The smaller the IGD value, the closer the calculated front to the true Pareto
front[36]. IGD is calculated as follows:

IGD(A,Z) =
( 1

|Z|

|Z|∑
i=1

min
a∈A

d(z, a)2
) 1

2 (19)

where d(z, a) =
√∑n

ι (zι, aι) with aι being the ιth fitness value of point a from
the approximations A and zι being an ιth fitness value of point z from the true
Pareto front Z.
Multiplicative Epsilon ϵ The Epsilon indicator gives a factor by which an
approximation set is worse than another with respect to all objectives [34]. A
lower Epsilon value corresponds to a better approximation set, regardless of the
type of problem (minimization, maximization or mixed). We compute as follows;

epsilon(A,Z) = max
z∈Z

min
a∈A

max
1≤ι≤n

epsilon(aι, zι) (20)

where epsilon(aι, zι) = aι/zι

5.4 Parameter Settings

Table 2 shows the parameters used by the individual approach. To measure
the behavior of our approaches for solving the JAPTSP, we maintained the
same parameter settings for the different genetic algorithm in all the approaches.
An additional set of parameters are used by the TOPSIS (Technique for Order
of Preference by Similarity to Ideal Solution) method adopted in MCRGSLP
approach. We set the weight for JAP fitness to 0.35 and its constraint, in case
of violation, to 0.30. The weight for TSP is set to 0.35

Table 2. Parameter Settings

Parameters NSGALP MCRGALP SEQUENTIAL
No. of Algorithms 1 1 2
Experimental Runs 100 100 100 100
Population Size 100 100 100 100
Max Evaluations 10000 10000 10000 10000
Mating Pool Size 100 100 - -
Offspring Size 100 100 20 20
IntegerSBXCrossover 0.9 0.9 0.9 -
PMXCrossover 0.1 0.1 - 0.1
Integer Polynomial - - - -
Mutation
Permutation 0.5 0.5 - 0.5
Swap Mutation

5.5 Experimental Results and Analysis

Performance Metrics Table 3 shows the mean results of the four metrics. The
best values are highlighted in bold font. NSGALP shows the best performance
across all four metrics, although the mean results appear close to each other, es-
pecially in the hypervolume metric. MCRGALP slightly outperforms NSGALP



Table 3. Mean values of relative hypervolume, hypervolume, inverted generational
distance and epsilon metrics of MCRGALP, NSGALP and SEQUENTIAL

Size m RHV HV IGD EPSILON
MCRGALP NSGALP SEQ MCRGALP NSGALP SEQ MCRGALP NSGALP SEQ MCRGALP NSGALP SEQ

100 5 0.749 0.775 0.703 0.174 0.180 0.163 7048.24 6544.26 10598.16 1.186 1.187 1.226
100 10 0.711 0.778 0.670 0.186 0.204 0.172 8716.75 7049.15 12260.79 1.237 1.195 1.280
100 20 0.670 0.763 0.610 0.195 0.224 0.171 12505.42 8987.10 17753.56 1.301 1.188 1.448
200 5 0.794 0.834 0.794 0.154 0.163 0.154 11026.66 7454.52 13790.09 1.134 1.101 1.125
200 10 0.734 0.815 0.758 0.157 0.175 0.161 14559.31 9678.85 13654.81 1.195 1.133 1.177
200 20 0.697 0.808 0.721 0.159 0.186 0.163 18550.02 12371.31 17784.36 1.236 1.140 1.217

and sequential approaches in problem instance (Size = 100 and m = 5) in terms
of epsilon metric. We check the significance of the difference between the statis-
tical results using the Wilcoxon signed-rank test at 0.05 significance level. Table
4 summarizes the corresponding p values among the compared algorithms on in-
stances grouped by problem size and size of agents. We highlight with bold font
in Table 4 the comparisons that indicate no statistical difference in performance
between the algorithms. Table 4 suggests that, despite the exceptional perfor-
mance of NSGALP, MCRGALP and sequential approaches can also effectively
tackle some instances of the linked problem, but that depends on how the two
problems are linked. Figure 1 gives the overall perspective of the performance
of the algorithmic approaches, and the selection of the best approach points
toward NSGALP. However, there are several explanations for why NSGALP
outperforms the other two. Metrics are multi-objective based and are influenced
mainly by the number of non-dominated points produced by an algorithm.

Table 4. The p values of all metrics among the three algorithmic approaches on dif-
ferent problem combinations

Size m RHV HV IGD EPSILON
NSGALP NSGALP MCRGALP NSGALP NSGALP MCRGALP NSGALP NSGALP MCRGALP NSGALP NSGALP MCRGALP

vs vs vs vs vs vs vs vs vs vs vs vs
SEQ MCRGALP SEQ SEQ MCRGALP SEQ SEQ MCRGALP SEQ SEQ MCRGALP SEQ

100 5 1.49E-04 1.30E-01 9.88E-03 3.03E-03 3.40E-01 1.11E-04 3.50E-03 2.90E-01 1.22E-02 2.01E-04 9.00E-01 6.36E-05
100 10 4.80E-07 3.82E-10 8.24E-02 2.92E-02 6.38E-03 2.39E-04 5.08E-03 5.01E-02 1.67E-01 2.84E-04 3.55E-01 1.39E-06
100 20 1.20E-06 1.34E-08 3.28E-02 5.39E-02 3.53E-03 7.21E-05 1.01E-03 6.29E-03 1.40E-01 8.45E-01 4.88E-03 3.75E-04
200 5 8.90E-02 7.57E-02 9.70E-01 4.52E-02 1.86E-01 1.01E-03 2.57E-02 1.40E-01 8.90E-02 2.57E-02 2.73E-01 4.40E-04
200 10 4.52E-02 3.30E-04 5.71E-01 6.40E-02 1.40E-01 1.71E-03 1.40E-01 2.11E-02 2.41E-01 5.80E-03 6.78E-01 1.71E-03
200 20 3.76E-02 5.83E-04 5.71E-01 1.21E-01 2.57E-02 7.28E-03 7.57E-02 7.28E-03 2.41E-01 6.40E-02 3.45E-01 2.83E-03

Computational Time Complexity We also consider the performance of the
algorithmic approaches based on computational time. Figure 2 shows four plots
of mean computational time against the selected performance metrics. Figure
2a shows the mean computing time against the relative hypervolume metric,
Figure 2b shows the mean computing time against the hypervolume metric, Fig-
ure 2c IGD and Figure 2d shows the mean computing time against the epsilon
metric. There is no doubt that the sequential approach required less computa-
tional time than the other approaches in all combinations of problem instances.
Correlation Analysis We further consider algorithm performance in terms
of the correlation score obtained by randomly generated solutions, as discussed
in Section 5.2. We compare the performance of the competing algorithms on in-
stances that obtained the lowest (-0.0264), median (-0.0016) and highest (0.0198)



Fig. 1. Overall performance based on RHV, HV, IGD and Epsilon metrics

Fig. 2. Mean Computation Time against Performance Metrics

correlation coefficients. Figure 3 shows the empirical attainment function ob-
tained by competing algorithmic approaches on the instances with respective
minimum, median and maximum correlation scores. Overall, the NSGALP ap-
proach produces the best attainment coverage.

Service Chain Perspective Suppose we consider the two problems from the
perspective of two service companies or business units involved in a service chain.
Our results can offer guidance on the benefits and costs they will likely expe-
rience based on the approach used to solve the overall problem. For example,
the NSGALP is quite interesting due to the large extent of variability in fitness
values of the JAP criterion. In Figure 4a, the NSGALP solves the first problem
in a view to trade-off the other problem. However, the trade-off of the second
problem is not that much, as there is a peak at the lower TSP fitness value.
However, the MCRGALP tends to hit a sweet spot for both problems in 99%
of the problem instances, but this does not quantify the performance metrics



a b c

Fig. 3. Empirical Attainment Function of algorithmic approaches on problem instances
with minimum, median and maximum correlation coefficients Approaches

used. Therefore, in deciding how to solve the problem with the sequential and
NSGALP, it is more apparent that both companies must consider the impact
that optimising one problem will have on the other and decide if the resulting
costs/benefits are acceptable. In contrast, the MCRGALP maintains a balanced
compromise on both problems.

a b

Fig. 4. Distribution of solutions found by all approaches on problem size 100 & m=5.

6 Conclusion and Future Work

This paper presented a linked optimisation problem (JAPTSP) of two minimi-
sation problems: JAP and TSP. The JAP assigns agents to jobs that minimise
the job cost, while the TSP determines a subset of tours that minimise to-
tal travelling distance. We employed three algorithmic approaches; NSGALP,
MCRGALP, and SEQUENTIAL to tackle the JAPTSP. We compare the per-
formance of the three approaches on 114 combinations of problem instances.
Empirical results indicate that NSGALP outperforms the other two methods.
We also consider other factors in selecting an appropriate algorithmic method.
These factors include: mean computation time, degree of correlation between
the combined problem instance, and qualitative analysis from a service chain
perspective. MCRGALP seems to maintain balanced multiple decision-making



without sacrificing one for the other. In terms of mean computational time, the
sequential method outperforms the other two methods. Concerning future re-
search, we need to consider the use of appropriate performance metrics that
measure how algorithms perform towards obtaining results that converge to an
equilibrium point (i.e. a balanced joint solution) which is unbiased towards a
method. Further exploration of some properties of the algorithms can be un-
dertaken as the good performance of the NSGALP and MCRGALP results in
sacrificing computational time.
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